293 lines
11 KiB
Python

## Implementation of a mesh based force solver
import numpy as np
import matplotlib.pyplot as plt
from scipy import fft
import logging
logger = logging.getLogger(__name__)
'''
def mesh_forces(particles: np.ndarray, G: float, n_grid: int, mapping: callable) -> np.ndarray:
"""
Computes the gravitational force acting on a set of particles using a mesh-based approach.
Assumes that the particles array has the following columns: x, y, z, m.
"""
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
logger.debug(f"Computing forces for {particles.shape[0]} particles using mesh [mapping={mapping.__name__}, {n_grid=}]")
# in this case we create an adaptively sized mesh containing all particles
max_pos = np.max(np.abs(particles[:, :3]))
mesh, axis, spacing = create_mesh(-max_pos, max_pos, n_grid)
fill_mesh(particles, mesh, axis, mapping)
# we want a density mesh:
cell_volume = spacing**3
rho = mesh / cell_volume
if logger.isEnabledFor(logging.DEBUG):
show_mesh_information(mesh, "Density mesh")
# compute the potential and its gradient
phi_grad = mesh_poisson(rho, G, spacing)
if logger.isEnabledFor(logging.DEBUG):
logger.debug(f"Got phi_grad with: {phi_grad.shape}, {np.max(phi_grad)}")
show_mesh_information(phi_grad[0], "Potential gradient (x-direction)")
# compute the particle forces from the mesh potential
forces = np.zeros_like(particles[:, :3])
for i, p in enumerate(particles):
ijk = np.digitize(p, axis) - 1
logger.debug(f"Particle {p} maps to cell {ijk}")
# this gives 4 entries since p[3] the mass is digitized as well -> this is meaningless and we discard it
# logger.debug(f"Particle {p} maps to cell {ijk}")
forces[i] = - p[3] * phi_grad[..., ijk[0], ijk[1], ijk[2]]
return forces
def mesh_poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
"""
Solves the poisson equation for the mesh using the FFT.
Returns the derivative of the potential - grad phi
"""
rho_hat = fft.fftn(mesh)
k = fft.fftfreq(mesh.shape[0], spacing) * (2 * np.pi)
# shift the zero frequency to the center
kx, ky, kz = np.meshgrid(k, k, k)
k_vec = np.stack([kx, ky, kz], axis=0)
k_sr = kx**2 + ky**2 + kz**2
if logger.isEnabledFor(logging.DEBUG):
logger.debug(f"Got k_square with: {k_sr.shape}, {np.max(k_sr)} {np.min(k_sr)}")
logger.debug(f"Count of ksquare zeros: {np.sum(k_sr == 0)}")
show_mesh_information(np.abs(k_sr), "k_square")
k_sr[k_sr == 0] = np.inf
k_inv = k_vec / k_sr # allows for element-wise division
logger.debug(f"Proceeding to poisson equation with {rho_hat.shape=}, {k_inv.shape=}")
grad_phi_hat = - 4 * np.pi * G * rho_hat * k_inv * 1j
# nabla^2 phi => -i * k * nabla phi = 4 pi G rho => nabla phi = - i * rho * k / k^2
grad_phi = np.real(fft.ifftn(grad_phi_hat))
return grad_phi
'''
def mesh_forces(particles: np.ndarray, G: float = 1, n_grid: int = 50, mapping: callable = None) -> np.ndarray:
"""
Computes the gravitational force acting on a set of particles using a mesh-based approach.
Assumes that the particles array has the following columns: x, y, z, m.
"""
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
logger.debug(f"Computing forces for {particles.shape[0]} particles using mesh [mapping={mapping.__name__}, {n_grid=}]")
# in this case we create an adaptively sized mesh containing all particles
max_pos = np.max(np.abs(particles[:, :3]))
mesh, axis, spacing = create_mesh(-max_pos, max_pos, n_grid)
fill_mesh(particles, mesh, axis, mapping)
# we want a density mesh:
cell_volume = spacing**3
rho = mesh / cell_volume
if logger.isEnabledFor(logging.DEBUG):
show_mesh_information(mesh, "Density mesh")
# compute the potential and its gradient
phi = mesh_poisson(rho, G, spacing)
if logger.isEnabledFor(logging.DEBUG):
logger.debug(f"Got phi with: {phi.shape}, {np.max(phi)}")
show_mesh_information(phi, "Potential")
# get the acceleration from finite differences of the potential
# a = - grad phi
ax, ay, az = np.gradient(phi, spacing)
a_vec = - np.stack([ax, ay, az], axis=0)
# compute the particle forces from the mesh potential
forces = np.zeros_like(particles[:, :3])
ijks = np.digitize(particles[:, :3], axis) - 1
for i in range(particles.shape[0]):
m = particles[i, 3]
idx = ijks[i]
# f = m * a
forces[i] = m * a_vec[..., idx[0], idx[1], idx[2]]
return forces
def mesh_poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
"""
Solves the poisson equation for the mesh using the FFT.
Returns the the potential - grad
"""
rho_hat = fft.fftn(mesh)
# we also need the wave numbers
k = fft.fftfreq(mesh.shape[0], spacing) * (2 * np.pi)
# assuming the grid is cubic
kx, ky, kz = np.meshgrid(k, k, k)
k_sr = kx**2 + ky**2 + kz**2
if logger.isEnabledFor(logging.DEBUG):
logger.debug(f"Got k_square with: {k_sr.shape}, {np.max(k_sr)} {np.min(k_sr)}")
logger.debug(f"Count of ksquare zeros: {np.sum(k_sr == 0)}")
show_mesh_information(np.abs(k_sr), "k_square")
k_sr[k_sr == 0] = 1e-10
# k_inv = k_vec / k_sr # allows for element-wise division
phi_hat = - 4 * np.pi * G * rho_hat / k_sr
# nabla^2 phi becomes -i * k * nabla phi_hat = 4 pi G rho_hat
# => nabla phi = - i * rho * k / k^2
phi = np.real(fft.ifftn(phi_hat))
return phi
#### Helper functions for star mapping
def create_mesh(min_pos: float, max_pos: float, n_grid: int) -> tuple[np.ndarray, np.ndarray, float]:
"""
Creates an empty 3D mesh with the given dimensions.
Returns the mesh, the axis and the spacing between the cells.
"""
axis = np.linspace(min_pos, max_pos, n_grid)
mesh = np.zeros((n_grid, n_grid, n_grid))
spacing = np.diff(axis)[0]
logger.debug(f"Using mesh spacing: {spacing}")
return mesh, axis, spacing
def fill_mesh(particles: np.ndarray, mesh: np.ndarray, axis: np.ndarray, mapping: callable):
"""
Maps a list of particles to a the mesh (in place)
Assumes that the particles array has the following columns: x, y, z, ..., m.
Uses the mapping function to detemine the contribution to each cell. The mapped density should be normalized to 1.
"""
if particles.shape[1] < 4:
raise ValueError("Particles array must have at least 4 columns: x, y, z, ..., m")
# each particle will have its particular contirbution (determined through a weight function, mapping)
for i in range(particles.shape[0]):
p = particles[i]
mapping(mesh, p, axis) # this directly adds to the mesh
def particle_mapping_nn(mesh_to_fill: np.ndarray, particle: np.ndarray, axis: np.ndarray):
# fills the mesh in place with the particle mass
ijk = np.digitize(particle, axis) - 1
mesh_to_fill[ijk[0], ijk[1], ijk[2]] += particle[3]
def particle_mapping_cic(mesh_to_fill: np.ndarray, particle: np.ndarray, axis: np.ndarray):
# fills the mesh in place with the particle mass
ijk = np.digitize(particle, axis) - 1
spacing = axis[1] - axis[0]
# generate a 3D map of all the distances to the particle
px, py, pz = np.meshgrid(axis, axis, axis, indexing='ij')
dist = np.linalg.norm([px - particle[0], py - particle[1], pz - particle[2]], axis=0)
# the weights are the inverse of the distance, cut off at the cell size
weights = np.maximum(0, 1 - dist / spacing)
mesh_to_fill += particle[3] * weights
#### Helper functions for mesh plotting
def show_mesh_information(mesh: np.ndarray, name: str):
logger.info(f"Mesh information for {name}")
logger.info(f"Total mapped mass: {np.sum(mesh):.0f}")
logger.info(f"Max cell value: {np.max(mesh)}")
logger.info(f"Min cell value: {np.min(mesh)}")
logger.info(f"Mean cell value: {np.mean(mesh)}")
mesh_plot_3d(mesh, name)
mesh_plot_2d(mesh, name)
def mesh_plot_3d(mesh: np.ndarray, name: str):
fig = plt.figure()
fig.suptitle(f"{name} - {mesh.shape}")
ax = fig.add_subplot(111, projection='3d')
sc = ax.scatter(*np.where(mesh), c=mesh[np.where(mesh)], cmap='viridis')
plt.colorbar(sc, ax=ax, label='Density')
plt.show()
def mesh_plot_2d(mesh: np.ndarray, name: str, only_z: bool = False):
fig = plt.figure()
fig.suptitle(f"{name} - {mesh.shape}")
if only_z:
plt.imshow(np.sum(mesh, axis=2), cmap='viridis', origin='lower')
else:
axs = fig.subplots(1, 3)
axs[0].imshow(np.sum(mesh, axis=0), origin='lower')
axs[0].set_title("Flattened in x")
axs[1].imshow(np.sum(mesh, axis=1), origin='lower')
axs[1].set_title("Flattened in y")
axs[2].imshow(np.sum(mesh, axis=2), origin='lower')
axs[2].set_title("Flattened in z")
plt.show()
##################################
# For the presentation - without logging
def mesh__forces(particles: np.ndarray, G: float = 1, n_grid: int = 50, mapping: callable = None) -> np.ndarray:
"""
Computes the gravitational force acting on a set of particles using a mesh-based approach.
Assumes that the particles array has the following columns: x, y, z, m.
"""
max_pos = np.max(np.abs(particles[:, :3]))
mesh, axis, spacing = create_mesh(-max_pos, max_pos, n_grid)
fill_mesh(particles, mesh, axis, mapping)
# we want a density mesh:
cell_volume = spacing**3
rho = mesh / cell_volume
# compute the potential and its gradient
phi = mesh_poisson(rho, G, spacing)
# get the acceleration from finite differences of the potential
ax, ay, az = np.gradient(phi, spacing)
a_vec = - np.stack([ax, ay, az], axis=0)
# compute the particle forces from the mesh potential
forces = np.zeros_like(particles[:, :3])
ijks = np.digitize(particles[:, :3], axis) - 1
for i in range(particles.shape[0]):
m = particles[i, 3]
idx = ijks[i]
forces[i] = m * a_vec[..., idx[0], idx[1], idx[2]]
return forces
def mesh__poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
"""
Solves the poisson equation for the mesh using the FFT.
Returns the the potential - phi
"""
rho_hat = fft.fftn(mesh)
# we also need the wave numbers
k = fft.fftfreq(mesh.shape[0], spacing) * (2 * np.pi)
# assuming the grid is cubic
kx, ky, kz = np.meshgrid(k, k, k)
k_sr = kx**2 + ky**2 + kz**2
k_sr[k_sr == 0] = np.inf
phi_hat = - 4 * np.pi * G * rho_hat / k_sr
return np.real(fft.ifftn(phi_hat))