add assignments
This commit is contained in:
		
										
											Binary file not shown.
										
									
								
							| @@ -0,0 +1,154 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 4, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "%matplotlib inline\n", | ||||||
|  |     "\n", | ||||||
|  |     "from scipy.integrate import quad\n", | ||||||
|  |     "\n", | ||||||
|  |     "import numpy as np\n", | ||||||
|  |     "\n", | ||||||
|  |     "import PyCosmo" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 5, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "data": { | ||||||
|  |       "text/plain": [ | ||||||
|  |        "'0.4.3'" | ||||||
|  |       ] | ||||||
|  |      }, | ||||||
|  |      "execution_count": 5, | ||||||
|  |      "metadata": {}, | ||||||
|  |      "output_type": "execute_result" | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "PyCosmo.__version__" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 1. Age of the Universe\n", | ||||||
|  |     "\n", | ||||||
|  |     "We recall the Friedmann equation, which describes the evolution of the scale factor $a(t)$:\n", | ||||||
|  |     "\\begin{equation}\n", | ||||||
|  |     "H^2(t) = \\frac{8\\pi G}{3}\\left[ \\rho(t) + \\frac{\\rho_\\mathrm{crit} - \\rho_0}{a^2(t)} \\right],\n", | ||||||
|  |     "\\end{equation}\n", | ||||||
|  |     "where $H(t)\\equiv\\dot{a}/a$ is the Hubble rate, $G$ is Newton's constant, $\\rho(t)$ is the energy density in the unverse as a function of time with $\\rho_0$ being its value today. The critical density $\\rho_\\mathrm{crit}\\equiv\\frac{3H_0^2}{8\\pi G}$.\n", | ||||||
|  |     "1. Assume that the Universe is flat with matter and a cosmological constant, whose energy density remains constant with time. Re-write the Friedmann equation as\n", | ||||||
|  |     "\t\\begin{equation}\n", | ||||||
|  |     "\t\\mathrm{d}t = H_0^{-1}\\frac{\\mathrm{d}a}{a}\\left[ \\Omega_\\Lambda + \\frac{1 - \\Omega_\\Lambda}{a^3} \\right]^{-1/2},\n", | ||||||
|  |     "\t\\end{equation}\n", | ||||||
|  |     "\twhere $\\Omega_\\Lambda$ is the ratio of the energy density in the cosmological constant to the critical density.\n", | ||||||
|  |     "2. We can integrate this equation from $a=0$ (when $t=0$) until today ($a=1$) to get the age of the universe today. Compute the integral for the following cases:\n", | ||||||
|  |     "\t- a universe with only matter $\\Omega_\\Lambda = 0$ (analytically).\n", | ||||||
|  |     "\t- a universe dominated by dark energy $\\Omega_\\Lambda = 0.7$ (numerically).\n", | ||||||
|  |     "\t- For a fixed $H_0$, which universe is older?\n", | ||||||
|  |     "\t" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 6, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "Integral: 0.50000\n", | ||||||
|  |       "Estimated Error: 0.00000\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "# Example on how to define functions and intergrate numerically\n", | ||||||
|  |     "\n", | ||||||
|  |     "# define a function\n", | ||||||
|  |     "f = lambda x: x\n", | ||||||
|  |     "\n", | ||||||
|  |     "# integrate from 0 to 1\n", | ||||||
|  |     "i, e = quad(f, 0, 1)\n", | ||||||
|  |     "\n", | ||||||
|  |     "# i contains the numerically integrated value\n", | ||||||
|  |     "# e contains the estimated error\n", | ||||||
|  |     "print(\"Integral: %.5f\" %(i))\n", | ||||||
|  |     "print(\"Estimated Error: %.5f\" %(e))" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": null, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "# TODO: calculate the age of the universe numerically\n", | ||||||
|  |     "# by following the example above.\n", | ||||||
|  |     "# Define the proper function and integrate it numerically" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 2. Angular diameter distance\n", | ||||||
|  |     "\n", | ||||||
|  |     "Consider a galaxy of physical (visible) size of 5 kpc (1 pc $\\approx$ 3.26 light-years). What angle would the galaxy subtend if situated at redshift 0.1? Redshift 1.0?\n", | ||||||
|  |     "\n", | ||||||
|  |     "1. Do the calculation analytically in a flat universe, that contains only matter $\\Omega_M = 1.0$.\n", | ||||||
|  |     "\n", | ||||||
|  |     "2. Use PyCosmo and do the calculation numercally for a universe with the following parameters $\\Omega_M = 0.25$, $\\Omega_\\Lambda=0.7$ and $\\Omega_b=0.05$." | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": null, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "# Define the Cosmology\n", | ||||||
|  |     "Cosmo = PyCosmo.build()\n", | ||||||
|  |     "#TODO: Set the parameters accordingle\n", | ||||||
|  |     "Cosmo.set(h=0.7, omega_b=, omega_m=, omega_l_in=\"flat\")\n", | ||||||
|  |     "\n", | ||||||
|  |     "# Function to calculate the angular diameter distance (returns result in Mpc)\n", | ||||||
|  |     "# uses the scaling parameter as input\n", | ||||||
|  |     "# dist_ang = Cosmo.background.dist_ang_a(a=...)\n", | ||||||
|  |     "\n", | ||||||
|  |     "# TODO: calculate the angle of the galaxy" | ||||||
|  |    ] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3 (ipykernel)", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.10.8" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 4 | ||||||
|  | } | ||||||
							
								
								
									
										
											BIN
										
									
								
								problem-set-3/Cosmological_Probes___Problem_Sets___HS2023.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								problem-set-3/Cosmological_Probes___Problem_Sets___HS2023.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										154
									
								
								problem-set-3/Problem_Set_3_hints.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										154
									
								
								problem-set-3/Problem_Set_3_hints.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,154 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 4, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "%matplotlib inline\n", | ||||||
|  |     "\n", | ||||||
|  |     "from scipy.integrate import quad\n", | ||||||
|  |     "\n", | ||||||
|  |     "import numpy as np\n", | ||||||
|  |     "\n", | ||||||
|  |     "import PyCosmo" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 5, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "data": { | ||||||
|  |       "text/plain": [ | ||||||
|  |        "'0.4.3'" | ||||||
|  |       ] | ||||||
|  |      }, | ||||||
|  |      "execution_count": 5, | ||||||
|  |      "metadata": {}, | ||||||
|  |      "output_type": "execute_result" | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "PyCosmo.__version__" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 1. Age of the Universe\n", | ||||||
|  |     "\n", | ||||||
|  |     "We recall the Friedmann equation, which describes the evolution of the scale factor $a(t)$:\n", | ||||||
|  |     "\\begin{equation}\n", | ||||||
|  |     "H^2(t) = \\frac{8\\pi G}{3}\\left[ \\rho(t) + \\frac{\\rho_\\mathrm{crit} - \\rho_0}{a^2(t)} \\right],\n", | ||||||
|  |     "\\end{equation}\n", | ||||||
|  |     "where $H(t)\\equiv\\dot{a}/a$ is the Hubble rate, $G$ is Newton's constant, $\\rho(t)$ is the energy density in the unverse as a function of time with $\\rho_0$ being its value today. The critical density $\\rho_\\mathrm{crit}\\equiv\\frac{3H_0^2}{8\\pi G}$.\n", | ||||||
|  |     "1. Assume that the Universe is flat with matter and a cosmological constant, whose energy density remains constant with time. Re-write the Friedmann equation as\n", | ||||||
|  |     "\t\\begin{equation}\n", | ||||||
|  |     "\t\\mathrm{d}t = H_0^{-1}\\frac{\\mathrm{d}a}{a}\\left[ \\Omega_\\Lambda + \\frac{1 - \\Omega_\\Lambda}{a^3} \\right]^{-1/2},\n", | ||||||
|  |     "\t\\end{equation}\n", | ||||||
|  |     "\twhere $\\Omega_\\Lambda$ is the ratio of the energy density in the cosmological constant to the critical density.\n", | ||||||
|  |     "2. We can integrate this equation from $a=0$ (when $t=0$) until today ($a=1$) to get the age of the universe today. Compute the integral for the following cases:\n", | ||||||
|  |     "\t- a universe with only matter $\\Omega_\\Lambda = 0$ (analytically).\n", | ||||||
|  |     "\t- a universe dominated by dark energy $\\Omega_\\Lambda = 0.7$ (numerically).\n", | ||||||
|  |     "\t- For a fixed $H_0$, which universe is older?\n", | ||||||
|  |     "\t" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 6, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "Integral: 0.50000\n", | ||||||
|  |       "Estimated Error: 0.00000\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "# Example on how to define functions and intergrate numerically\n", | ||||||
|  |     "\n", | ||||||
|  |     "# define a function\n", | ||||||
|  |     "f = lambda x: x\n", | ||||||
|  |     "\n", | ||||||
|  |     "# integrate from 0 to 1\n", | ||||||
|  |     "i, e = quad(f, 0, 1)\n", | ||||||
|  |     "\n", | ||||||
|  |     "# i contains the numerically integrated value\n", | ||||||
|  |     "# e contains the estimated error\n", | ||||||
|  |     "print(\"Integral: %.5f\" %(i))\n", | ||||||
|  |     "print(\"Estimated Error: %.5f\" %(e))" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": null, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "# TODO: calculate the age of the universe numerically\n", | ||||||
|  |     "# by following the example above.\n", | ||||||
|  |     "# Define the proper function and integrate it numerically" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 2. Angular diameter distance\n", | ||||||
|  |     "\n", | ||||||
|  |     "Consider a galaxy of physical (visible) size of 5 kpc (1 pc $\\approx$ 3.26 light-years). What angle would the galaxy subtend if situated at redshift 0.1? Redshift 1.0?\n", | ||||||
|  |     "\n", | ||||||
|  |     "1. Do the calculation analytically in a flat universe, that contains only matter $\\Omega_M = 1.0$.\n", | ||||||
|  |     "\n", | ||||||
|  |     "2. Use PyCosmo and do the calculation numercally for a universe with the following parameters $\\Omega_M = 0.25$, $\\Omega_\\Lambda=0.7$ and $\\Omega_b=0.05$." | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": null, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "# Define the Cosmology\n", | ||||||
|  |     "Cosmo = PyCosmo.build()\n", | ||||||
|  |     "#TODO: Set the parameters accordingle\n", | ||||||
|  |     "Cosmo.set(h=0.7, omega_b=, omega_m=, omega_l_in=\"flat\")\n", | ||||||
|  |     "\n", | ||||||
|  |     "# Function to calculate the angular diameter distance (returns result in Mpc)\n", | ||||||
|  |     "# uses the scaling parameter as input\n", | ||||||
|  |     "# dist_ang = Cosmo.background.dist_ang_a(a=...)\n", | ||||||
|  |     "\n", | ||||||
|  |     "# TODO: calculate the angle of the galaxy" | ||||||
|  |    ] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3 (ipykernel)", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.10.8" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 4 | ||||||
|  | } | ||||||
| @@ -0,0 +1,116 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 2, | ||||||
|  |    "metadata": { | ||||||
|  |     "tags": [] | ||||||
|  |    }, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "%matplotlib inline\n", | ||||||
|  |     "\n", | ||||||
|  |     "from scipy.integrate import quad\n", | ||||||
|  |     "\n", | ||||||
|  |     "import numpy as np\n", | ||||||
|  |     "\n", | ||||||
|  |     "import PyCosmo" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 3, | ||||||
|  |    "metadata": { | ||||||
|  |     "tags": [] | ||||||
|  |    }, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "data": { | ||||||
|  |       "text/plain": [ | ||||||
|  |        "'2.1.1'" | ||||||
|  |       ] | ||||||
|  |      }, | ||||||
|  |      "execution_count": 3, | ||||||
|  |      "metadata": {}, | ||||||
|  |      "output_type": "execute_result" | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "PyCosmo.__version__" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 1. Wavenumber at equality\n", | ||||||
|  |     "1. Assume that around equality the dominant components are matter and radiation. Use the first Friedmann equation i.e.: \n", | ||||||
|  |     "\n", | ||||||
|  |     "\t\\begin{equation}\n", | ||||||
|  |     "\tH^2 = H_0^2[\\sum_i \\Omega_i a^{-3(1+w)}],\n", | ||||||
|  |     "\t\\end{equation}\n", | ||||||
|  |     "    \n", | ||||||
|  |     "    to calculate $a_{eq}$, $H(a_{eq})$ and therefore $k_{eq}$.\n", | ||||||
|  |     "    \n", | ||||||
|  |     "    How might you identify $k_{eq}$ in a cosmological observable? Can you make a plot which includes this scale using PyCosmo? Do yout think this has been observed in data?" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 2. Growth factor\n", | ||||||
|  |     "\n", | ||||||
|  |     "Here compute the growth factor for various cosmologies. The basic command in PyCosmo is shown below" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 10, | ||||||
|  |    "metadata": { | ||||||
|  |     "tags": [] | ||||||
|  |    }, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "ename": "SyntaxError", | ||||||
|  |      "evalue": "invalid syntax (4003919975.py, line 4)", | ||||||
|  |      "output_type": "error", | ||||||
|  |      "traceback": [ | ||||||
|  |       "\u001b[0;36m  Cell \u001b[0;32mIn[10], line 4\u001b[0;36m\u001b[0m\n\u001b[0;31m    Cosmo.set(h=0.7, omega_b=, omega_m=)\u001b[0m\n\u001b[0m                             ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "# Define the Cosmology\n", | ||||||
|  |     "Cosmo = PyCosmo.build()\n", | ||||||
|  |     "#TODO: Set the parameters accordingly\n", | ||||||
|  |     "Cosmo.set(h=0.7, omega_b=, omega_m=)\n", | ||||||
|  |     "\n", | ||||||
|  |     "# Function to calculate the growth factor\n", | ||||||
|  |     "# uses the scaling parameter as input\n", | ||||||
|  |     "growth_factor = Cosmo.lin_pert.growth_a(a=...)" | ||||||
|  |    ] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3 (ipykernel)", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.10.8" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 4 | ||||||
|  | } | ||||||
							
								
								
									
										
											BIN
										
									
								
								problem-set-4/Cosmological_Probes___Problem_Sets___HS2023.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								problem-set-4/Cosmological_Probes___Problem_Sets___HS2023.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										116
									
								
								problem-set-4/Problem_Set_4_hints.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										116
									
								
								problem-set-4/Problem_Set_4_hints.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,116 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 2, | ||||||
|  |    "metadata": { | ||||||
|  |     "tags": [] | ||||||
|  |    }, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "%matplotlib inline\n", | ||||||
|  |     "\n", | ||||||
|  |     "from scipy.integrate import quad\n", | ||||||
|  |     "\n", | ||||||
|  |     "import numpy as np\n", | ||||||
|  |     "\n", | ||||||
|  |     "import PyCosmo" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 3, | ||||||
|  |    "metadata": { | ||||||
|  |     "tags": [] | ||||||
|  |    }, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "data": { | ||||||
|  |       "text/plain": [ | ||||||
|  |        "'2.1.1'" | ||||||
|  |       ] | ||||||
|  |      }, | ||||||
|  |      "execution_count": 3, | ||||||
|  |      "metadata": {}, | ||||||
|  |      "output_type": "execute_result" | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "PyCosmo.__version__" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 1. Wavenumber at equality\n", | ||||||
|  |     "1. Assume that around equality the dominant components are matter and radiation. Use the first Friedmann equation i.e.: \n", | ||||||
|  |     "\n", | ||||||
|  |     "\t\\begin{equation}\n", | ||||||
|  |     "\tH^2 = H_0^2[\\sum_i \\Omega_i a^{-3(1+w)}],\n", | ||||||
|  |     "\t\\end{equation}\n", | ||||||
|  |     "    \n", | ||||||
|  |     "    to calculate $a_{eq}$, $H(a_{eq})$ and therefore $k_{eq}$.\n", | ||||||
|  |     "    \n", | ||||||
|  |     "    How might you identify $k_{eq}$ in a cosmological observable? Can you make a plot which includes this scale using PyCosmo? Do yout think this has been observed in data?" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "markdown", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "source": [ | ||||||
|  |     "# 2. Growth factor\n", | ||||||
|  |     "\n", | ||||||
|  |     "Here compute the growth factor for various cosmologies. The basic command in PyCosmo is shown below" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 10, | ||||||
|  |    "metadata": { | ||||||
|  |     "tags": [] | ||||||
|  |    }, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "ename": "SyntaxError", | ||||||
|  |      "evalue": "invalid syntax (4003919975.py, line 4)", | ||||||
|  |      "output_type": "error", | ||||||
|  |      "traceback": [ | ||||||
|  |       "\u001b[0;36m  Cell \u001b[0;32mIn[10], line 4\u001b[0;36m\u001b[0m\n\u001b[0;31m    Cosmo.set(h=0.7, omega_b=, omega_m=)\u001b[0m\n\u001b[0m                             ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "# Define the Cosmology\n", | ||||||
|  |     "Cosmo = PyCosmo.build()\n", | ||||||
|  |     "#TODO: Set the parameters accordingly\n", | ||||||
|  |     "Cosmo.set(h=0.7, omega_b=, omega_m=)\n", | ||||||
|  |     "\n", | ||||||
|  |     "# Function to calculate the growth factor\n", | ||||||
|  |     "# uses the scaling parameter as input\n", | ||||||
|  |     "growth_factor = Cosmo.lin_pert.growth_a(a=...)" | ||||||
|  |    ] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3 (ipykernel)", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.10.8" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 4 | ||||||
|  | } | ||||||
		Reference in New Issue
	
	Block a user
	 Remy Moll
					Remy Moll