nearly fully fleshed out now

This commit is contained in:
2025-09-17 18:11:07 +02:00
parent 4302cfc914
commit fdedbdbee2
17 changed files with 260 additions and 298 deletions

View File

@@ -9,7 +9,10 @@
- Is strongly linked to the formation and growth of the first galaxies and black holes.
- Sets the stage for many observables: CMB secondary anisotropies, 21-cm signal, high-z galaxy surveys.
- Sets the stage for many observables:
- CMB secondary anisotropies
- 21-cm signal
- high-z galaxy surveys.
// reformulate
@@ -20,12 +23,19 @@ The brigthtness temperature describes the difference between the CMB temperature
#v(1em)
#grid(columns: 2, align: center)[
#image("assets/cmb_black_body_spectrum.svg", height: 1fr, fit: "contain") #text(size: 0.8em)[from @cmb_spectrum]
#grid(columns: 2, align: center, column-gutter: 1em)[
#image("assets/cmb_and_dtb.jpeg", height: 1fr, fit: "contain") #text(size: 0.8em)[from @cmb_spectrum]
][
#pause
Removing the contribution from the black body spectrum of the CMB yields the explicit 21-cm signal:
#image("assets/cmb_black_body_spectrum.svg", height: 1fr, fit: "contain")
#set text(size: 0.8em)
remove contribution from the BB spectrum:
_differential brightness temperature_
$==>$ the actual 21-cm signal
#image("assets/brighness_temperature.png", fit: "contain")
from @Schaeffer_2023
]
#pagebreak()
@@ -37,6 +47,9 @@ The brigthtness temperature describes the difference between the CMB temperature
#text(size: 0.8em)[from @Pritchard2012]
]
// COMMENTS:
== Expression the 21-cm signal
Expressing the _differential brightness temperature_ (e.g @Pritchard2012):
@@ -59,113 +72,37 @@ $ <eq:dTb>
#layouts.contained(
[
*Traditional approaches*
// keypoints that describe heavy hydro + radiative transfer simulations
- require hydrodynamics
- require radiative transfer
- scale poorly
// From first principles
- need to cover large dynamic range
// small scales to resolve sources + sinks + feedback
// large scales to capture statistics
- hydrodynamics & radiative transfer
- hard to scale
$=>$ no reproducibility
#pause
],
[
#text(weight: "bold")[semi-numerical approaches]
#pad(1em)[
#align(left)[
#text(weight: "bold")[semi-numerical approaches]
such as #beorn @Schaeffer_2023, `21cmFAST` [CITATION]
- approximative treatment
- link
- scalable + efficient
such as #beorn @Schaeffer_2023, `21cmFAST` @21cmfast
$=>$ reproducible and flexible
// IF ASKED: difference with `21cmFAST`:
// based on excursion formalistm -> only valid >= 1Mpc, which is ideal for large volumes + statistics => 21-cm forecasts
$->$ approximative treatment
$->$ link
$->$ scalable + efficient
$=>$ reproducible and flexible
// interesting to build emulators for instance
]
]
]
)
// #layouts.two-boxes(
// [
// #text(weight: "bold")[Traditional approaches]
// // keypoints that describe heavy hydro + radiative transfer simulations
// - require hydrodynamics
// - require radiative transfer
// - scale poorly
// $=>$ no reproducibility
// #pause
// ],
// [
// *semi-numerical approaches*
// such as #beorn @Schaeffer_2023, `21cmFAST` [CITATION]
// - approximative treatment
// - link
// - scalable + efficient
// $=>$ reproducible and flexible
// ]
// )
#pagebreak()
== Matrix
#layouts.matrix((
brand.wordmark,
brand.wordmark,
brand.wordmark,
brand.wordmark,
brand.wordmark,
brand.wordmark
))
== Contained
#layouts.contained(
columns(2, [
- #lorem(10)
- #lorem(15)
- #lorem(25)
]),
brand.wordmark
)
== Four columns
#layouts.four-columns(
[
#text(weight: "bold", brand.wordmark)
#v(1em)
#text(size: 10.5pt)[#lorem(60)]
],
[
#text(weight: "bold", brand.wordmark)
#v(1em)
#text(size: 10.5pt)[#lorem(45)]
],
[
#text(weight: "bold", brand.wordmark)
#v(1em)
#text(size: 10.5pt)[#lorem(75)]
],
[
#text(weight: "bold", brand.wordmark)
#v(1em)
#text(size: 10.5pt)[#lorem(50)]
]
)
== Two columns
#layouts.contained(
columns(2, [
- #lorem(10)
- #lorem(15)
- #lorem(25)
]),
brand.wordmark
)