Compare commits
6 Commits
bb66126417
...
main
Author | SHA1 | Date | |
---|---|---|---|
afebafb784 | |||
2da17faca2 | |||
f879cbbdd9 | |||
fdedbdbee2 | |||
4302cfc914 | |||
47fff2a7f8 |
3
.gitmodules
vendored
@@ -1,3 +1,6 @@
|
||||
[submodule "importer"]
|
||||
path = importer
|
||||
url = ssh://git@git.kluster.moll.re:2222/remoll/typst-notebook-cell-importer
|
||||
[submodule "lineal"]
|
||||
path = lineal
|
||||
url = git@github.com:ellsphillips/lineal.git
|
||||
|
BIN
assets/brighness_temperature.png
Normal file
After Width: | Height: | Size: 48 KiB |
BIN
assets/cmb_and_dtb.jpeg
Normal file
After Width: | Height: | Size: 74 KiB |
231
assets/cmb_black_body_spectrum.svg
Normal file
@@ -0,0 +1,231 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg width="600" height="480" viewBox="0 0 600 480" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
|
||||
<title>Produced by GNUPLOT 4.4 patchlevel 0 </title>
|
||||
<desc>Translations are included for Arabic, Catalan, English, German, French, Italian, Russian. Other languages can easily be added.</desc>
|
||||
|
||||
<defs>
|
||||
|
||||
<circle id="gpDot" r="0.5" stroke-width="0.5"/>
|
||||
<path id="gpPt0" stroke-width="0.444" stroke="currentColor" d="M-1,0 h2 M0,-1 v2"/>
|
||||
<path id="gpPt1" stroke-width="0.222" stroke="currentColor" d="M-1,-1 L1,1 M1,-1 L-1,1"/>
|
||||
<path id="gpPt2" stroke-width="0.222" stroke="currentColor" d="M-1,0 L1,0 M0,-1 L0,1 M-1,-1 L1,1 M-1,1 L1,-1"/>
|
||||
<rect id="gpPt3" stroke-width="0.222" stroke="currentColor" x="-1" y="-1" width="2" height="2"/>
|
||||
<rect id="gpPt4" stroke-width="0.222" stroke="currentColor" fill="currentColor" x="-1" y="-1" width="2" height="2"/>
|
||||
<circle id="gpPt5" stroke-width="0.222" stroke="currentColor" cx="0" cy="0" r="1"/>
|
||||
<use xlink:href="#gpPt5" id="gpPt6" fill="currentColor" stroke="none"/>
|
||||
<path id="gpPt7" stroke-width="0.222" stroke="currentColor" d="M0,-1.33 L-1.33,0.67 L1.33,0.67 z"/>
|
||||
<use xlink:href="#gpPt7" id="gpPt8" fill="currentColor" stroke="none"/>
|
||||
<use xlink:href="#gpPt7" id="gpPt9" stroke="currentColor" transform="rotate(180)"/>
|
||||
<use xlink:href="#gpPt9" id="gpPt10" fill="currentColor" stroke="none"/>
|
||||
<use xlink:href="#gpPt3" id="gpPt11" stroke="currentColor" transform="rotate(45)"/>
|
||||
<use xlink:href="#gpPt11" id="gpPt12" fill="currentColor" stroke="none"/>
|
||||
</defs>
|
||||
<g style="fill:none; color:white; stroke:currentColor; stroke-width:2.00; stroke-linecap:butt; stroke-linejoin:miter">
|
||||
</g>
|
||||
<g style="fill:none; color:black; stroke:currentColor; stroke-width:1.50; stroke-linecap:butt; stroke-linejoin:miter">
|
||||
<path d="M80.2,422.4 L89.2,422.4 M579.1,422.4 L570.1,422.4 "/>
|
||||
<g transform="translate(71.9,426.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 0</text>
|
||||
</g>
|
||||
<path d="M80.2,376.4 L89.2,376.4 M579.1,376.4 L570.1,376.4 "/>
|
||||
<g transform="translate(71.9,380.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 50</text>
|
||||
</g>
|
||||
<path d="M80.2,330.3 L89.2,330.3 M579.1,330.3 L570.1,330.3 "/>
|
||||
<g transform="translate(71.9,334.8)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 100</text>
|
||||
</g>
|
||||
<path d="M80.2,284.3 L89.2,284.3 M579.1,284.3 L570.1,284.3 "/>
|
||||
<g transform="translate(71.9,288.8)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 150</text>
|
||||
</g>
|
||||
<path d="M80.2,238.2 L89.2,238.2 M579.1,238.2 L570.1,238.2 "/>
|
||||
<g transform="translate(71.9,242.7)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 200</text>
|
||||
</g>
|
||||
<path d="M80.2,192.2 L89.2,192.2 M579.1,192.2 L570.1,192.2 "/>
|
||||
<g transform="translate(71.9,196.7)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 250</text>
|
||||
</g>
|
||||
<path d="M80.2,146.2 L89.2,146.2 M579.1,146.2 L570.1,146.2 "/>
|
||||
<g transform="translate(71.9,150.7)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 300</text>
|
||||
</g>
|
||||
<path d="M80.2,100.1 L89.2,100.1 M579.1,100.1 L570.1,100.1 "/>
|
||||
<g transform="translate(71.9,104.6)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 350</text>
|
||||
</g>
|
||||
<path d="M80.2,54.1 L89.2,54.1 M579.1,54.1 L570.1,54.1 "/>
|
||||
<g transform="translate(71.9,58.6)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<text> 400</text>
|
||||
</g>
|
||||
<path d="M80.2,422.4 L80.2,413.4 M80.2,54.1 L80.2,63.1 "/>
|
||||
<g transform="translate(80.2,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 2</text>
|
||||
</g>
|
||||
<path d="M130.1,422.4 L130.1,413.4 M130.1,54.1 L130.1,63.1 "/>
|
||||
<g transform="translate(130.1,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 4</text>
|
||||
</g>
|
||||
<path d="M180.0,422.4 L180.0,413.4 M180.0,54.1 L180.0,63.1 "/>
|
||||
<g transform="translate(180.0,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 6</text>
|
||||
</g>
|
||||
<path d="M229.9,422.4 L229.9,413.4 M229.9,54.1 L229.9,63.1 "/>
|
||||
<g transform="translate(229.9,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 8</text>
|
||||
</g>
|
||||
<path d="M279.8,422.4 L279.8,413.4 M279.8,54.1 L279.8,63.1 "/>
|
||||
<g transform="translate(279.8,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 10</text>
|
||||
</g>
|
||||
<path d="M329.7,422.4 L329.7,413.4 M329.7,54.1 L329.7,63.1 "/>
|
||||
<g transform="translate(329.7,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 12</text>
|
||||
</g>
|
||||
<path d="M379.5,422.4 L379.5,413.4 M379.5,54.1 L379.5,63.1 "/>
|
||||
<g transform="translate(379.5,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 14</text>
|
||||
</g>
|
||||
<path d="M429.4,422.4 L429.4,413.4 M429.4,54.1 L429.4,63.1 "/>
|
||||
<g transform="translate(429.4,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 16</text>
|
||||
</g>
|
||||
<path d="M479.3,422.4 L479.3,413.4 M479.3,54.1 L479.3,63.1 "/>
|
||||
<g transform="translate(479.3,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 18</text>
|
||||
</g>
|
||||
<path d="M529.2,422.4 L529.2,413.4 M529.2,54.1 L529.2,63.1 "/>
|
||||
<g transform="translate(529.2,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 20</text>
|
||||
</g>
|
||||
<path d="M579.1,422.4 L579.1,413.4 M579.1,54.1 L579.1,63.1 "/>
|
||||
<g transform="translate(579.1,444.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<text> 22</text>
|
||||
</g>
|
||||
<path d="M80.2,54.1 L80.2,422.4 L579.1,422.4 L579.1,54.1 L80.2,54.1 Z "/>
|
||||
<g transform="translate(25.9,238.3) rotate(270)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<switch>
|
||||
<text systemLanguage="ar">القوَّة [جانسكي\ستراديان]</text>
|
||||
<text systemLanguage="ca">Intensitat [MJy/sr]</text>
|
||||
<text systemLanguage="de">Intensität [MJy/sr]</text>
|
||||
<text systemLanguage="en">Intensity [MJy/sr]</text>
|
||||
<text systemLanguage="fr">Intensité [MJy/sr]</text>
|
||||
<text systemLanguage="it">Intensità [MJy/sr]</text>
|
||||
<text systemLanguage="pt">Intensidade [MJy/sr]</text>
|
||||
<text systemLanguage="ru">Плотность потока [МЯн/ср]</text>
|
||||
<text>Intensity [MJy/sr]</text>
|
||||
</switch>
|
||||
</g>
|
||||
<g transform="translate(329.6,471.9)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<switch>
|
||||
<text systemLanguage="ar">التردد [1\سنتم]</text>
|
||||
<text systemLanguage="ca">Freqüència [1/cm]</text>
|
||||
<text systemLanguage="de">Frequenz [1/cm]</text>
|
||||
<text systemLanguage="en">Frequency [1/cm]</text>
|
||||
<text systemLanguage="fr">Fréquence [1/cm]</text>
|
||||
<text systemLanguage="it">Frequenza [1/cm]</text>
|
||||
<text systemLanguage="pt">Frequência [1/cm]</text>
|
||||
<text systemLanguage="ru">Частота [1/см]</text>
|
||||
<text>Frequency [1/cm]</text>
|
||||
</switch>
|
||||
</g>
|
||||
<g transform="translate(329.6,31.6)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:middle">
|
||||
<switch>
|
||||
<text systemLanguage="ar">طيف إشعاع الخلفيَّة الكونية الميكروي من مُستكشف الخلفيَّة الكونيَّة</text>
|
||||
<text systemLanguage="ca">Espectre de la radiació còsmica de fons (del COBE)</text>
|
||||
<text systemLanguage="de">Spektrum der Kosmischen Hintergrundstrahlung (von COBE)</text>
|
||||
<text systemLanguage="en">Cosmic microwave background spectrum (from COBE)</text>
|
||||
<text systemLanguage="fr">Spectre du fond diffus cosmologique (selon COBE)</text>
|
||||
<text systemLanguage="it">Spettro della radiazione cosmica di fondo (da COBE)</text>
|
||||
<text systemLanguage="pt">Espectro da radiação cósmica de fundo (por COBE)</text>
|
||||
<text systemLanguage="ru">Спектр реликтового излучения (по данным COBE)</text>
|
||||
<text>Cosmic microwave background spectrum (from COBE)</text>
|
||||
</switch>
|
||||
</g>
|
||||
</g>
|
||||
|
||||
<!-- "Plot #1" -->
|
||||
|
||||
<g style="fill:none; color:red; stroke:currentColor; stroke-width:2.00; stroke-linecap:butt; stroke-linejoin:miter">
|
||||
<g transform="translate(512.0,76.6)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<switch>
|
||||
<text systemLanguage="ar">بيانات مستكشف الخلفيَّة الكونيَّة</text>
|
||||
<text systemLanguage="ca">Dades del COBE</text>
|
||||
<text systemLanguage="de">Daten von COBE</text>
|
||||
<text systemLanguage="en">COBE data</text>
|
||||
<text systemLanguage="fr">Données de COBE</text>
|
||||
<text systemLanguage="it">Dati di COBE</text>
|
||||
<text systemLanguage="pt">Dados do COBE</text>
|
||||
<text systemLanguage="ru">Данные COBE</text>
|
||||
<text>COBE data</text>
|
||||
</switch>
|
||||
</g>
|
||||
<path d="M520.3,72.1 L562.5,72.1 M520.3,67.6 L520.3,76.6 M562.5,67.6 L562.5,76.6 M86.9,237.6 M82.4,237.6 L91.4,237.6 M82.4,237.6 L91.4,237.6 M98.2,192.7 L98.2,192.6 M93.7,192.7 L102.7,192.7 M93.7,192.6 L102.7,192.6 M109.6,152.6 M105.1,152.6 L114.1,152.6 M105.1,152.6 L114.1,152.6 M120.9,120.6 M116.4,120.6 L125.4,120.6 M116.4,120.6 L125.4,120.6 M132.1,96.4 M127.6,96.4 L136.6,96.4 M127.6,96.4 L136.6,96.4 M143.6,79.8 M139.1,79.8 L148.1,79.8 M139.1,79.8 L148.1,79.8 M154.8,71.2 L154.8,71.1 M150.3,71.2 L159.3,71.2 M150.3,71.1 L159.3,71.1 M166.3,69.3 M161.8,69.3 L170.8,69.3 M161.8,69.3 L170.8,69.3 M177.5,73.5 M173.0,73.5 L182.0,73.5 M173.0,73.5 L182.0,73.5 M188.7,82.8 M184.2,82.8 L193.2,82.8 M184.2,82.8 L193.2,82.8 M200.2,96.4 M195.7,96.4 L204.7,96.4 M195.7,96.4 L204.7,96.4 M211.4,112.8 M206.9,112.8 L215.9,112.8 M206.9,112.8 L215.9,112.8 M222.6,131.4 M218.1,131.4 L227.1,131.4 M218.1,131.4 L227.1,131.4 M234.1,151.8 M229.6,151.8 L238.6,151.8 M229.6,151.8 L238.6,151.8 M245.3,172.5 M240.8,172.5 L249.8,172.5 M240.8,172.5 L249.8,172.5 M256.8,193.8 M252.3,193.8 L261.3,193.8 M252.3,193.8 L261.3,193.8 M268.0,214.4 M263.5,214.4 L272.5,214.4 M263.5,214.4 L272.5,214.4 M279.3,234.3 M274.8,234.3 L283.8,234.3 M274.8,234.3 L283.8,234.3 M290.7,253.7 L290.7,253.6 M286.2,253.7 L295.2,253.7 M286.2,253.6 L295.2,253.6 M302.0,271.6 L302.0,271.5 M297.5,271.6 L306.5,271.6 M297.5,271.5 L306.5,271.5 M313.2,288.2 M308.7,288.2 L317.7,288.2 M308.7,288.2 L317.7,288.2 M324.7,303.8 M320.2,303.8 L329.2,303.8 M320.2,303.8 L329.2,303.8 M335.9,317.9 L335.9,317.8 M331.4,317.9 L340.4,317.9 M331.4,317.8 L340.4,317.8 M347.4,330.9 L347.4,330.8 M342.9,330.9 L351.9,330.9 M342.9,330.8 L351.9,330.8 M358.6,342.3 L358.6,342.2 M354.1,342.3 L363.1,342.3 M354.1,342.2 L363.1,342.2 M369.8,352.6 L369.8,352.5 M365.3,352.6 L374.3,352.6 M365.3,352.5 L374.3,352.5 M381.3,361.9 L381.3,361.8 M376.8,361.9 L385.8,361.9 M376.8,361.8 L385.8,361.8 M392.5,369.9 M388.0,369.9 L397.0,369.9 M388.0,369.9 L397.0,369.9 M403.7,377.1 M399.2,377.1 L408.2,377.1 M399.2,377.1 L408.2,377.1 M415.2,383.5 M410.7,383.5 L419.7,383.5 M410.7,383.5 L419.7,383.5 M426.4,388.9 M421.9,388.9 L430.9,388.9 M421.9,388.9 L430.9,388.9 M437.9,393.8 M433.4,393.8 L442.4,393.8 M433.4,393.8 L442.4,393.8 M449.1,398.0 L449.1,397.9 M444.6,398.0 L453.6,398.0 M444.6,397.9 L453.6,397.9 M460.4,401.6 L460.4,401.5 M455.9,401.6 L464.9,401.6 M455.9,401.5 L464.9,401.5 M471.8,404.7 L471.8,404.6 M467.3,404.7 L476.3,404.7 M467.3,404.6 L476.3,404.6 M483.1,407.3 M478.6,407.3 L487.6,407.3 M478.6,407.3 L487.6,407.3 M494.5,409.7 M490.0,409.7 L499.0,409.7 M490.0,409.7 L499.0,409.7 M505.8,411.6 M501.3,411.6 L510.3,411.6 M501.3,411.6 L510.3,411.6 M517.0,413.3 L517.0,413.2 M512.5,413.3 L521.5,413.3 M512.5,413.2 L521.5,413.2 M528.5,414.7 L528.5,414.6 M524.0,414.7 L533.0,414.7 M524.0,414.6 L533.0,414.6 M539.7,416.0 L539.7,415.8 M535.2,416.0 L544.2,416.0 M535.2,415.8 L544.2,415.8 M550.9,417.2 L550.9,416.9 M546.4,417.2 L555.4,417.2 M546.4,416.9 L555.4,416.9 M562.4,418.5 L562.4,418.0 M557.9,418.5 L566.9,418.5 M557.9,418.0 L566.9,418.0 "/>
|
||||
<use xlink:href="#gpPt0" transform="translate(86.9,237.6) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(98.2,192.7) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(109.6,152.6) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(120.9,120.6) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(132.1,96.4) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(143.6,79.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(154.8,71.1) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(166.3,69.3) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(177.5,73.5) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(188.7,82.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(200.2,96.4) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(211.4,112.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(222.6,131.4) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(234.1,151.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(245.3,172.5) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(256.8,193.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(268.0,214.4) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(279.3,234.3) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(290.7,253.7) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(302.0,271.6) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(313.2,288.2) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(324.7,303.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(335.9,317.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(347.4,330.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(358.6,342.3) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(369.8,352.5) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(381.3,361.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(392.5,369.9) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(403.7,377.1) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(415.2,383.5) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(426.4,388.9) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(437.9,393.8) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(449.1,397.9) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(460.4,401.6) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(471.8,404.7) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(483.1,407.3) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(494.5,409.7) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(505.8,411.6) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(517.0,413.3) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(528.5,414.7) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(539.7,415.9) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(550.9,417.1) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(562.4,418.2) scale(4.50)"/>
|
||||
<use xlink:href="#gpPt0" transform="translate(541.4,72.1) scale(4.50)"/>
|
||||
</g>
|
||||
|
||||
<!-- "Plot #2" -->
|
||||
|
||||
<g style="fill:none; color:blue; stroke:currentColor; stroke-width:2.00; stroke-linecap:butt; stroke-linejoin:miter">
|
||||
<g transform="translate(512.0,94.6)" style="stroke:none; fill:black; font-family:Arial; font-size:12.00pt; text-anchor:end">
|
||||
<switch>
|
||||
<text systemLanguage="ar">طيف الجسم الأسود</text>
|
||||
<text systemLanguage="ca">Espectre del cos negre</text>
|
||||
<text systemLanguage="de">Schwarzkörper-Spektrum</text>
|
||||
<text systemLanguage="en">Black body spectrum</text>
|
||||
<text systemLanguage="fr">Spectre de corps noir</text>
|
||||
<text systemLanguage="it">Spettro del corpo nero</text>
|
||||
<text systemLanguage="pt">Espectro de corpo negro</text>
|
||||
<text systemLanguage="ru">Спектр абсолютно чёрного тела</text>
|
||||
<text>Black body spectrum</text>
|
||||
</switch>
|
||||
</g>
|
||||
<path d="M520.3,90.1 L562.5,90.1 M86.9,237.6 L91.7,217.8 L96.5,198.9 L101.3,180.9 L106.1,164.1 L110.9,148.5 L115.8,134.2 L120.6,121.4 L125.4,110.0 L130.2,100.0 L135.0,91.5 L139.8,84.4 L144.6,78.7 L149.4,74.4 L154.2,71.4 L159.0,69.7 L163.8,69.1 L168.6,69.7 L173.4,71.4 L178.2,74.0 L183.0,77.5 L187.8,81.9 L192.6,87.0 L197.4,92.8 L202.2,99.1 L207.0,106.0 L211.8,113.4 L216.6,121.2 L221.4,129.2 L226.2,137.6 L231.0,146.2 L235.8,154.9 L240.6,163.7 L245.4,172.6 L250.2,181.6 L255.0,190.5 L259.8,199.4 L264.6,208.2 L269.4,216.9 L274.2,225.5 L279.0,233.9 L283.8,242.1 L288.6,250.2 L293.4,258.1 L298.2,265.8 L303.0,273.2 L307.9,280.4 L312.7,287.4 L317.5,294.2 L322.3,300.7 L327.1,306.9 L331.9,313.0 L336.7,318.8 L341.5,324.3 L346.3,329.6 L351.1,334.7 L355.9,339.6 L360.7,344.3 L365.5,348.7 L370.3,352.9 L375.1,357.0 L379.9,360.8 L384.7,364.4 L389.5,367.9 L394.3,371.1 L399.1,374.2 L403.9,377.2 L408.7,379.9 L413.5,382.6 L418.3,385.1 L423.1,387.4 L427.9,389.6 L432.7,391.7 L437.5,393.7 L442.3,395.5 L447.1,397.2 L451.9,398.9 L456.7,400.4 L461.5,401.9 L466.3,403.2 L471.1,404.5 L475.9,405.7 L480.7,406.8 L485.5,407.9 L490.3,408.9 L495.2,409.8 L500.0,410.6 L504.8,411.4 L509.6,412.2 L514.4,412.9 L519.2,413.6 L524.0,414.2 L528.8,414.8 L533.6,415.3 L538.4,415.8 L543.2,416.3 L548.0,416.7 L552.8,417.1 L557.6,417.5 L562.4,417.8 "/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 18 KiB |
BIN
assets/evolution_of_dtb.png
Normal file
After Width: | Height: | Size: 735 KiB |
BIN
assets/image copy.png
Normal file
After Width: | Height: | Size: 48 KiB |
BIN
assets/image.png
Normal file
After Width: | Height: | Size: 755 KiB |
BIN
assets/lightcone.png
Normal file
After Width: | Height: | Size: 768 KiB |
BIN
assets/profiles.png
Normal file
After Width: | Height: | Size: 105 KiB |
BIN
assets/profiles_demo.png
Normal file
After Width: | Height: | Size: 52 KiB |
BIN
assets/signals.png
Normal file
After Width: | Height: | Size: 184 KiB |
64
backup.typ
Normal file
@@ -0,0 +1,64 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
|
||||
== Full profiles <backup_full_profiles>
|
||||
$
|
||||
rho_alpha (r bar M, z) = (1 + z)^2 / (4 pi r^2) dot sum_(n=2)^(n_m)f_n dot epsilon_alpha (nu prime) dot f_star dot dot(M)(z prime bar M, z)
|
||||
$
|
||||
with the lookback redshift $z prime$ so $nu prime = nu dot (1+z prime) slash (1+z)$
|
||||
|
||||
$=>$ coupling coefficient
|
||||
$
|
||||
x_alpha (r bar M, z) = (1.81 dot 10^11) / (1 + z) dot S_alpha (z) dot rho_alpha (r bar M, z)
|
||||
$
|
||||
with a suppression factor $S_alpha (z)$
|
||||
|
||||
|
||||
#pagebreak()
|
||||
$
|
||||
rho_"xray" (r bar M, z) = 1 / r^2 sum_i f_i f_(X,h) dot integral_(nu^i_"th")^oo d nu (nu - nu^i_"th") h_P sigma_i (nu) e^(-tau_nu) f_star dot(M) (z prime bar M, z)
|
||||
$
|
||||
$
|
||||
==> 3/2 dot derivative(rho_h (r bar M, z), z) = (3 rho_h (r bar M, z)) / (1 + z) - (rho_"xray" (r bar M, z)) /(k_B (1 + z) H(z))
|
||||
$
|
||||
with the Boltzmann constant $k_B$ and $H(z)$ is the Hubble parameter
|
||||
// where i={H, He} and νi thhP ={13.6, 26.5} eV.
|
||||
// Contribution from both He and H since
|
||||
// No defined sum but integral due to all radiations being xray
|
||||
|
||||
// Lookback comes from the definition of comoving r:
|
||||
// $r = integral_(z)^(z prime) c dz dot (1+z) / H(z)$
|
||||
|
||||
#pagebreak()
|
||||
|
||||
The comoving ionized volume around a source of ionizing photons satisfies the differential equation
|
||||
$
|
||||
derivative(V, t) = dot(N)_"ion"(t) / overline(n)_H^0 - alpha_B dot C / a^3 dot overline(n)_H^0 dot V
|
||||
$
|
||||
bubble radius $R_b = root(3, 3/ (4pi) V(M,z))$ and using the Heaviside step function $theta_H$:
|
||||
$
|
||||
x_("HII")(r bar M, z) = theta_"H" lr([R_b (M, z) - r], size: #150%)
|
||||
$
|
||||
|
||||
|
||||
== Validation <backup_validation>
|
||||
#line(length: 100%, stroke: 0pt)
|
||||
#align(center)[
|
||||
#set image(height: 43%, fit: "contain")
|
||||
#let notebook = json("../workdir/11_visualization/validation_simple_run.ipynb")
|
||||
#image_cell(notebook, cell_id: "validation_signal_comparison_old_v_new")
|
||||
|
||||
#let notebook = json("../workdir/11_visualization/validation_convergence.ipynb")
|
||||
#image_cell(notebook, cell_id: "validation_signal_comparison")
|
||||
]
|
||||
|
||||
|
||||
|
||||
== Thesan resolution issues
|
||||
#let notebook = json("../workdir/11_visualization/halo_mass_function_thesan_1_2.ipynb")
|
||||
|
||||
#line(length: 100%, stroke: 0pt)
|
||||
#align(center)[
|
||||
#image_cell(notebook, cell_id: "halo_mass_functions")
|
||||
]
|
||||
|
111
beorn.typ
Normal file
@@ -0,0 +1,111 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
== The "painting" procedure
|
||||
|
||||
#let notebook = json("../workdir/11_visualization/simplified_visualization_of_procedure.ipynb")
|
||||
|
||||
#grid(
|
||||
columns: (auto, 5em, auto, 5em, auto),
|
||||
rows: (60%, auto),
|
||||
align: center,
|
||||
row-gutter: 2em,
|
||||
image_cell(notebook, cell_id: "step_profile_1d"),
|
||||
[#pin(1)$==>$#pin(2)],
|
||||
image_cell(notebook, cell_id: "step_kernel_3d"),
|
||||
[#pin(3)$==>$#pin(4)],
|
||||
image_cell(notebook, cell_id: "step_profile_3d"),
|
||||
|
||||
[
|
||||
1-d profile
|
||||
],
|
||||
[],
|
||||
[
|
||||
3-d kernel
|
||||
|
||||
(localized)
|
||||
],
|
||||
[],
|
||||
[
|
||||
3-d contribution on a grid
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
#pause
|
||||
#pinit-point-to(
|
||||
(1, 2),
|
||||
pin-dx: 20pt,
|
||||
pin-dy: -30pt,
|
||||
body-dx: -70pt,
|
||||
body-dy: -95pt,
|
||||
offset-dx: 20pt,
|
||||
offset-dy: 30pt,
|
||||
)[spherical symmetry]
|
||||
|
||||
|
||||
#pause
|
||||
#pinit-point-to(
|
||||
(3, 4),
|
||||
pin-dx: 20pt,
|
||||
pin-dy: -30pt,
|
||||
body-dx: -70pt,
|
||||
body-dy: -95pt,
|
||||
offset-dx: 20pt,
|
||||
offset-dy: 30pt,
|
||||
)[convolution (`FFT`)]
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#grid(
|
||||
columns: (auto, 8em, auto),
|
||||
rows: (38%, 1em, 38%),
|
||||
align: center,
|
||||
column-gutter: 2em,
|
||||
row-gutter: 0.3em,
|
||||
|
||||
image_cell(notebook, cell_id: "step_profile_3d"),
|
||||
grid.cell(
|
||||
rowspan: 3,
|
||||
image_cell(notebook, cell_id: "step_profile_3d_overlap"),
|
||||
),
|
||||
[],
|
||||
|
||||
|
||||
[#h(3em) Multiple contributions $==>$],
|
||||
[
|
||||
$==>$ _Postprocessing_
|
||||
|
||||
(overlaps, normalization, ...)
|
||||
],
|
||||
|
||||
image_cell(notebook, cell_id: "step_profile_3d_second"),
|
||||
[],
|
||||
)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Postprocessing
|
||||
|
||||
- ionization overlaps
|
||||
|
||||
- corrections due to RSD
|
||||
- computation of derived quantities
|
||||
- summary statistics
|
||||
|
||||
|
||||
== Maps
|
||||
Through the redshifting of photons, the brightness temperature across redshift slices will be measured in a frequency band
|
||||
|
||||
$=>$ representation as a lightcone
|
||||
#align(center)[
|
||||
#image("assets/lightcone.png")
|
||||
]
|
||||
from @Schaeffer_2023
|
||||
|
||||
== Signal
|
||||
#align(center)[
|
||||
#image("assets/signals.png")
|
||||
]
|
||||
from @Schaeffer_2023
|
38
conclusion.typ
Normal file
@@ -0,0 +1,38 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
= Conclusion
|
||||
== Summary
|
||||
- #beorn a semi-numerical tool to simulate the 21-cm signal
|
||||
|
||||
- uses the _halo model of reionization_
|
||||
- describes sources in terms of their host DM halo
|
||||
- $=>$ central dependence on halo growth
|
||||
// since it affects the SFR and thus the emissivity
|
||||
|
||||
- more accurate treatment of *individual* mass accretion
|
||||
// change in profiles trivially
|
||||
- leads to significant changes to reionization history
|
||||
// which could in theory be absorbed by shifting other paremeters
|
||||
- map-level fluctuations
|
||||
// which we can hope to observe (although many are subtle)
|
||||
|
||||
// unique position of 21-cm cosmology -> cannot discuss observational constraints
|
||||
|
||||
- #beorn python package: #link("https://github.com/cosmic-reionization/beorn")
|
||||
// invite you to check out
|
||||
- simulation-agnostic
|
||||
- easier to use
|
||||
- fully parallelized
|
||||
|
||||
|
||||
== Outlook
|
||||
- further validation
|
||||
// finally ready for direct comparison with c2ray? now that parameters and loading have been properly implemented
|
||||
|
||||
- investigation + parameterization of stochasticity
|
||||
// Assuming other relations related to production of photons is (hopefully by now well motivated) complex
|
||||
// these cannot directly be inferred => expressed as a distribution as a function of another halo property
|
||||
|
||||
- application to larger volumes
|
||||
// the scale-up -> large volumes with usable merger trees
|
||||
// comitting to reserving some 100s of node hours (which I would still quantify as fast)
|
12
globals.typ
Normal file
@@ -0,0 +1,12 @@
|
||||
#import "importer/main.typ": *
|
||||
#import "@preview/physica:0.9.5": *
|
||||
#import "@preview/touying:0.6.1": *
|
||||
#import "@preview/pinit:0.2.2": *
|
||||
|
||||
#import "lineal/lib.typ": *
|
||||
|
||||
#show math.equation: set align(center)
|
||||
#show image: set align(center)
|
||||
|
||||
|
||||
#let beorn = raw("BEoRN")
|
63
halo_model.typ
Normal file
@@ -0,0 +1,63 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
|
||||
== The halo model of reionization
|
||||
Following @Schneider_2021 @schneider2023cosmologicalforecast21cmpower, the halo model describes (#link(<backup_full_profiles>, "derivation")):
|
||||
#line(length: 100%, stroke: color.white.transparentize(100%))
|
||||
#pause
|
||||
|
||||
$
|
||||
rho_alpha (r bar M, z) = (1 + z)^2 / (4 pi r^2) dot sum_(n=2)^(n_m)f_n dot epsilon_alpha (nu prime) dot f_star dot dot(M)(z prime bar M, z)
|
||||
$
|
||||
|
||||
#pause
|
||||
|
||||
$
|
||||
3/2 dot derivative(rho_h (r bar M, z), z) = (3 rho_h (r bar M, z)) / (1 + z) - (rho_"xray" (r bar M, z)) /(k_B (1 + z) H(z))
|
||||
$
|
||||
// From the xray emission
|
||||
// primordial + heating term
|
||||
// expansion + deposition by xrays
|
||||
// => xrays are assumed to be the only source of heating
|
||||
//
|
||||
#pause
|
||||
$
|
||||
derivative(V_b, t) = dot(N)_"ion"(t) / overline(n)_H^0 - alpha_B dot C / a^3 dot overline(n)_H^0 dot V_b
|
||||
$
|
||||
// $
|
||||
// x_("HII")(r bar M, z) = theta_"H" lr([R_b (M, z) - r], size: #150%)
|
||||
// $
|
||||
|
||||
#pagebreak()
|
||||
Visually:
|
||||
|
||||
#image("assets/profiles_demo.png", height: 70%)
|
||||
(from @Schaeffer_2023)
|
||||
// COMMENTS:
|
||||
// - contribution from the lyman lines
|
||||
// - 1/r^2 decrease from spreading photons
|
||||
// - more steep outwards + sharp drop due to redshifting out of line
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
== Revisiting the 21cm signal
|
||||
$
|
||||
d T_"b" (bold(x), z) tilde.eq T_0 (z) dot
|
||||
#pin(1) x_"HI" (bold(x), z) #pin(2) dot
|
||||
(1 + delta_b (bold(x), z)) dot
|
||||
(x_alpha (bold(x), z)) / (#pin(3) 1 + x_alpha (bold(x), z) #pin(4) ) dot
|
||||
((1 - T_"CMB" (z)) / (#pin(5) T_"gas" (bold(x), z) #pin(6)))
|
||||
$ <eq:dTb>
|
||||
|
||||
#pause
|
||||
// #pinit-highlight(1, 20)
|
||||
#pinit-point-from((1, 2))[from $x_"HII"$]
|
||||
#pause
|
||||
|
||||
#pinit-point-from((3, 4))[from $rho_alpha$]
|
||||
#pause
|
||||
|
||||
#pinit-point-from((5, 6))[from $rho_"h"$]
|
||||
|
||||
#pagebreak()
|
48
implementation.typ
Normal file
@@ -0,0 +1,48 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
#let notebook = json("../workdir/11_visualization/simple_run_example.ipynb")
|
||||
|
||||
|
||||
= Adaptations
|
||||
|
||||
|
||||
== Central changes
|
||||
|
||||
- profile generation taking into account halo growth rate
|
||||
|
||||
- reading merger trees + inferring growth rates
|
||||
|
||||
- parallel painting across multiple halo bins
|
||||
// important since the bins are more now
|
||||
|
||||
- performance and ease of use
|
||||
// largely through vectorization -> still "native" python
|
||||
// usage of HDF5
|
||||
// solid caching mechanisms -> resume simulations, etc...
|
||||
|
||||
#pause
|
||||
$->$ #link(<backup_validation>, "Validated") ✅
|
||||
|
||||
== Simplified usage
|
||||
|
||||
#text(
|
||||
size: .65em,
|
||||
)[
|
||||
#columns(2, gutter: 3pt)[
|
||||
#show raw: it => {
|
||||
show regex("pin\d"): it => pin(eval(it.text.slice(3)))
|
||||
it
|
||||
}
|
||||
#code-block(
|
||||
filename: "beorn.py",
|
||||
language: "python",
|
||||
code_cell(notebook, cell_id: "code_for_run"),
|
||||
)
|
||||
]
|
||||
// sadly didn't work:
|
||||
// #pinit-point-to(1)[Hello]
|
||||
// #pinit-point-to(2)[Hello]
|
||||
// #pinit-point-to(3)[Hello]
|
||||
// #pinit-point-to(4)[Hello]
|
||||
// #pinit-point-to(5)[Hello]
|
||||
]
|
103
introduction.typ
Normal file
@@ -0,0 +1,103 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
|
||||
= Simulating the Epoch of Reionization
|
||||
// == The Epoch of Reionization
|
||||
// - Marks the universe’s last major phase transition: from neutral to ionized hydrogen.
|
||||
|
||||
// - Shapes the large-scale structure of the intergalactic medium (IGM).
|
||||
|
||||
// - Is strongly linked to the formation and growth of the first galaxies and black holes.
|
||||
|
||||
// - Sets the stage for many observables:
|
||||
// - CMB secondary anisotropies
|
||||
// - 21-cm signal
|
||||
// - high-z galaxy surveys.
|
||||
// // reformulate
|
||||
|
||||
|
||||
== The 21-cm signal
|
||||
|
||||
|
||||
The _brigthtness temperature_ describes the intensity of the 21-cm line
|
||||
|
||||
#v(1em)
|
||||
|
||||
#grid(columns: 2, align: center, column-gutter: 1em)[
|
||||
#image("assets/cmb_and_dtb.jpeg", height: 1fr, fit: "contain") #text(size: 0.8em)[from @cmb_spectrum]
|
||||
][
|
||||
#pause
|
||||
#set text(size: 0.8em)
|
||||
remove contribution from the BB spectrum
|
||||
|
||||
_differential brightness temperature_
|
||||
|
||||
$==>$ the actual reionization signal
|
||||
|
||||
#image("assets/brighness_temperature.png", fit: "contain")
|
||||
from @Schaeffer_2023
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
== Expression the 21-cm signal @Pritchard2012 @Furlanetto_2006
|
||||
|
||||
#align(center)[
|
||||
#image("assets/evolution_of_dtb.png", height: 70%, fit: "contain")
|
||||
// #text(size: 0.8em)[from @Pritchard2012]
|
||||
]
|
||||
#pause
|
||||
$
|
||||
d T_"b" (bold(x), z) tilde.eq T_0 (z) dot
|
||||
#pin(1) x_"HI" (bold(x), z) #pin(2) dot
|
||||
(1 + delta_b (bold(x), z)) dot
|
||||
(x_alpha (bold(x), z)) / (#pin(3) 1 + x_alpha (bold(x), z) #pin(4) ) dot
|
||||
((1 - T_"CMB" (z)) / (#pin(5) T_"gas" (bold(x), z) #pin(6)))
|
||||
$ <eq:dTb>
|
||||
|
||||
|
||||
|
||||
== The current state of simulations
|
||||
|
||||
|
||||
#layouts.contained(
|
||||
[
|
||||
*Traditional approaches*
|
||||
// From first principles
|
||||
|
||||
$->$ need to cover large dynamic range
|
||||
|
||||
// small scales to resolve sources + sinks + feedback
|
||||
// large scales to capture statistics
|
||||
$->$ hydrodynamics & radiative transfer
|
||||
|
||||
$->$ hard to scale
|
||||
|
||||
$=>$ no reproducibility
|
||||
#pause
|
||||
],
|
||||
[
|
||||
#pad(1em)[
|
||||
#align(left)[
|
||||
#text(weight: "bold")[Semi-numerical approaches]
|
||||
|
||||
such as #beorn @Schaeffer_2023, `21cmFAST` @21cmfast
|
||||
|
||||
// IF ASKED: difference with `21cmFAST`:
|
||||
// based on excursion formalistm -> only valid >= 1Mpc, which is ideal for large volumes + statistics => 21-cm forecasts
|
||||
|
||||
$->$ approximative treatment
|
||||
|
||||
$->$ prediction of global signals
|
||||
// and statisticical properties
|
||||
|
||||
$->$ scalable + efficient
|
||||
|
||||
$=>$ reproducible and flexible
|
||||
// interesting to build emulators for instance
|
||||
]
|
||||
|
||||
]
|
||||
]
|
||||
)
|
1
lineal
Submodule
262
main.typ
@@ -1,9 +1,6 @@
|
||||
#import "@preview/diatypst:0.7.0": *
|
||||
#import "@preview/grayness:0.4.1": *
|
||||
#import "importer/main.typ": *
|
||||
#import "globals.typ": *
|
||||
|
||||
|
||||
// Patch the ETH logo to actually be white:
|
||||
#let logo = "assets/uzh-logo.svg"
|
||||
#let original = read(logo)
|
||||
#let changed = original.replace(
|
||||
@@ -17,193 +14,124 @@
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#let ratio = 16/9
|
||||
#let layout_size = "large"
|
||||
#let ratio = 4/3
|
||||
#let layout_size = "medium"
|
||||
#let authors = ("Rémy Moll",)
|
||||
#let date = "18. September 2024"
|
||||
#let date = "18 September 2024"
|
||||
#let title = "Simulating the EOR with self-consistent growth of galaxies"
|
||||
#let subtitle = "Master's thesis presentation"
|
||||
#let footer-title = "Self-consistent simulations of the EOR"
|
||||
#let title-color = color.blue.darken(50%);
|
||||
#let bg-color = color.white;
|
||||
|
||||
#let padded_logos = logos.map(logo => box(height: 1.5em, inset: (x:0.3cm), logo))
|
||||
|
||||
|
||||
///// Front page /////
|
||||
#let notebook = json("../workdir/11_visualization/very_high_res_snapshot.ipynb")
|
||||
#let front_image = image_cell(notebook, cell_id: "very_high_res_slice")
|
||||
#let (height, space) = layouts.at(layout_size)
|
||||
#let width = ratio * height
|
||||
// #title-slide[
|
||||
|
||||
#set page(
|
||||
height: height,
|
||||
width: width,
|
||||
footer: none,
|
||||
header: none,
|
||||
margin: 0cm
|
||||
)
|
||||
// #let space = 2cm
|
||||
// #place[
|
||||
// #front_image,
|
||||
// ]
|
||||
// #place[
|
||||
// #box(
|
||||
// width: 100%,
|
||||
// height: 100%,
|
||||
// fill: color.black.transparentize(65%)
|
||||
// )
|
||||
// ]
|
||||
|
||||
#let space = 2cm
|
||||
#place[
|
||||
#set image(
|
||||
width: 105%,
|
||||
)
|
||||
#front_image,
|
||||
]
|
||||
#place[
|
||||
#box(
|
||||
width: 100%,
|
||||
height: 100%,
|
||||
fill: color.black.transparentize(65%)
|
||||
)
|
||||
]
|
||||
|
||||
#block(
|
||||
inset: (x:0.5*space, y:1em),
|
||||
width: 100%,
|
||||
height: 60%,
|
||||
align(bottom)[#text(2.0em, weight: "bold", fill: bg-color, title)],
|
||||
above: 0cm,
|
||||
below: 0cm,
|
||||
)
|
||||
|
||||
|
||||
#let padded_logos = logos.map(logo => box(height: 1.5em, inset: (x:0.3cm), logo))
|
||||
|
||||
|
||||
#block(
|
||||
height: 40%,
|
||||
width: 100%,
|
||||
fill: bg-color,
|
||||
inset: (x:0.5*space,top:1cm, bottom: 1em),
|
||||
above: 0cm,
|
||||
below: 0cm,
|
||||
if subtitle != none {[
|
||||
#text(1.4em, fill: title-color, weight: "bold", subtitle)
|
||||
]} +
|
||||
if subtitle != none and date != none { text(1.4em)[ \ ] } +
|
||||
if date != none {text(1.1em, date)} +
|
||||
align(
|
||||
bottom,
|
||||
stack(
|
||||
dir: ltr,
|
||||
authors.join(", ", last: " & "),
|
||||
h(1fr),
|
||||
..padded_logos,
|
||||
)
|
||||
)
|
||||
)
|
||||
// #block(
|
||||
// height: 20%,
|
||||
// width: 100%,
|
||||
// fill: none,
|
||||
// inset: (x:0.5*space,top:1cm, bottom: 1em),
|
||||
// above: 0cm,
|
||||
// below: 0cm,
|
||||
// stack(
|
||||
// dir: ltr,
|
||||
// authors.join(", ", last: " & "),
|
||||
// h(1fr),
|
||||
// ..padded_logos,
|
||||
// #block(
|
||||
// inset: (x:0.5*space, y:1em),
|
||||
// width: 100%,
|
||||
// height: 60%,
|
||||
// align(bottom)[#text(2.0em, weight: "bold", fill: bg-color, title)],
|
||||
// above: 0cm,
|
||||
// below: 0cm,
|
||||
// )
|
||||
|
||||
// )
|
||||
|
||||
|
||||
|
||||
// #block(
|
||||
// height: 40%,
|
||||
// width: 100%,
|
||||
// fill: bg-color,
|
||||
// inset: (x:0.5*space,top:1cm, bottom: 1em),
|
||||
// above: 0cm,
|
||||
// below: 0cm,
|
||||
// if subtitle != none {[
|
||||
// #text(1.4em, fill: title-color, weight: "bold", subtitle)
|
||||
// ]} +
|
||||
// if subtitle != none and date != none { text(1.4em)[ \ ] } +
|
||||
// if date != none {text(1.1em, date)} +
|
||||
// align(
|
||||
// bottom,
|
||||
// stack(
|
||||
// dir: ltr,
|
||||
// authors.join(", ", last: " & "),
|
||||
// h(1fr),
|
||||
// ..padded_logos,
|
||||
// )
|
||||
// )
|
||||
// )
|
||||
// ]
|
||||
// #slide[
|
||||
|
||||
// // #set page(
|
||||
// // footer: none,
|
||||
// // header: none,
|
||||
// // margin: 0cm
|
||||
// // )
|
||||
|
||||
|
||||
// ]
|
||||
|
||||
///// Main content /////
|
||||
|
||||
#show: slides.with(
|
||||
title: title,
|
||||
subtitle: subtitle,
|
||||
date: date,
|
||||
authors: authors,
|
||||
toc: false,
|
||||
layout: layout_size,
|
||||
ratio: ratio,
|
||||
title-color: title-color,
|
||||
bg-color: bg-color,
|
||||
|
||||
|
||||
|
||||
|
||||
#show: lineal-theme.with(
|
||||
aspect-ratio: "16-9",
|
||||
// config-common(handout: true),
|
||||
config-info(
|
||||
title: [#title],
|
||||
subtitle: [#subtitle],
|
||||
author: [Author],
|
||||
date: datetime.today(),
|
||||
institution: [ETH Zürich, University of Zürich],
|
||||
// logo: brand.logo,
|
||||
),
|
||||
// config-common(handout: true)
|
||||
// footer-left: self => [..#padded_logos],
|
||||
)
|
||||
|
||||
#title-slide()
|
||||
|
||||
#include "introduction.typ"
|
||||
|
||||
= #beorn
|
||||
#include "halo_model.typ"
|
||||
#include "beorn.typ"
|
||||
|
||||
|
||||
#show footnote.entry: set text(size: 0.6em)
|
||||
#set footnote.entry(gap: 3pt)
|
||||
#set align(horizon)
|
||||
#include "refinements.typ"
|
||||
|
||||
#include "implementation.typ"
|
||||
|
||||
#include "results.typ"
|
||||
#include "conclusion.typ"
|
||||
|
||||
|
||||
= Simulating the EOR
|
||||
// REFERENCES NEEDED!
|
||||
= End
|
||||
== Thank you for your attention
|
||||
|
||||
== The 21cm signal
|
||||
#lorem(20)
|
||||
- a
|
||||
- b
|
||||
- c
|
||||
#bibliography("references.bib", title: "References")
|
||||
#show: appendix
|
||||
#include("backup.typ")
|
||||
|
||||
== The halo model of reionization
|
||||
#lorem(20)
|
||||
- a
|
||||
- b
|
||||
- c
|
||||
|
||||
== The current state of simulations
|
||||
#lorem(20)
|
||||
|
||||
|
||||
|
||||
= Halo mass history
|
||||
|
||||
== Effect on the flux profiles
|
||||
#lorem(50)
|
||||
|
||||
== Inferring from #smallcaps[Thesan] data
|
||||
#lorem(50)
|
||||
|
||||
|
||||
= Implementation
|
||||
== Simplified usage
|
||||
|
||||
```python
|
||||
import beorn
|
||||
|
||||
parameters = beorn.load_parameters("params.yaml")
|
||||
```
|
||||
// TODO use a code cell instead!
|
||||
|
||||
|
||||
// title describing the results - signal, maps, power spectra => noticeable improvements
|
||||
= Results
|
||||
== Maps
|
||||
#lorem(50)
|
||||
|
||||
== Signal
|
||||
#lorem(50)
|
||||
|
||||
== Summary statistics
|
||||
#lorem(50)
|
||||
|
||||
#set heading(numbering: none, outlined: false)
|
||||
= Thank you for your attention
|
||||
|
||||
|
||||
#set page(numbering: none)
|
||||
// Backup slides
|
||||
|
||||
== Validation - old implementation
|
||||
TODO
|
||||
|
||||
== Validation - resolution effects
|
||||
TODO
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
== Backup slides
|
||||
This is a backup slide
|
||||
#lorem(50)
|
||||
|
||||
== Another backup slide
|
||||
#lorem(50)
|
||||
|
461
references.bib
Normal file
@@ -0,0 +1,461 @@
|
||||
@article{10.1093,
|
||||
author = {Mirocha, Jordan and Furlanetto, Steven R},
|
||||
title = {Balancing the efficiency and stochasticity of star formation with dust extinction in z ≳ 10 galaxies observed by JWST},
|
||||
journal = {Monthly Notices of the Royal Astronomical Society},
|
||||
volume = {519},
|
||||
number = {1},
|
||||
pages = {843-853},
|
||||
year = {2022},
|
||||
month = {12},
|
||||
abstract = {Early observations with JWST indicate an overabundance of bright galaxies at redshifts z ≳ 10 relative to Hubble-calibrated model predictions. More puzzling still is the apparent lack of evolution in the abundance of such objects between z ∼ 9 and the highest redshifts yet probed, z ∼ 13–17. In this study, we first show that, despite a poor match with JWST luminosity functions (LFs), semi-empirical models calibrated to rest-ultraviolet LFs and colours at 4 ≲ z ≲ 8 are largely consistent with constraints on the properties of individual JWST galaxies, including their stellar masses, ages, and spectral slopes. We then show that order-of-magnitude scatter in the star formation rate of galaxies (at fixed halo mass) can indeed boost the abundance of bright galaxies, provided that star formation is more efficient than expected in low-mass haloes. However, this solution to the abundance problem introduces tension elsewhere: because it relies on the upscattering of low-mass haloes into bright magnitude bins, one expects typical ages, masses, and spectral slopes to be much lower than constraints from galaxies observed thus far. This tension can be alleviated by non-negligible reddening, suggesting that – if the first batch of photometrically selected candidates are confirmed – star formation and dust production could be more efficient than expected in galaxies at z ≳ 10.},
|
||||
issn = {0035-8711},
|
||||
doi = {10.1093/mnras/stac3578},
|
||||
url = {https://doi.org/10.1093/mnras/stac3578},
|
||||
eprint = {https://academic.oup.com/mnras/article-pdf/519/1/843/48343456/stac3578.pdf},
|
||||
}
|
||||
|
||||
|
||||
|
||||
### The three main THESAN papers
|
||||
|
||||
@article{Kannan_2021,
|
||||
title={Introducing the <scp>thesan</scp> project: radiation-magnetohydrodynamic simulations of the epoch of reionization},
|
||||
volume={511},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1093/mnras/stab3710},
|
||||
DOI={10.1093/mnras/stab3710},
|
||||
number={3},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Kannan, R and Garaldi, E and Smith, A and Pakmor, R and Springel, V and Vogelsberger, M and Hernquist, L},
|
||||
year={2021},
|
||||
month=dec, pages={4005–4030}
|
||||
}
|
||||
@article{Garaldi_2022,
|
||||
title={The<scp>thesan</scp>project: properties of the intergalactic medium and its connection to reionization-era galaxies},
|
||||
volume={512},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1093/mnras/stac257},
|
||||
DOI={10.1093/mnras/stac257},
|
||||
number={4},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Garaldi, E and Kannan, R and Smith, A and Springel, V and Pakmor, R and Vogelsberger, M and Hernquist, L},
|
||||
year={2022},
|
||||
month=feb, pages={4909–4933}
|
||||
}
|
||||
@article{Smith_2022,
|
||||
title={The<scp>thesan</scp>project: Lyman-α emission and transmission during the Epoch of Reionization},
|
||||
volume={512},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1093/mnras/stac713},
|
||||
DOI={10.1093/mnras/stac713},
|
||||
number={3},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Smith, A and Kannan, R and Garaldi, E and Vogelsberger, M and Pakmor, R and Springel, V and Hernquist, L},
|
||||
year={2022},
|
||||
month=mar, pages={3243–3265}
|
||||
}
|
||||
|
||||
|
||||
# lhalotree
|
||||
@ARTICLE{Springel2005,
|
||||
author = {{Springel}, Volker and {White}, Simon D.~M. and {Jenkins}, Adrian and {Frenk}, Carlos S. and {Yoshida}, Naoki and {Gao}, Liang and {Navarro}, Julio and {Thacker}, Robert and {Croton}, Darren and {Helly}, John and {Peacock}, John A. and {Cole}, Shaun and {Thomas}, Peter and {Couchman}, Hugh and {Evrard}, August and {Colberg}, J{\"o}rg and {Pearce}, Frazer},
|
||||
title = "{Simulations of the formation, evolution and clustering of galaxies and quasars}",
|
||||
journal = {Nature},
|
||||
keywords = {Astrophysics},
|
||||
year = 2005,
|
||||
month = jun,
|
||||
volume = {435},
|
||||
number = {7042},
|
||||
pages = {629-636},
|
||||
doi = {10.1038/nature03597},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {astro-ph/0504097},
|
||||
primaryClass = {astro-ph},
|
||||
url = {https://ui.adsabs.harvard.edu/abs/2005Natur.435..629S},
|
||||
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
||||
}
|
||||
|
||||
|
||||
|
||||
### Beorn specific
|
||||
# original beorn paper
|
||||
@article{Schaeffer_2023,
|
||||
title={<scp>beorn</scp>: a fast and flexible framework to simulate the epoch of reionization and cosmic dawn},
|
||||
volume={526},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1093/mnras/stad2937},
|
||||
DOI={10.1093/mnras/stad2937},
|
||||
number={2},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Schaeffer, Timothée and Giri, Sambit K and Schneider, Aurel},
|
||||
year={2023},
|
||||
month=sep, pages={2942–2959} }
|
||||
|
||||
|
||||
# theoretical foundation - halo model of reionization
|
||||
@misc{schneider2023cosmologicalforecast21cmpower,
|
||||
title={Cosmological forecast of the 21-cm power spectrum using the halo model of reionization},
|
||||
author={Aurel Schneider and Timothée Schaeffer and Sambit K. Giri},
|
||||
year={2023},
|
||||
eprint={2302.06626},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={astro-ph.CO},
|
||||
url={https://arxiv.org/abs/2302.06626},
|
||||
}
|
||||
|
||||
# groundwork for halo model
|
||||
@article{Schneider_2021,
|
||||
title={Halo model approach for the 21-cm power spectrum at cosmic dawn},
|
||||
volume={103},
|
||||
ISSN={2470-0029},
|
||||
url={http://dx.doi.org/10.1103/PhysRevD.103.083025},
|
||||
DOI={10.1103/physrevd.103.083025},
|
||||
number={8},
|
||||
journal={Physical Review D},
|
||||
publisher={American Physical Society (APS)},
|
||||
author={Schneider, Aurel and Giri, Sambit K. and Mirocha, Jordan},
|
||||
year={2021},
|
||||
month=apr
|
||||
}
|
||||
|
||||
|
||||
|
||||
# PKDGRAV
|
||||
@misc{potter2016pkdgrav3trillionparticlecosmological,
|
||||
title={PKDGRAV3: Beyond Trillion Particle Cosmological Simulations for the Next Era of Galaxy Surveys},
|
||||
author={Douglas Potter and Joachim Stadel and Romain Teyssier},
|
||||
year={2016},
|
||||
eprint={1609.08621},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={astro-ph.IM},
|
||||
url={https://arxiv.org/abs/1609.08621},
|
||||
}
|
||||
|
||||
|
||||
# Wouthuysen-Field effect
|
||||
@ARTICLE{Wouthuysen,
|
||||
author = {{Wouthuysen}, S.~A.},
|
||||
title = "{On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line.}",
|
||||
journal = {A.J.,},
|
||||
year = 1952,
|
||||
month = jan,
|
||||
volume = {57},
|
||||
pages = {31-32},
|
||||
doi = {10.1086/106661},
|
||||
url = {https://ui.adsabs.harvard.edu/abs/1952AJ.....57R..31W},
|
||||
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
||||
}
|
||||
|
||||
@ARTICLE{Field,
|
||||
author={Field, George B.},
|
||||
journal={Proceedings of the IRE},
|
||||
title={Excitation of the Hydrogen 21-CM Line},
|
||||
year={1958},
|
||||
volume={46},
|
||||
number={1},
|
||||
pages={240-250},
|
||||
keywords={Hydrogen;Clouds;Electromagnetic wave absorption;Kinetic theory;Equations;Deuterium;Temperature distribution;Observatories;Electrons;Atomic measurements},
|
||||
doi={10.1109/JRPROC.1958.286741}}
|
||||
|
||||
|
||||
|
||||
@MISC{Pylians,
|
||||
author = {{Villaescusa-Navarro}, Francisco},
|
||||
title = "{Pylians: Python libraries for the analysis of numerical simulations}",
|
||||
keywords = {Software},
|
||||
howpublished = {Astrophysics Source Code Library, record ascl:1811.008},
|
||||
year = 2018,
|
||||
month = nov,
|
||||
eid = {ascl:1811.008},
|
||||
pages = {ascl:1811.008},
|
||||
archivePrefix = {ascl},
|
||||
eprint = {1811.008},
|
||||
url = {https://ui.adsabs.harvard.edu/abs/2018ascl.soft11008V},
|
||||
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
||||
}
|
||||
|
||||
|
||||
# Description of the 21cm signal and cosmology
|
||||
@ARTICLE{Pritchard2012,
|
||||
author = {{Pritchard}, Jonathan R. and {Loeb}, Abraham},
|
||||
title = "{21 cm cosmology in the 21st century}",
|
||||
journal = {Reports on Progress in Physics},
|
||||
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
|
||||
year = 2012,
|
||||
month = aug,
|
||||
volume = {75},
|
||||
number = {8},
|
||||
eid = {086901},
|
||||
pages = {086901},
|
||||
doi = {10.1088/0034-4885/75/8/086901},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {1109.6012},
|
||||
primaryClass = {astro-ph.CO},
|
||||
adsurl = {https://ui.adsabs.harvard.edu/abs/2012RPPh...75h6901P},
|
||||
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
||||
}
|
||||
|
||||
|
||||
# ROCKSTAR
|
||||
@article{Behroozi_2012,
|
||||
title={THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES},
|
||||
volume={762},
|
||||
ISSN={1538-4357},
|
||||
url={http://dx.doi.org/10.1088/0004-637X/762/2/109},
|
||||
DOI={10.1088/0004-637x/762/2/109},
|
||||
number={2},
|
||||
journal={The Astrophysical Journal},
|
||||
publisher={American Astronomical Society},
|
||||
author={Behroozi, Peter S. and Wechsler, Risa H. and Wu, Hao-Yi},
|
||||
year={2012},
|
||||
month=dec, pages={109}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
# Constraints on cosmology from reionization
|
||||
|
||||
@article{Mao_2008,
|
||||
title={How accurately can 21 cm tomography constrain cosmology?},
|
||||
volume={78},
|
||||
ISSN={1550-2368},
|
||||
url={http://dx.doi.org/10.1103/PhysRevD.78.023529},
|
||||
DOI={10.1103/physrevd.78.023529},
|
||||
number={2},
|
||||
journal={Physical Review D},
|
||||
publisher={American Physical Society (APS)},
|
||||
author={Mao, Yi and Tegmark, Max and McQuinn, Matthew and Zaldarriaga, Matias and Zahn, Oliver},
|
||||
year={2008},
|
||||
month=jul
|
||||
}
|
||||
|
||||
|
||||
@article{McQuinn_2006,
|
||||
title={Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization},
|
||||
volume={653},
|
||||
ISSN={1538-4357},
|
||||
url={http://dx.doi.org/10.1086/505167},
|
||||
DOI={10.1086/505167},
|
||||
number={2},
|
||||
journal={The Astrophysical Journal},
|
||||
publisher={American Astronomical Society},
|
||||
author={McQuinn, Matthew and Zahn, Oliver and Zaldarriaga, Matias and Hernquist, Lars and Furlanetto, Steven R.},
|
||||
year={2006},
|
||||
month=dec, pages={815–834}
|
||||
}
|
||||
|
||||
|
||||
|
||||
# importance of RSDs
|
||||
@article{Ross_2021,
|
||||
title={Redshift-space distortions in simulations of the 21-cm signal from the cosmic dawn},
|
||||
volume={506},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1093/mnras/stab1822},
|
||||
DOI={10.1093/mnras/stab1822},
|
||||
number={3},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Ross, Hannah E and Giri, Sambit K and Mellema, Garrelt and Dixon, Keri L and Ghara, Raghunath and Iliev, Ilian T},
|
||||
year={2021},
|
||||
month=jul, pages={3717–3733}
|
||||
}
|
||||
|
||||
|
||||
# c2ray
|
||||
@article{MELLEMA2006374,
|
||||
title = {C2-ray: A new method for photon-conserving transport of ionizing radiation},
|
||||
journal = {New Astronomy},
|
||||
volume = {11},
|
||||
number = {5},
|
||||
pages = {374-395},
|
||||
year = {2006},
|
||||
issn = {1384-1076},
|
||||
doi = {https://doi.org/10.1016/j.newast.2005.09.004},
|
||||
url = {https://www.sciencedirect.com/science/article/pii/S1384107605001405},
|
||||
author = {Garrelt Mellema and Ilian T. Iliev and Marcelo A. Alvarez and Paul R. Shapiro},
|
||||
keywords = {Cosmology: theory, Galaxies: formation, Galaxies: high-redshift, Intergalactic medium, Radiative transfer, Methods: numerical},
|
||||
abstract = {We present a new numerical method for calculating the transfer of ionizing radiation, called C2-ray (conservative, causal ray-tracing method). The transfer of ionizing radiation in diffuse gas presents a special challenge to most numerical methods which involve time- and spatial-differencing. Standard approaches to radiative transport require that grid cells must be small enough to be optically-thin while time steps are small enough that ionization fronts do not cross a cell in a single time step. This quickly becomes prohibitively expensive. We have developed an algorithm which overcomes these limitations and is, therefore, orders of magnitude more efficient. The method is explicitly photon-conserving, so the depletion of ionizing photons by bound-free opacity is guaranteed to equal the photoionizations these photons caused. As a result, grid cells can be large and very optically-thick without loss of accuracy. The method also uses an analytical relaxation solution for the ionization rate equations for each time step which can accommodate time steps which greatly exceed the characteristic ionization and ionization front crossing times. Together, these features make it possible to integrate the equation of transfer along a ray with many fewer cells and time steps than previous methods. For multi-dimensional calculations, the code utilizes short-characteristics ray tracing. The method scales as the product of the number of grid cells and the number of sources. C2-ray is well-suited for coupling radiative transfer to gas and N-body dynamics methods, on both fixed and adaptive grids, without imposing additional limitations on the time step and grid spacing. We present several tests of the code involving propagation of ionization fronts in one and three dimensions, in both homogeneous and inhomogeneous density fields. We compare to analytical solutions for the ionization front position and velocity, some of which we derive here for the first time. As an illustration, we apply C2-ray to simulate cosmic reionization in three-dimensional inhomogeneous cosmological density field. We also apply it to the problem of I-front trapping in a dense clump, using both a fixed and an adaptive grid.}
|
||||
}
|
||||
|
||||
|
||||
@article{Mebane_2020,
|
||||
title={The effects of population III radiation backgrounds on the cosmological 21-cm signal},
|
||||
volume={493},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1093/mnras/staa280},
|
||||
DOI={10.1093/mnras/staa280},
|
||||
number={1},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Mebane, Richard H and Mirocha, Jordan and Furlanetto, Steven R},
|
||||
year={2020},
|
||||
month=feb, pages={1217–1226}
|
||||
}
|
||||
|
||||
|
||||
@inproceedings{SKAlow,
|
||||
series={AASKA14},
|
||||
title={The Cosmic Dawn and Epoch of Reionisation with SKA},
|
||||
url={http://dx.doi.org/10.22323/1.215.0001},
|
||||
DOI={10.22323/1.215.0001},
|
||||
booktitle={Proceedings of Advancing Astrophysics with the Square Kilometre Array — PoS(AASKA14)},
|
||||
publisher={Sissa Medialab},
|
||||
author={Koopmans, Leon and Pritchard, J and Mellema, G and Aguirre, J and Ahn, K and Barkana, R and van Bemmel, I and Bernardi, G and Bonaldi, A and Briggs, F and de Bruyn, A. G. and Chang, T. C. and Chapman, E and Chen, X and Courty, B and Dayal, P. and Ferrara, A. and Fialkov, A. and Fiore, F and Ichiki, K. and Illiev, I. T. and Inoue, S and Jelic, V and Jones, M and Lazio, J and Maio, U and Majumdar, S and Mack, K. J. and Mesinger, A. and Morales, M F. and Parsons, A. and Pen, U.L. and Santos, M and Schneider, R and Semelin, B and de Souza, R S and Subrahmanyan, R and Takeuchi, T and Vedantham, H and Wagg, J and Webster, R and Wyithe, S and Datta, Kanan Kumar and Trott, C.},
|
||||
year={2015},
|
||||
month=may, collection={AASKA14}
|
||||
}
|
||||
|
||||
|
||||
@article{HERA,
|
||||
title={Hydrogen Epoch of Reionization Array (HERA)},
|
||||
volume={129},
|
||||
ISSN={1538-3873},
|
||||
url={http://dx.doi.org/10.1088/1538-3873/129/974/045001},
|
||||
DOI={10.1088/1538-3873/129/974/045001},
|
||||
number={974},
|
||||
journal={Publications of the Astronomical Society of the Pacific},
|
||||
publisher={IOP Publishing},
|
||||
author={DeBoer, David R. and Parsons, Aaron R. and Aguirre, James E. and Alexander, Paul and Ali, Zaki S. and Beardsley, Adam P. and Bernardi, Gianni and Bowman, Judd D. and Bradley, Richard F. and Carilli, Chris L. and Cheng, Carina and Acedo, Eloy de Lera and Dillon, Joshua S. and Ewall-Wice, Aaron and Fadana, Gcobisa and Fagnoni, Nicolas and Fritz, Randall and Furlanetto, Steve R. and Glendenning, Brian and Greig, Bradley and Grobbelaar, Jasper and Hazelton, Bryna J. and Hewitt, Jacqueline N. and Hickish, Jack and Jacobs, Daniel C. and Julius, Austin and Kariseb, MacCalvin and Kohn, Saul A. and Lekalake, Telalo and Liu, Adrian and Loots, Anita and MacMahon, David and Malan, Lourence and Malgas, Cresshim and Maree, Matthys and Martinot, Zachary and Mathison, Nathan and Matsetela, Eunice and Mesinger, Andrei and Morales, Miguel F. and Neben, Abraham R. and Patra, Nipanjana and Pieterse, Samantha and Pober, Jonathan C. and Razavi-Ghods, Nima and Ringuette, Jon and Robnett, James and Rosie, Kathryn and Sell, Raddwine and Smith, Craig and Syce, Angelo and Tegmark, Max and Thyagarajan, Nithyanandan and Williams, Peter K. G. and Zheng, Haoxuan},
|
||||
year={2017},
|
||||
month=mar, pages={045001} }
|
||||
|
||||
|
||||
|
||||
|
||||
@article{21cmfast,
|
||||
author = {Mesinger, Andrei and Furlanetto, Steven and Cen, Renyue},
|
||||
title = {21cmfast: a fast, seminumerical simulation of the high-redshift 21-cm signal},
|
||||
journal = {Monthly Notices of the Royal Astronomical Society},
|
||||
volume = {411},
|
||||
number = {2},
|
||||
pages = {955-972},
|
||||
year = {2011},
|
||||
month = {02},
|
||||
abstract = {We introduce a powerful seminumeric modelling tool, 21cmfast, designed to efficiently simulate the cosmological 21-cm signal. Our code generates 3D realizations of evolved density, ionization, peculiar velocity and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, we compare our results to a state-of-the-art large-scale hydrodynamic simulation, and find good agreement on scales pertinent to the upcoming observations (≳1 Mpc). The power spectra from 21cmfast agree with those generated from the numerical simulation to within 10s of per cent, down to the Nyquist frequency. We show results from a 1-Gpc simulation which tracks the cosmic 21-cm signal down from z= 250, highlighting the various interesting epochs. Depending on the desired resolution, 21cmfast can compute a redshift realization on a single processor in just a few minutes. Our code is fast, efficient, customizable and publicly available, making it a useful tool for 21-cm parameter studies.},
|
||||
issn = {0035-8711},
|
||||
doi = {10.1111/j.1365-2966.2010.17731.x},
|
||||
url = {https://doi.org/10.1111/j.1365-2966.2010.17731.x},
|
||||
eprint = {https://academic.oup.com/mnras/article-pdf/411/2/955/4099991/mnras0411-0955.pdf},
|
||||
}
|
||||
|
||||
|
||||
# reference for the accretion value of the baseline
|
||||
@article{10.1093-mnras-stt1338,
|
||||
author = {Dekel, A. and Zolotov, A. and Tweed, D. and Cacciato, M. and Ceverino, D. and Primack, J. R.},
|
||||
title = {Toy models for galaxy formation versus simulations},
|
||||
journal = {Monthly Notices of the Royal Astronomical Society},
|
||||
volume = {435},
|
||||
number = {2},
|
||||
pages = {999-1019},
|
||||
year = {2013},
|
||||
month = {08},
|
||||
abstract = {We describe simple useful toy models for key processes of galaxy formation in its most active phase, at z \> 1, and test the approximate expressions against the typical behaviour in a suite of high-resolution hydro-cosmological simulations of massive galaxies at z=4−1. We address in particular the evolution of (a) the total mass inflow rate from the cosmic web into galactic haloes based on the EPS approximation, (b) the penetration of baryonic streams into the inner galaxy, (c) the disc size, (d) the implied steady-state gas content and star formation rate (SFR) in the galaxy subject to mass conservation and a universal star formation law, (e) the inflow rate within the disc to a central bulge and black hole as derived using energy conservation and self-regulated Q ∼ 1 violent disc instability (VDI) and (f) the implied steady state in the disc and bulge. The toy models provide useful approximations for the behaviour of the simulated galaxies. We find that (a) the inflow rate is proportional to mass and to (1 + z)5/2, (b) the penetration to the inner halo is ∼50 per cent at z=4−2, (c) the disc radius is ∼5 per cent of the virial radius, (d) the galaxies reach a steady state with the SFR following the accretion rate into the galaxy, (e) there is an intense gas inflow through the disc, comparable to the SFR, following the predictions of VDI and (f) the galaxies approach a steady state with the bulge mass comparable to the disc mass, where the draining of gas by SFR, outflows and disc inflows is replenished by fresh accretion. Given the agreement with simulations, these toy models are useful for understanding the complex phenomena in simple terms and for back-of-the-envelope predictions.},
|
||||
issn = {0035-8711},
|
||||
doi = {10.1093/mnras/stt1338},
|
||||
url = {https://doi.org/10.1093/mnras/stt1338},
|
||||
eprint = {https://academic.oup.com/mnras/article-pdf/435/2/999/3468084/stt1338.pdf},
|
||||
}
|
||||
|
||||
|
||||
|
||||
# evidence for better halo growth modelling requirements
|
||||
@article{McBride_2009,
|
||||
title={Mass accretion rates and histories of dark matter haloes},
|
||||
volume={398},
|
||||
ISSN={1365-2966},
|
||||
url={http://dx.doi.org/10.1111/j.1365-2966.2009.15329.x},
|
||||
DOI={10.1111/j.1365-2966.2009.15329.x},
|
||||
number={4},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={McBride, James and Fakhouri, Onsi and Ma, Chung-Pei},
|
||||
year={2009},
|
||||
month=oct, pages={1858–1868}
|
||||
}
|
||||
|
||||
|
||||
|
||||
# Size constraints for reionization simulations
|
||||
@article{Iliev_2014,
|
||||
title={Simulating cosmic reionization: how large a volume is large enough?},
|
||||
volume={439},
|
||||
ISSN={0035-8711},
|
||||
url={http://dx.doi.org/10.1093/mnras/stt2497},
|
||||
DOI={10.1093/mnras/stt2497},
|
||||
number={1},
|
||||
journal={Monthly Notices of the Royal Astronomical Society},
|
||||
publisher={Oxford University Press (OUP)},
|
||||
author={Iliev, Ilian T. and Mellema, Garrelt and Ahn, Kyungjin and Shapiro, Paul R. and Mao, Yi and Pen, Ue-Li},
|
||||
year={2014},
|
||||
month=jan, pages={725–743}
|
||||
}
|
||||
|
||||
|
||||
@ARTICLE{astropy:2022,
|
||||
author = {{Astropy Collaboration} and {Price-Whelan}, Adrian M. and {Lim}, Pey Lian and {Earl}, Nicholas and {Starkman}, Nathaniel and {Bradley}, Larry and {Shupe}, David L. and {Patil}, Aarya A. and {Corrales}, Lia and {Brasseur}, C.~E. and {N{"o}the}, Maximilian and {Donath}, Axel and {Tollerud}, Erik and {Morris}, Brett M. and {Ginsburg}, Adam and {Vaher}, Eero and {Weaver}, Benjamin A. and {Tocknell}, James and {Jamieson}, William and {van Kerkwijk}, Marten H. and {Robitaille}, Thomas P. and {Merry}, Bruce and {Bachetti}, Matteo and {G{"u}nther}, H. Moritz and {Aldcroft}, Thomas L. and {Alvarado-Montes}, Jaime A. and {Archibald}, Anne M. and {B{'o}di}, Attila and {Bapat}, Shreyas and {Barentsen}, Geert and {Baz{'a}n}, Juanjo and {Biswas}, Manish and {Boquien}, M{'e}d{'e}ric and {Burke}, D.~J. and {Cara}, Daria and {Cara}, Mihai and {Conroy}, Kyle E. and {Conseil}, Simon and {Craig}, Matthew W. and {Cross}, Robert M. and {Cruz}, Kelle L. and {D'Eugenio}, Francesco and {Dencheva}, Nadia and {Devillepoix}, Hadrien A.~R. and {Dietrich}, J{"o}rg P. and {Eigenbrot}, Arthur Davis and {Erben}, Thomas and {Ferreira}, Leonardo and {Foreman-Mackey}, Daniel and {Fox}, Ryan and {Freij}, Nabil and {Garg}, Suyog and {Geda}, Robel and {Glattly}, Lauren and {Gondhalekar}, Yash and {Gordon}, Karl D. and {Grant}, David and {Greenfield}, Perry and {Groener}, Austen M. and {Guest}, Steve and {Gurovich}, Sebastian and {Handberg}, Rasmus and {Hart}, Akeem and {Hatfield-Dodds}, Zac and {Homeier}, Derek and {Hosseinzadeh}, Griffin and {Jenness}, Tim and {Jones}, Craig K. and {Joseph}, Prajwel and {Kalmbach}, J. Bryce and {Karamehmetoglu}, Emir and {Ka{l}uszy{'n}ski}, Miko{l}aj and {Kelley}, Michael S.~P. and {Kern}, Nicholas and {Kerzendorf}, Wolfgang E. and {Koch}, Eric W. and {Kulumani}, Shankar and {Lee}, Antony and {Ly}, Chun and {Ma}, Zhiyuan and {MacBride}, Conor and {Maljaars}, Jakob M. and {Muna}, Demitri and {Murphy}, N.~A. and {Norman}, Henrik and {O'Steen}, Richard and {Oman}, Kyle A. and {Pacifici}, Camilla and {Pascual}, Sergio and {Pascual-Granado}, J. and {Patil}, Rohit R. and {Perren}, Gabriel I. and {Pickering}, Timothy E. and {Rastogi}, Tanuj and {Roulston}, Benjamin R. and {Ryan}, Daniel F. and {Rykoff}, Eli S. and {Sabater}, Jose and {Sakurikar}, Parikshit and {Salgado}, Jes{'u}s and {Sanghi}, Aniket and {Saunders}, Nicholas and {Savchenko}, Volodymyr and {Schwardt}, Ludwig and {Seifert-Eckert}, Michael and {Shih}, Albert Y. and {Jain}, Anany Shrey and {Shukla}, Gyanendra and {Sick}, Jonathan and {Simpson}, Chris and {Singanamalla}, Sudheesh and {Singer}, Leo P. and {Singhal}, Jaladh and {Sinha}, Manodeep and {Sip{H{o}}cz}, Brigitta M. and {Spitler}, Lee R. and {Stansby}, David and {Streicher}, Ole and {{{S}}umak}, Jani and {Swinbank}, John D. and {Taranu}, Dan S. and {Tewary}, Nikita and {Tremblay}, Grant R. and {Val-Borro}, Miguel de and {Van Kooten}, Samuel J. and {Vasovi{'c}}, Zlatan and {Verma}, Shresth and {de Miranda Cardoso}, Jos{'e} Vin{'i}cius and {Williams}, Peter K.~G. and {Wilson}, Tom J. and {Winkel}, Benjamin and {Wood-Vasey}, W.~M. and {Xue}, Rui and {Yoachim}, Peter and {Zhang}, Chen and {Zonca}, Andrea and {Astropy Project Contributors}},
|
||||
title = "{The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package}",
|
||||
journal = {The Astrophysical Journal},
|
||||
keywords = {Astronomy software, Open source software, Astronomy data analysis, 1855, 1866, 1858, Astrophysics - Instrumentation and Methods for Astrophysics},
|
||||
year = 2022,
|
||||
month = aug,
|
||||
volume = {935},
|
||||
number = {2},
|
||||
eid = {167},
|
||||
pages = {167},
|
||||
doi = {10.3847/1538-4357/ac7c74},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {2206.14220},
|
||||
primaryClass = {astro-ph.IM},
|
||||
url = {https://ui.adsabs.harvard.edu/abs/2022ApJ...935..167A},
|
||||
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
||||
}
|
||||
|
||||
|
||||
|
||||
# evidence for inside out reionization
|
||||
@article{10.1111-j.1365-2966.2006.10502.x,
|
||||
author = {Iliev, I. T. and Mellema, G. and Pen, U.-L. and Merz, H. and Shapiro, P. R. and Alvarez, M. A.},
|
||||
title = {Simulating cosmic reionization at large scales – I. The geometry of reionization},
|
||||
journal = {Monthly Notices of the Royal Astronomical Society},
|
||||
volume = {369},
|
||||
number = {4},
|
||||
pages = {1625-1638},
|
||||
year = {2006},
|
||||
month = {07},
|
||||
abstract = {We present the first large-scale radiative transfer simulations of cosmic reionization, in a simulation volume of (100 h−1 Mpc)3. This is more than a two orders of magnitude improvement over previous simulations. We achieve this by combining the results from extremely large, cosmological, N-body simulations with a new, fast and efficient code for 3D radiative transfer, c2-ray, which we have recently developed. These simulations allow us to do the first numerical studies of the large-scale structure of reionization which at the same time, and crucially, properly take account of the dwarf galaxy ionizing sources which are primarily responsible for reionization. In our realization, reionization starts around z∼ 21, and final overlap occurs by z∼ 11. The resulting electron-scattering optical depth is in good agreement with the first-year Wilkinson Microwave Anisotropy Probe (WMAP) polarization data. We show that reionization clearly proceeded in an inside-out fashion, with the high-density regions being ionized earlier, on average, than the voids. Ionization histories of smaller-size (5–10 comoving Mpc) subregions exabit a large scatter about the mean and do not describe the global reionization history well. This is true even when these subregions are at the mean density of the universe, which shows that small-box simulations of reionization have little predictive power for the evolution of the mean ionized fraction. The minimum reliable volume size for such predictions is ∼30 Mpc. We derive the power spectra of the neutral, ionized and total gas density fields and show that there is a significant boost of the density fluctuations in both the neutral and the ionized components relative to the total at arcmin and larger scales. We find two populations of H ii regions according to their size, numerous, mid-sized (∼10-Mpc) regions and a few, rare, very large regions tens of Mpc in size. Thus, local overlap on fairly large scales of tens of Mpc is reached by z∼ 13, when our volume is only about 50 per cent ionized, and well before the global overlap. We derive the statistical distributions of the ionized fraction and ionized gas density at various scales and for the first time show that both distributions are clearly non-Gaussian. All these quantities are critical for predicting and interpreting the observational signals from reionization from a variety of observations like 21-cm emission, Lyα emitter statistics, Gunn–Peterson optical depth and small-scale cosmic microwave background secondary anisotropies due to patchy reionization.},
|
||||
issn = {0035-8711},
|
||||
doi = {10.1111/j.1365-2966.2006.10502.x},
|
||||
url = {https://doi.org/10.1111/j.1365-2966.2006.10502.x},
|
||||
eprint = {https://academic.oup.com/mnras/article-pdf/369/4/1625/3799304/mnras0369-1625.pdf},
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@website{cmb_spectrum,
|
||||
title = "CMB spectrum",
|
||||
url = "https://asd.gsfc.nasa.gov/archive/arcade/cmb_intensity.html",
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
@article{Furlanetto_2006,
|
||||
title={Cosmology at low frequencies: The 21cm transition and the high-redshift Universe},
|
||||
volume={433},
|
||||
ISSN={0370-1573},
|
||||
url={http://dx.doi.org/10.1016/j.physrep.2006.08.002},
|
||||
DOI={10.1016/j.physrep.2006.08.002},
|
||||
number={4–6},
|
||||
journal={Physics Reports},
|
||||
publisher={Elsevier BV},
|
||||
author={Furlanetto, Steven R. and Peng Oh, S. and Briggs, Frank H.},
|
||||
year={2006},
|
||||
month=oct, pages={181–301} }
|
76
refinements.typ
Normal file
@@ -0,0 +1,76 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
|
||||
= Halo growth
|
||||
|
||||
== Motivation
|
||||
#layouts.contained(
|
||||
[
|
||||
Crucial dependence on the *star formation rate*
|
||||
|
||||
- assumed to be directly linked to halo growth rate $dot(M)$:
|
||||
$
|
||||
dot(M)_star = f_star (M_"h") dot dot(M_"h")
|
||||
|
||||
$
|
||||
- growth according to the exponential model:
|
||||
$
|
||||
M_"h" (z) = M_"h" (z_0) dot exp[-alpha (z - z_0)]
|
||||
$
|
||||
with $alpha = dot(M_"h")/M_"h"$ the _specific growth rate_
|
||||
#pause
|
||||
],
|
||||
[
|
||||
$->$ inaccurate when applied to all halos
|
||||
|
||||
$->$ #text(weight: "bold")[inconsistent] with the N-body output
|
||||
|
||||
#pause
|
||||
$->$ how to implement #text(weight: "bold")[consistent] growth?
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
== Effect on the flux profiles
|
||||
#let notebook = json("../workdir/11_visualization/alpha_dependence_of_profiles.ipynb")
|
||||
|
||||
#image_cell(notebook, cell_id: "profile_plot_alpha_dependence")
|
||||
|
||||
$M_"h" = 6.08 dot 10^11 M_dot.circle$ (fixed)
|
||||
|
||||
$==>$ correction up to $times 5$
|
||||
|
||||
// COMMENTS
|
||||
// That will be directly affect the global signal as well
|
||||
// shifting
|
||||
//
|
||||
// Yu-Siu already investigated the more nuanced effect of stochasticity but the approach we propose should supersede that
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Inferring growth from #smallcaps[Thesan] data
|
||||
- already includes precomputed merger trees @Springel2005
|
||||
// ideal for rapid iterations
|
||||
|
||||
- follow main progenitor branch back in time
|
||||
|
||||
- fit the exponential model to main progrenitor branch
|
||||
// in a parallelized fashion => want to stay fast
|
||||
// fix the original mass for max. consistency
|
||||
// fix the allowed dynamic range
|
||||
|
||||
- use *individual growth* to select profile
|
||||
// this sort of "breaks the degeneracy" between halos of the same mass but different growth histories
|
||||
|
||||
- *self-consistent*#pause$*$#meanwhile treatment of halo growth leveraging the snapshots
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#let notebook = json("../workdir/11_visualization/show_trees.ipynb")
|
||||
#[
|
||||
#set image(width: 100%, fit: "contain")
|
||||
#image_cell(notebook, cell_id: "merger_tree_and_fitting")
|
||||
]
|
||||
// COMMENTS:
|
||||
// no clear trend between mass and growth rate
|
75
results.typ
Normal file
@@ -0,0 +1,75 @@
|
||||
#import "globals.typ": *
|
||||
|
||||
= Results
|
||||
== Map outputs
|
||||
#let notebook = json("../workdir/11_visualization/simulation_maps.ipynb")
|
||||
|
||||
#grid(
|
||||
columns: (auto, 10em)
|
||||
)[
|
||||
#image_cell(notebook, cell_id: "presentation_x_alpha_map")
|
||||
][
|
||||
- strong variations close to sources
|
||||
// the ones where the accretion rate is likely higher
|
||||
|
||||
- nearly no effect in voids
|
||||
// in particular: no values where the coupling has become weaker
|
||||
// will become apparent in the signal as well
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#grid(
|
||||
columns: (auto, 10em)
|
||||
)[
|
||||
#image_cell(notebook, cell_id: "presentation_temperature_map")
|
||||
][
|
||||
- delayed heating $<=>$ colder halos
|
||||
|
||||
- highest accreting halos catch up
|
||||
// those are the ones where the diff vanishes: e.g. top right
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#grid(
|
||||
columns: (auto, 10em)
|
||||
)[
|
||||
#image_cell(notebook, cell_id: "presentation_xHII_map")
|
||||
][
|
||||
- high contrast due to sharp cutoffs
|
||||
|
||||
- clearly increased dynamic range
|
||||
// more variation due to the different accretion rates
|
||||
// globally the morphology is more diversified now: previously all the bubbles had similar sizes due to their similar size -> this degeneracy is removed here.
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
// Globally:
|
||||
// more dynamic range while the mean systematically shifts towards the (biased) lower accretion rates
|
||||
|
||||
// Intermezzo - compare with lower alpha range - mostly similar but occasional contributions from higher alpha values
|
||||
// => recommend keeping a wide range since it does not affect performance (if the bins are empty anyway)
|
||||
// the more intersting discussion to be had is the effect of a more fine binning - thesan data already gives an indication which values will be most frequent
|
||||
// => the implementation to test that is there
|
||||
|
||||
#grid(
|
||||
columns: (auto, 10em)
|
||||
)[
|
||||
#image_cell(notebook, cell_id: "presentation_dtb_map")
|
||||
][
|
||||
- richer structures due to combined effects
|
||||
|
||||
- clear distinction between "foreground" and "background" effects
|
||||
// the halos themselves produce a stronger singal while the background is usually
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
== Signals
|
||||
#let notebook = json("../workdir/11_visualization/simulation_signals.ipynb")
|
||||
#image_cell(notebook, cell_id: "presentation_signal")
|
||||
#image_cell(notebook, cell_id: "power_spectra_comparison")
|
205
talking_points.md
Normal file
@@ -0,0 +1,205 @@
|
||||
# Comments for the presentation
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
---
|
||||
|
||||
---
|
||||
|
||||
|
||||
---
|
||||
|
||||
|
||||
// COMMENTS:
|
||||
|
||||
|
||||
---
|
||||
|
||||
// Explanation
|
||||
- further modulation by _RSD_
|
||||
|
||||
|
||||
// From first principles
|
||||
// small scales to resolve sources + sinks + feedback
|
||||
// large scales to capture statistics
|
||||
|
||||
// IF ASKED: difference with `21cmFAST`:
|
||||
// based on excursion formalistm -> only valid >= 1Mpc, which is ideal for large volumes + statistics => 21-cm forecasts
|
||||
|
||||
// interesting to build emulators for instance
|
||||
|
||||
|
||||
---
|
||||
|
||||
|
||||
// From the xray emission
|
||||
// primordial + heating term
|
||||
// expansion + deposition by xrays
|
||||
// => xrays are assumed to be the only source of heating
|
||||
|
||||
|
||||
// $
|
||||
// x_("HII")(r bar M, z) = theta_"H" lr([R_b (M, z) - r], size: #150%)
|
||||
// $
|
||||
|
||||
---
|
||||
|
||||
// COMMENTS:
|
||||
// - contribution from the lyman lines
|
||||
// - 1/r^2 decrease from spreading photons
|
||||
// - more steep outwards + sharp drop due to redshifting out of line
|
||||
|
||||
|
||||
---
|
||||
|
||||
== Revisiting the 21cm signal
|
||||
|
||||
|
||||
---
|
||||
|
||||
|
||||
### Procedure
|
||||
Painting using all halos that match in a SINGLE step
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
OVERLAP EXPLICITLY ALLOWED
|
||||
|
||||
|
||||
---
|
||||
### Postprocessing
|
||||
- ionization overlaps
|
||||
- corrections due to RSD
|
||||
- computation of derived quantities
|
||||
- summary statistics
|
||||
|
||||
---
|
||||
### Maps
|
||||
|
||||
---
|
||||
|
||||
### Signal
|
||||
|
||||
---
|
||||
|
||||
## Halo growth
|
||||
|
||||
### Motivation
|
||||
|
||||
|
||||
|
||||
### Effect on the flux profiles
|
||||
|
||||
// COMMENTS
|
||||
// That will be directly affect the global signal as well
|
||||
// shifting
|
||||
//
|
||||
// Yu-Siu already investigated the more nuanced effect of stochasticity but the approach we propose should supersede that
|
||||
|
||||
|
||||
### Inferring growth from #smallcaps[Thesan] data
|
||||
// ideal for rapid iterations
|
||||
|
||||
// in a parallelized fashion => want to stay fast
|
||||
// fix the original mass for max. consistency
|
||||
// fix the allowed dynamic range
|
||||
|
||||
// this sort of "breaks the degeneracy" between halos of the same mass but different growth histories
|
||||
|
||||
|
||||
---
|
||||
|
||||
RESULT OF LOADING:
|
||||
// COMMENTS:
|
||||
// no clear trend between mass and growth rate
|
||||
|
||||
---
|
||||
|
||||
## Adaptations
|
||||
---
|
||||
|
||||
### Central changes
|
||||
|
||||
|
||||
// important since the bins are more now
|
||||
|
||||
|
||||
// largely through vectorization -> still "native" python
|
||||
// usage of HDF5
|
||||
// solid caching mechanisms -> resume simulations, etc...
|
||||
|
||||
|
||||
### Simplified usage
|
||||
|
||||
In a page or less
|
||||
|
||||
---
|
||||
|
||||
## Results
|
||||
### Map outputs
|
||||
// the ones where the accretion rate is likely higher
|
||||
|
||||
// in particular: no values where the coupling has become weaker
|
||||
// will become apparent in the signal as well
|
||||
|
||||
|
||||
---
|
||||
|
||||
// those are the ones where the diff vanishes: e.g. top right
|
||||
|
||||
---
|
||||
|
||||
// more variation due to the different accretion rates
|
||||
|
||||
---
|
||||
// Globally:
|
||||
// more dynamic range while the mean systematically shifts towards the (biased) lower accretion rates
|
||||
|
||||
// Intermezzo - compare with lower alpha range - mostly similar but occasional contributions from higher alpha values
|
||||
// => recommend keeping a wide range since it does not affect performance (if the bins are empty anyway)
|
||||
// the more intersting discussion to be had is the effect of a more fine binning - thesan data already gives an indication which values will be most frequent
|
||||
// => the implementation to test that is there
|
||||
|
||||
|
||||
// the halos themselves produce a stronger singal while the background is usually
|
||||
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
### Signals
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
---
|
||||
### Summary
|
||||
|
||||
// since it affects the SFR and thus the emissivity
|
||||
|
||||
|
||||
// change in profiles trivially
|
||||
|
||||
// which could in theory be absorbed by shifting other paremeters
|
||||
|
||||
// which we can hope to observe (although many are subtle)
|
||||
|
||||
// unique position of 21-cm cosmology -> cannot discuss observational constraints
|
||||
|
||||
|
||||
// invite you to check out
|
||||
|
||||
|
||||
### Outlook
|
||||
// finally ready for direct comparison with c2ray? now that parameters and loading have been properly implemented
|
||||
|
||||
// Assuming other relations related to production of photons is (hopefully by now well motivated) complex
|
||||
// these cannot directly be inferred => expressed as a distribution as a function of another halo property
|
||||
|
||||
// the scale-up -> large volumes with usable merger trees
|
||||
// comitting to reserving some 100s of node hours (which I would still quantify as fast)
|