#import "globals.typ": * == The halo model of reionization Following @Schneider_2021 @schneider2023cosmologicalforecast21cmpower, the halo model describes (#link(, "derivation")): #line(length: 100%, stroke: color.white.transparentize(100%)) #pause $ rho_alpha (r bar M, z) = (1 + z)^2 / (4 pi r^2) dot sum_(n=2)^(n_m)f_n dot epsilon_alpha (nu prime) dot f_star dot dot(M)(z prime bar M, z) $ #pause $ 3/2 dot derivative(rho_h (r bar M, z), z) = (3 rho_h (r bar M, z)) / (1 + z) - (rho_"xray" (r bar M, z)) /(k_B (1 + z) H(z)) $ // From the xray emission // primordial + heating term // expansion + deposition by xrays // => xrays are assumed to be the only source of heating // #pause $ derivative(V_b, t) = dot(N)_"ion"(t) / overline(n)_H^0 - alpha_B dot C / a^3 dot overline(n)_H^0 dot V_b $ // $ // x_("HII")(r bar M, z) = theta_"H" lr([R_b (M, z) - r], size: #150%) // $ #pagebreak() Visually: #image("assets/profiles_demo.png", height: 70%) (from @Schaeffer_2023) // COMMENTS: // - contribution from the lyman lines // - 1/r^2 decrease from spreading photons // - more steep outwards + sharp drop due to redshifting out of line #pagebreak() == Revisiting the 21cm signal $ d T_"b" (bold(x), z) tilde.eq T_0 (z) dot #pin(1) x_"HI" (bold(x), z) #pin(2) dot (1 + delta_b (bold(x), z)) dot (x_alpha (bold(x), z)) / (#pin(3) 1 + x_alpha (bold(x), z) #pin(4) ) dot ((1 - T_"CMB" (z)) / (#pin(5) T_"gas" (bold(x), z) #pin(6))) $ #pause // #pinit-highlight(1, 20) #pinit-point-from((1, 2))[from $x_"HII"$] #pause #pinit-point-from((3, 4))[from $rho_alpha$] #pause #pinit-point-from((5, 6))[from $rho_"h"$] #pagebreak()