Simulating the EOR with self-consistent growth of galaxies

Master's thesis presentation

ETH Zürich, University of Zürich

Simulating the Epoch of Reionization

BEoRN

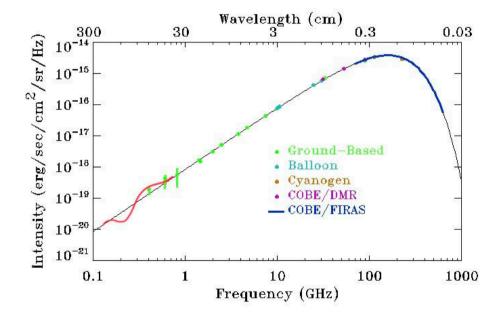
Halo growth

Adaptations

Results

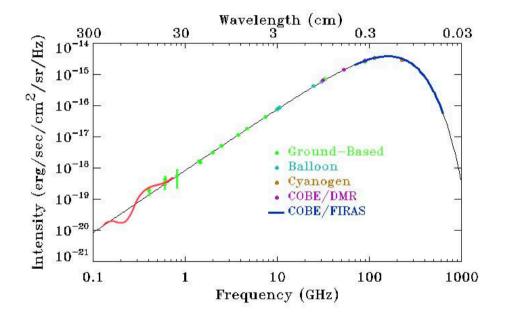
Conclusion

End

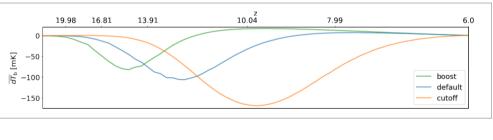

References

Simulating the Epoch of Reionization

- The Epoch of Reionization
- The 21-cm signal
- Expression the 21-cm signal [1], [2]
- The current state of simulations

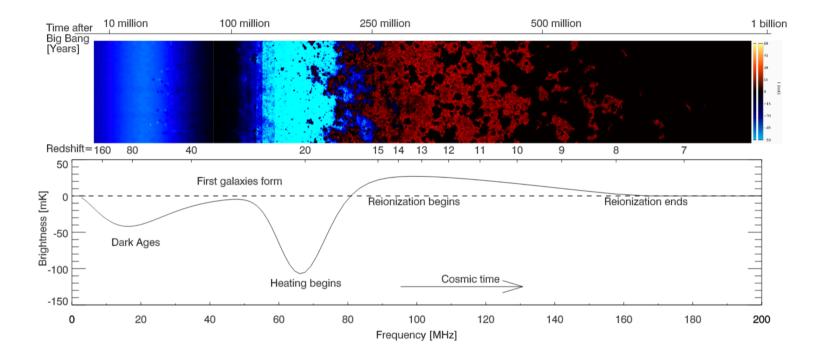

- Marks the universe's last major phase transition: from neutral to ionized hydrogen.
- Shapes the large-scale structure of the intergalactic medium (IGM).
- Is strongly linked to the formation and growth of the first galaxies and black holes.
- Sets the stage for many observables:
 - CMB secondary anisotropies
 - 21-cm signal
 - high-z galaxy surveys.

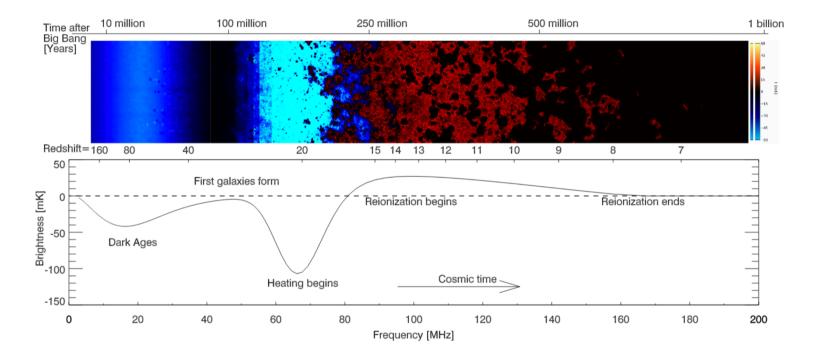
The *brigthtness temperature* describes the intensity of the 21-cm line



from [3]

The *brigthtness temperature* describes the intensity of the 21-cm line


remove contribution from the BB spectrum $differential\ brightness\ temperature$ \implies the actual reionization signal


from [4]

from [3]

Expression the 21-cm signal [1], [2]

Expression the 21-cm signal [1], [2]

$$dT_{
m b}(m{x},z) \simeq T_0(z) \cdot \ x_{
m HI}(m{x},z) \ \cdot (1+\delta_b(m{x},z)) \cdot rac{x_lpha(m{x},z)}{1+x_lpha(m{x},z)} \cdot \left(rac{1-T_{
m CMB}(z)}{T_{
m gas}(m{x},z)}
ight)$$

Traditional approaches

- → need to cover large dynamic range
- \rightarrow hydrodynamics & radiative transfer
- \rightarrow hard to scale
- \Rightarrow no reproducibility

The current state of simulations

Traditional approaches

- → need to cover large dynamic range
- \rightarrow hydrodynamics & radiative transfer
- \rightarrow hard to scale
- \Rightarrow no reproducibility

Semi-numerical approaches

such as BEoRN [4], 21cmFAST [5]

- \rightarrow approximative treatment
- \rightarrow prediction of global signals
- \rightarrow scalable + efficient
- \Rightarrow reproducible and flexible

Simulating the Epoch of Reionization

BEoRN

Halo growth

Adaptations

Results

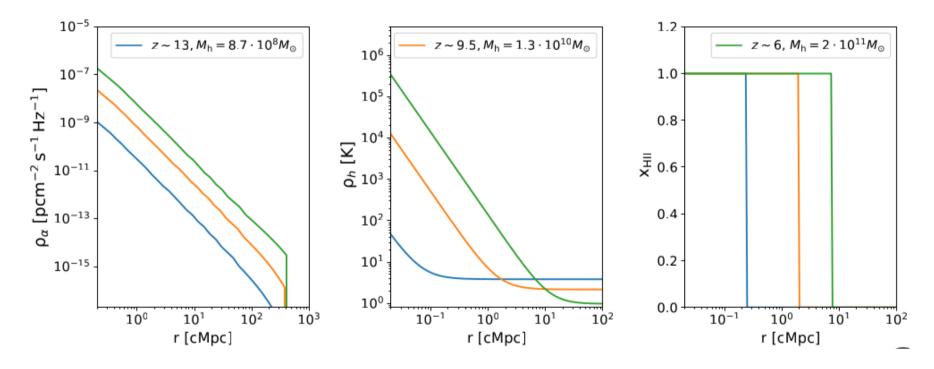
Conclusion

End

References

BEORN

- The halo model of reionization
- Revisiting the 21cm signal
- The "painting" procedure
- Postprocessing
- Maps
- Signal

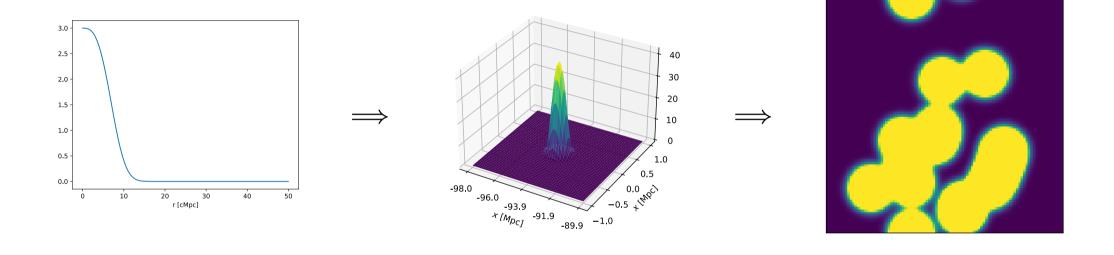

$$\rho_{\alpha}(r\mid M,z) = \frac{(1+z)^2}{4\pi r^2} \cdot \sum_{n=2}^{n_m} f_n \cdot \varepsilon_{\alpha}(\nu') \cdot f_{\star} \cdot \dot{M}(z'\mid M,z)$$

$$\rho_{\alpha}(r \mid M, z) = \frac{(1+z)^2}{4\pi r^2} \cdot \sum_{n=2}^{n_m} f_n \cdot \varepsilon_{\alpha}(\nu') \cdot f_{\star} \cdot \dot{M}(z' \mid M, z)$$

$$\frac{3}{2} \cdot \frac{\mathrm{d}\rho_h(r \mid M, z)}{\mathrm{d}z} = \frac{3\rho_h(r \mid M, z)}{1+z} - \frac{\rho_{\mathrm{xray}}(r \mid M, z)}{k_B(1+z)H(z)}$$

$$\begin{split} \rho_{\alpha}(r\mid M,z) &= \frac{(1+z)^2}{4\pi r^2} \cdot \sum_{n=2}^{n_m} f_n \cdot \varepsilon_{\alpha}(\nu') \cdot f_{\star} \cdot \dot{M}(z'\mid M,z) \\ &\frac{3}{2} \cdot \frac{\mathrm{d}\rho_h(r\mid M,z)}{\mathrm{d}z} = \frac{3\rho_h(r\mid M,z)}{1+z} - \frac{\rho_{\mathrm{xray}}(r\mid M,z)}{k_B(1+z)H(z)} \\ &\frac{\mathrm{d}V_b}{\mathrm{d}t} = \frac{\dot{N}_{\mathrm{ion}(t)}}{\overline{n}_H^0} - \alpha_B \cdot \frac{C}{a^3} \cdot \overline{n}_H^0 \cdot V_b \end{split}$$

Visually:

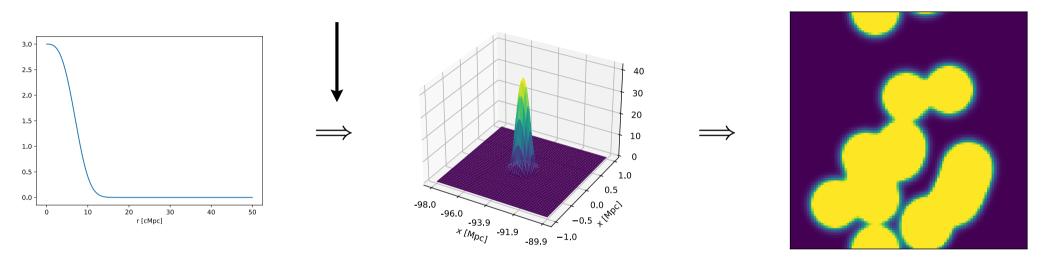

(from [4])

$$dT_{\rm b}(\boldsymbol{x},z) \simeq T_0(z) \cdot \ x_{\rm HI}(\boldsymbol{x},z) \ \cdot (1+\delta_b(\boldsymbol{x},z)) \cdot \frac{x_\alpha(\boldsymbol{x},z)}{1+x_\alpha(\boldsymbol{x},z)} \cdot \left(\frac{1-T_{\rm CMB}(z)}{T_{\rm gas}(\boldsymbol{x},z)}\right)$$

$$dT_{\rm b}(\boldsymbol{x},z) \simeq T_0(z) \cdot \ x_{\rm HI}(\boldsymbol{x},z) \ \cdot (1+\delta_b(\boldsymbol{x},z)) \cdot \frac{x_{\alpha}(\boldsymbol{x},z)}{1+x_{\alpha}(\boldsymbol{x},z)} \cdot \left(\frac{1-T_{\rm CMB}(z)}{T_{\rm gas}(\boldsymbol{x},z)}\right)$$
 from $x_{\rm HII}$

$$dT_{\rm b}(\boldsymbol{x},z) \simeq T_0(z) \cdot \ x_{\rm HI}(\boldsymbol{x},z) \ \cdot (1+\delta_b(\boldsymbol{x},z)) \cdot \frac{x_{\alpha}(\boldsymbol{x},z)}{1+x_{\alpha}(\boldsymbol{x},z)} \cdot \left(\frac{1-T_{\rm CMB}(z)}{T_{\rm gas}(\boldsymbol{x},z)}\right)$$
 from $x_{\rm HII}$

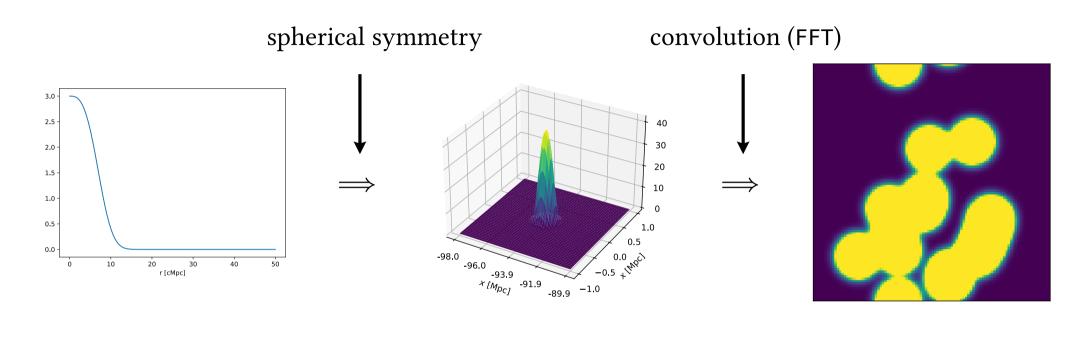
$$dT_{\rm b}(\boldsymbol{x},z) \simeq T_0(z) \cdot \ x_{\rm HI}(\boldsymbol{x},z) \ \cdot (1+\delta_b(\boldsymbol{x},z)) \cdot \frac{x_{\alpha}(\boldsymbol{x},z)}{1+x_{\alpha}(\boldsymbol{x},z)} \cdot \left(\frac{1-T_{\rm CMB}(z)}{T_{\rm gas}(\boldsymbol{x},z)}\right)$$
 from $x_{\rm HII}$


1-d profile

3-d kernel (localized)

3-d contribution on a grid

The "painting" procedure


spherical symmetry

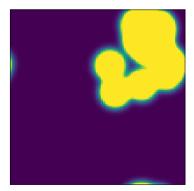
1-d profile

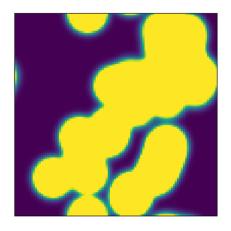
3-d kernel(localized)

3-d contribution on a grid



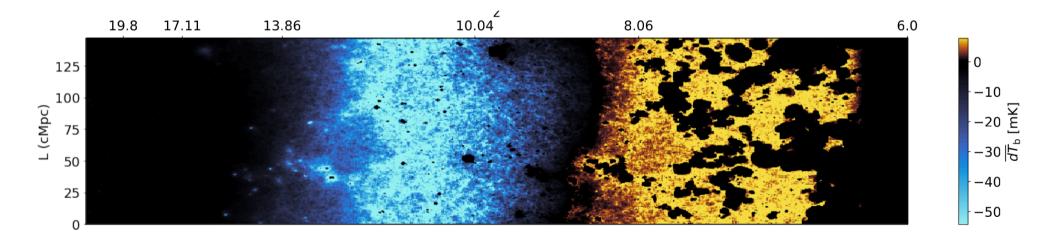
1-d profile


3-d kernel (localized)

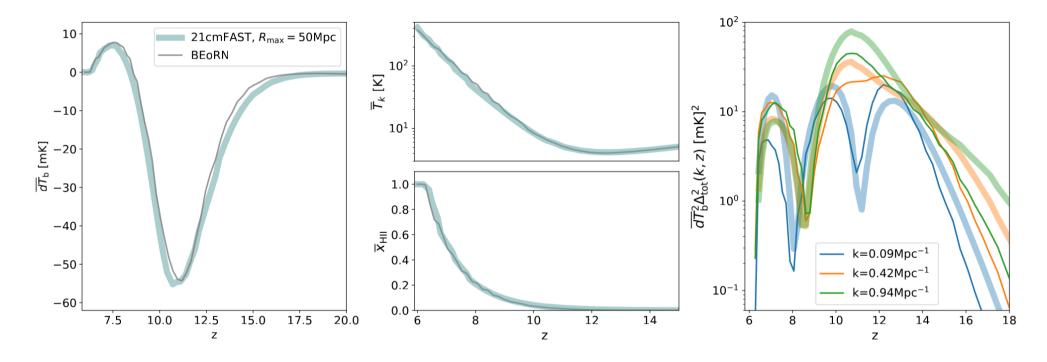

3-d contribution on a grid

The "painting" procedure

 $Multiple\ contributions \Longrightarrow$



 \Longrightarrow *Postprocessing* (overlaps, normalization, ...)


- ionization overlaps
- corrections due to RSD
- computation of derived quantities
- summary statistics

Through the redshifting of photons, the brightness temperature across redshift slices will be measured in a frequency band

 \Rightarrow representation as a lightcone

from [4]

from [4]

Simulating the Epoch of Reionization BEoRN

Halo growth

Adaptations
Results
Conclusion
End
References

Halo growth

- Motivation
- Effect on the flux profiles
- Inferring growth from Thesan data

Motivation 16/35

Crucial dependence on the **star formation rate**

• assumed to be directly linked to halo growth rate \dot{M} :

$$\dot{M}_{\star} = f_{\star}(M_{
m h}) \cdot \dot{M}_{
m h}$$

• growth according to the exponential model:

$$M_{\rm h}(z) = M_{\rm h}(z_0) \cdot \exp[-\alpha(z-z_0)]$$

with $lpha=rac{\dot{M_{
m h}}}{M_{
m h}}$ the specific growth rate

Crucial dependence on the **star formation rate**

• assumed to be directly linked to halo growth rate \dot{M} :

$$\dot{M}_{\star} = f_{\star}(M_{
m h}) \cdot \dot{M}_{
m h}$$

• growth according to the exponential model:

$$M_{\rm h}(z) = M_{\rm h}(z_0) \cdot \exp[-\alpha(z - z_0)]$$

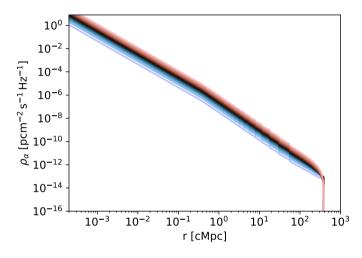
with $\alpha = \frac{M_{\rm h}}{M_{\rm h}}$ the specific growth rate

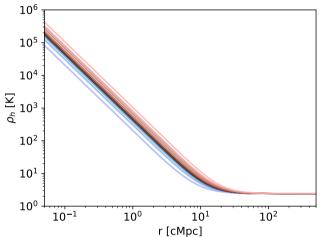
- \rightarrow inaccurate when applied to all halos
- → **inconsistent** with the N-body output

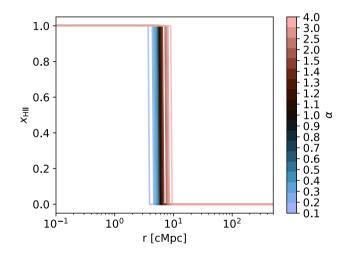
Motivation 16/35

Crucial dependence on the **star formation** rate

• assumed to be directly linked to halo growth rate \dot{M} :

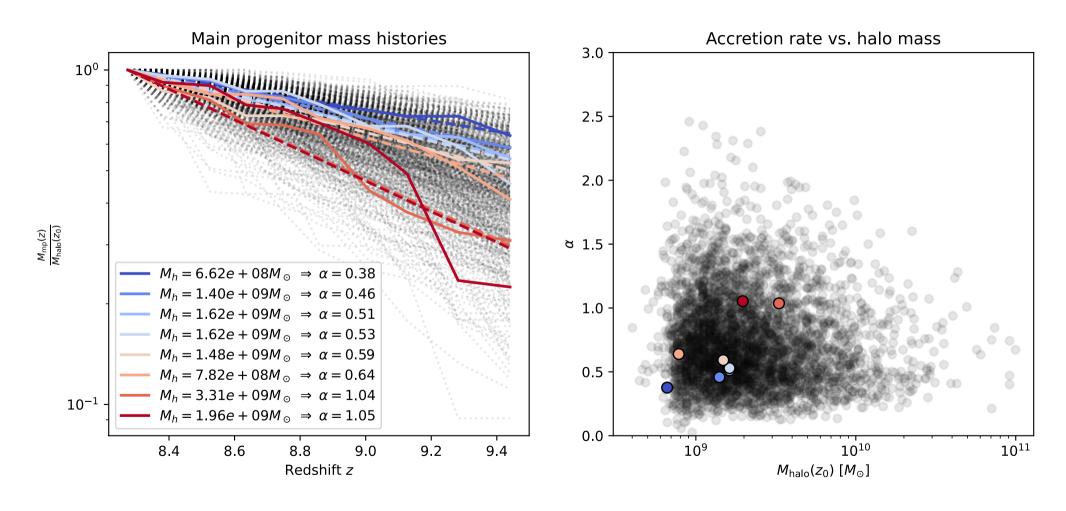

$$\dot{M}_{\star} = f_{\star}(M_{
m h}) \cdot \dot{M}_{
m h}$$


• growth according to the exponential model:


$$M_{\rm h}(z) = M_{\rm h}(z_0) \cdot \exp[-\alpha(z-z_0)]$$

with $\alpha = \frac{\dot{M}_{\rm h}}{M_{\rm h}}$ the specific growth rate

- \rightarrow inaccurate when applied to all halos
- \rightarrow **inconsistent** with the N-body output
 - → how to implement consistent growth?


$$M_{
m h}=6.08\cdot 10^{11}M_{\odot}$$
 (fixed)

 \Longrightarrow correction up to \times 5

- already includes precomputed merger trees [8]
- follow main progenitor branch back in time
- fit the exponential model to main progrenitor branch
- use **individual growth** to select profile
- **self-consistent** treatment of halo growth leveraging the snapshots

- already includes precomputed merger trees [8]
- follow main progenitor branch back in time
- fit the exponential model to main progrenitor branch
- use **individual growth** to select profile
- **self-consistent*** treatment of halo growth leveraging the snapshots

Inferring growth from Thesan data

Simulating the EOR with self-consistent growth of galaxies

Simulating the Epoch of Reionization BEoRN

Halo growth

Adaptations

Results
Conclusion
End
References

Adaptations

- Central changes
- Simplified usage

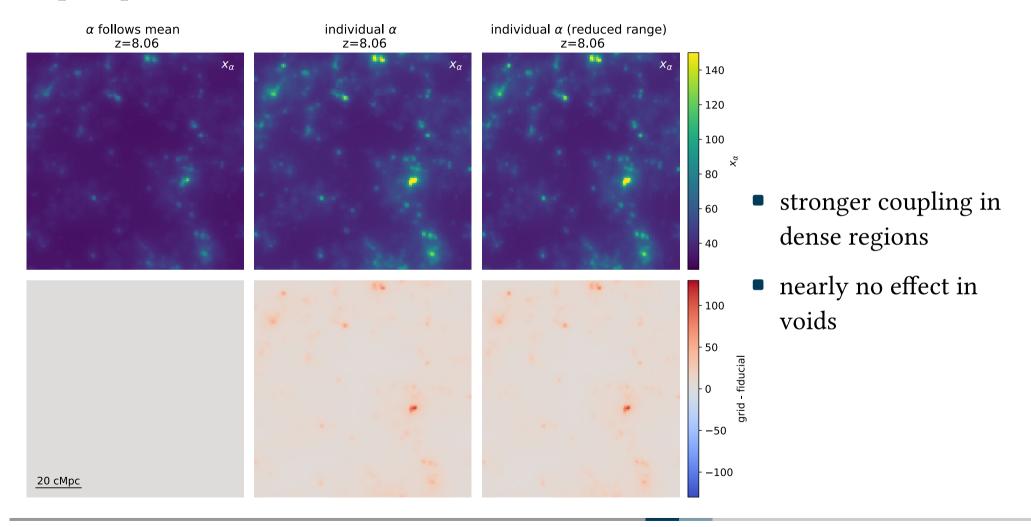
- profile generation taking into account halo growth rate
- reading merger trees + inferring growth rates
- parallel painting across multiple halo bins
- performance and ease of use

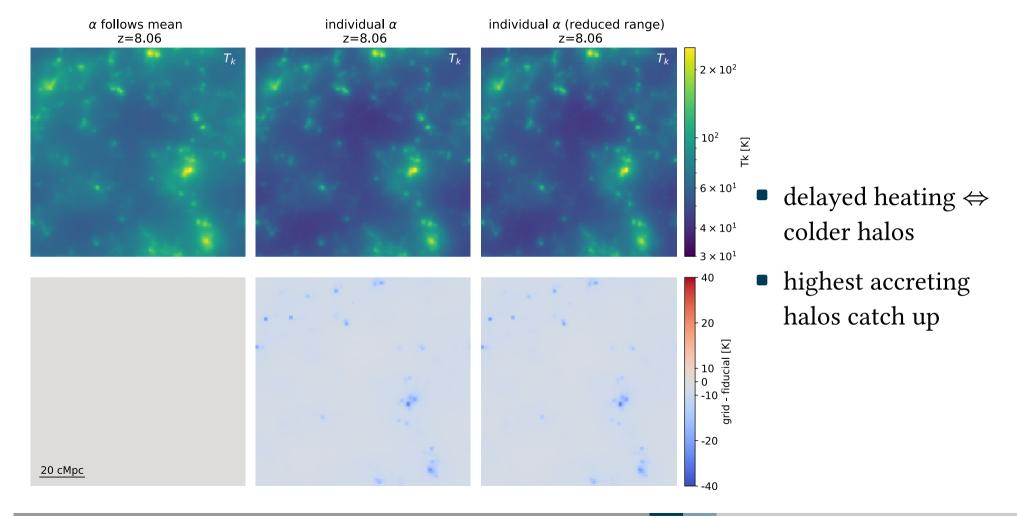
- profile generation taking into account halo growth rate
- reading merger trees + inferring growth rates
- parallel painting across multiple halo bins
- performance and ease of use
- → Validated 🗸

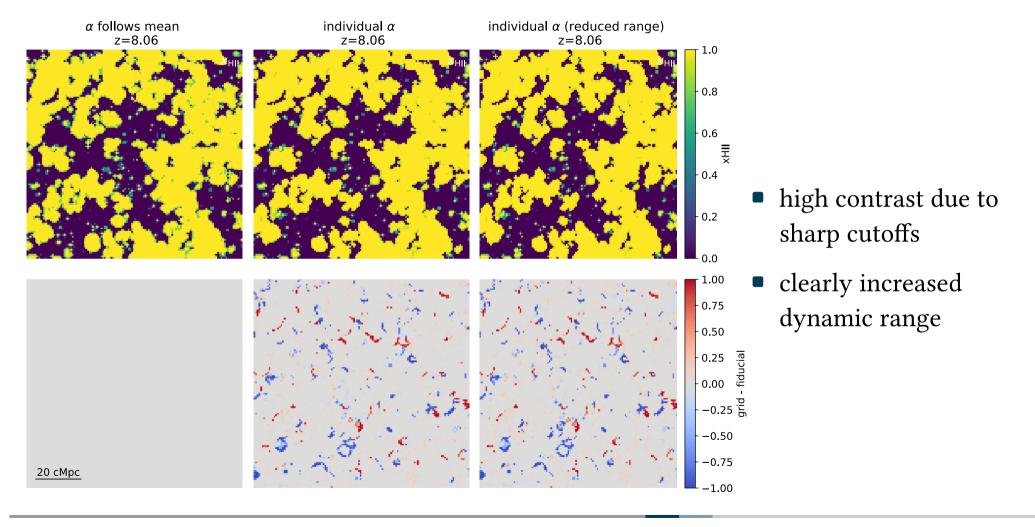
```
/beorn.py
from pathlib import Path
import beorn
current directory = Path(".")
## Setup the parameters
parameters file = current directory / "parameters.yaml"
parameters =
beorn.structs.Parameters.from yaml(parameters file)
# sample format:
# parameters.solver.redshifts = [6, 20]
# parameters.simulation.file root = ... / "Thesan-Dark-1"
## Handling of the io
# this will interface with the input simulation
loader = beorn.load input data.ThesanLoader(
   parameters,
    is high res = True
cache handler = beorn.io.Handler(current directory /
"cache")
```

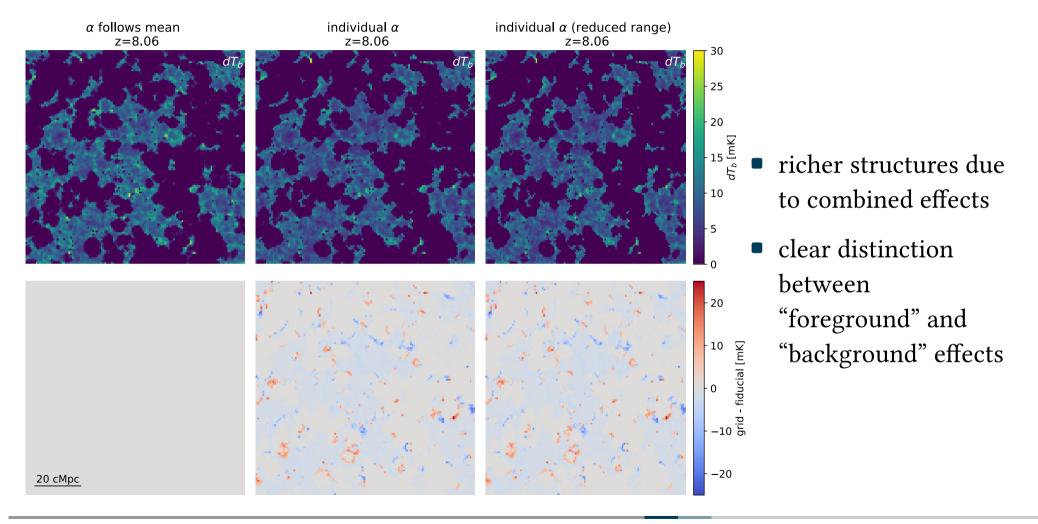
```
output handler = beorn.io.Handler(current directory /
"output")
# handlers can also manage logs for us:
# output handler.save logs(parameters)
## Computation of the radiation profiles
solver =
beorn.radiation profiles.ProfileSolver(parameters)
profiles = solver.solve()
## Full 3D painting of the radiation profiles over the
specified redshifts
painter = beorn.painting.Painter(
    parameters,
    loader = loader,
    cache handler = cache handler,
    output handler = output handler
grid = painter.paint full(profiles)
# Done!
```

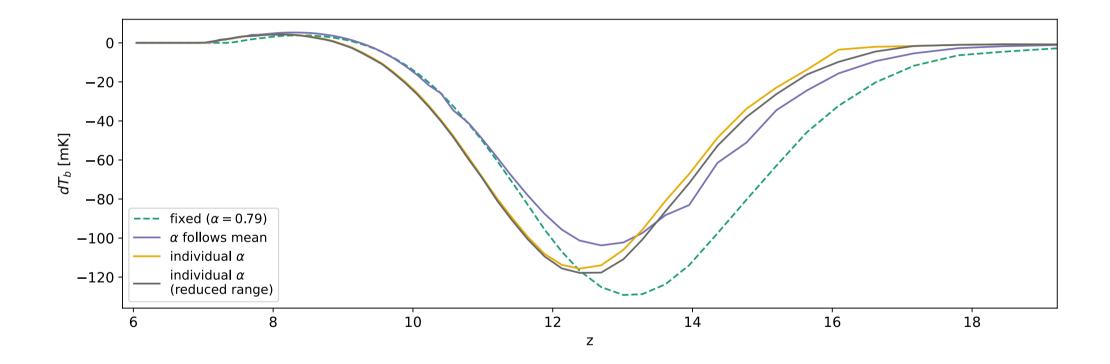
Simulating the Epoch of Reionization BEoRN

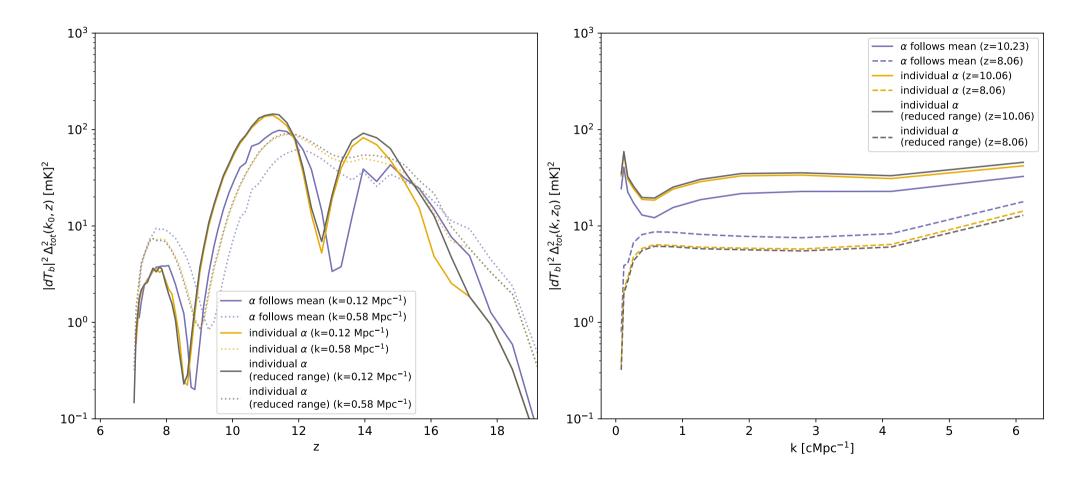

Halo growth Adaptations


Results


Conclusion End References


Results


- Map outputs
- Signals



Simulating the EOR with self-consistent growth of galaxies

Simulating the Epoch of Reionization BEoRN

Halo growth Adaptations Results

Conclusion

End References

Conclusion

- Summary
- Outlook

Summary

- BEoRN a semi-numerical tool to simulate the 21-cm signal
 - uses the halo model of reionization
 - describes sources in terms of their host DM halo
 - ⇒ central dependence on halo growth
- more accurate treatment of individual mass accretion
 - leads to significant changes to reionization history
 - map-level fluctuations
- BEoRN python package: https://github.com/cosmic-reionization/beorn
 - simulation-agnostic
 - easier to use
 - fully parallelized

Outlook

- further validation
- investigation + parameterization of stochasticity
- application to larger volumes

Simulating the Epoch of Reionization BEoRN Halo growth Adaptations

Conclusion

End

Results

References

End

Thank you for your attention

References 34/35

References

- [1] J. R. Pritchard and A. Loeb, "21 cm cosmology in the 21st century," *Reports on Progress in Physics*, vol. 75, no. 8, p. 86901, Aug. 2012, doi: 10.1088/0034-4885/75/8/086901.
 - S. R. Furlanetto, S. Peng Oh, and F. H. Briggs, "Cosmology at low frequencies: The 21cm
- [2] transition and the high-redshift Universe," *Physics Reports*, vol. 433, no. 4–6, pp. 181–301, Oct. 2006, doi: 10.1016/j.physrep.2006.08.002.
- [3] "CMB spectrum." [Online]. Available: https://asd.gsfc.nasa.gov/archive/arcade/cmb_intensity.html
- T. Schaeffer, S. K. Giri, and A. Schneider, "<scp>beorn</scp>: a fast and flexible framework to simulate the epoch of reionization and cosmic dawn," *Monthly Notices of the Royal Astronomical Society*, vol. 526, no. 2, pp. 2942–2959, Sep. 2023, doi: 10.1093/mnras/stad2937.

- A. Mesinger, S. Furlanetto, and R. Cen, "21cmfast: a fast, seminumerical simulation of the high-redshift 21-cm signal," *Monthly Notices of the Royal Astronomical Society*, vol. 411, no. 2, pp. 955–972, 2011, doi: 10.1111/j.1365-2966.2010.17731.x.
- A. Schneider, S. K. Giri, and J. Mirocha, "Halo model approach for the 21-cm power spectrum at cosmic dawn," *Physical Review D*, vol. 103, no. 8, Apr. 2021, doi: 10.1103/physrevd.103.083025.
- A. Schneider, T. Schaeffer, and S. K. Giri, "Cosmological forecast of the 21-cm power spectrum using the halo model of reionization." [Online]. Available: https://arxiv.org/abs/2302.06626
- [8] V. Springel *et al.*, "Simulations of the formation, evolution and clustering of galaxies and quasars," *Nature*, vol. 435, no. 7042, pp. 629–636, Jun. 2005, doi: 10.1038/nature03597.

$$\rho_{\alpha}(r\mid M,z) = \frac{(1+z)^2}{4\pi r^2} \cdot \sum_{n=2}^{n_m} f_n \cdot \varepsilon_{\alpha}(\nu') \cdot f_{\star} \cdot \dot{M}(z'\mid M,z)$$

with the lookback redshift z' so $\nu' = \nu \cdot (1+z')/(1+z)$

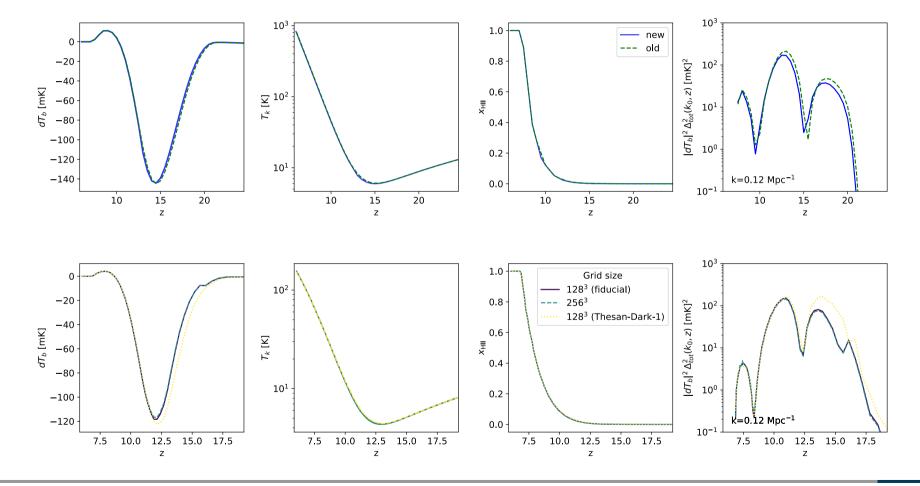
 \Rightarrow coupling coefficient

$$x_{\alpha}(r\mid M,z) = \frac{1.81\cdot 10^{11}}{1+z}\cdot S_{\alpha}(z)\cdot \rho_{\alpha}(r\mid M,z)$$

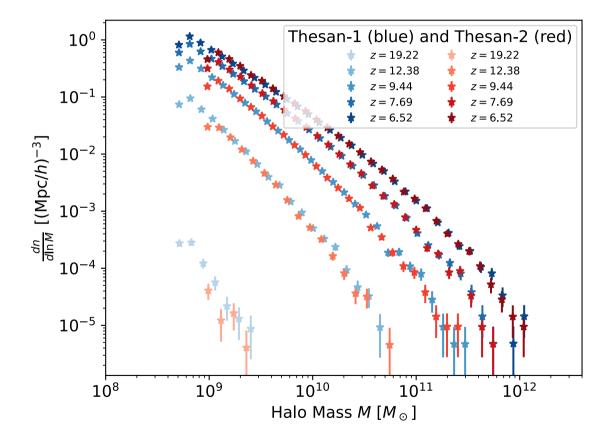
with a suppression factor $S_{\alpha}(z)$

$$\begin{split} \rho_{\text{xray}}(r \mid M, z) &= \frac{1}{r^2} \sum_{i} f_i f_{X,h} \cdot \int_{\nu_{\text{th}}^i}^{\infty} d\nu \left(\nu - \nu_{\text{th}}^i\right) h_P \sigma_i(\nu) e^{-\tau_{\nu}} f_{\star} \dot{M}(z' \mid M, z) \\ &\Longrightarrow \frac{3}{2} \cdot \frac{\mathrm{d}\rho_h(r \mid M, z)}{\mathrm{d}z} = \frac{3\rho_h(r \mid M, z)}{1 + z} - \frac{\rho_{\text{xray}}(r \mid M, z)}{k_B(1 + z)H(z)} \end{split}$$

with the Boltzmann constant k_B and H(z) is the Hubble parameter


The comoving ionized volume around a source of ionizing photons satisfies the differential equation

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\dot{N}_{\mathrm{ion}(t)}}{\overline{n}_{H}^{0}} - \alpha_{B} \cdot \frac{C}{a^{3}} \cdot \overline{n}_{H}^{0} \cdot V$$


bubble radius $R_b = \sqrt[3]{\frac{3}{4\pi}V(M,z)}$ and using the Heaviside step function θ_H :

$$x_{\rm HII}(r\mid M,z) = \theta_{\rm H} \left[R_b(M,z) - r \right]$$

Validation 39/35

Simulating the EOR with self-consistent growth of galaxies

