Merge pull request 'fixed cluster names' (#57) from backend/fix/missing-cluster-names into main
Reviewed-on: #57
This commit is contained in:
commit
84e5902436
File diff suppressed because one or more lines are too long
@ -130,11 +130,12 @@ def new_trip(preferences: Preferences,
|
||||
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
|
||||
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
|
||||
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
|
||||
|
||||
linked_tour = LinkedLandmarks(refined_tour)
|
||||
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
|
||||
logger.debug('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
|
||||
|
||||
background_tasks.add_task(fill_cache)
|
||||
|
||||
|
@ -594,7 +594,7 @@ class Optimizer:
|
||||
status = pl.LpStatus[prob.status]
|
||||
solution = [pl.value(var) for var in x] # The values of the decision variables (will be 0 or 1)
|
||||
|
||||
self.logger.debug("First results are out. Looking out for circles and correcting.")
|
||||
self.logger.debug("First results are out. Looking out for circles and correcting...")
|
||||
|
||||
# Raise error if no solution is found. FIXME: for now this throws the internal server error
|
||||
if status != 'Optimal' :
|
||||
|
@ -52,7 +52,7 @@ class Overpass :
|
||||
# Retrieve cached data and identify missing cache entries
|
||||
cached_responses, non_cached_cells = self._retrieve_cached_data(overlapping_cells, osm_types, selector, conditions, out)
|
||||
|
||||
self.logger.info(f'Cache hit for {len(overlapping_cells)-len(non_cached_cells)}/{len(overlapping_cells)} quadrants.')
|
||||
self.logger.debug(f'Cache hit for {len(overlapping_cells)-len(non_cached_cells)}/{len(overlapping_cells)} quadrants.')
|
||||
|
||||
# If there is no missing data, return the cached responses after filtering.
|
||||
if not non_cached_cells :
|
||||
@ -61,6 +61,7 @@ class Overpass :
|
||||
# If there is no cached data, fetch all from Overpass.
|
||||
elif not cached_responses :
|
||||
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
|
||||
self.logger.debug(f'Query string: {query_str}')
|
||||
return self.fetch_data_from_api(query_str)
|
||||
|
||||
# Hybrid cache: some data from Overpass, some data from cache.
|
||||
@ -68,6 +69,7 @@ class Overpass :
|
||||
# Resize the bbox for smaller search area and build new query string.
|
||||
non_cached_bbox = Overpass._get_non_cached_bbox(non_cached_cells, bbox)
|
||||
query_str = Overpass.build_query(non_cached_bbox, osm_types, selector, conditions, out)
|
||||
self.logger.debug(f'Query string: {query_str}')
|
||||
non_cached_responses = self.fetch_data_from_api(query_str)
|
||||
return Overpass._filter_landmarks(cached_responses, bbox) + non_cached_responses
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
max_bbox_side: 4000 #m
|
||||
radius_close_to: 50
|
||||
church_coeff: 0.55
|
||||
nature_coeff: 1.4
|
||||
church_coeff: 0.75
|
||||
nature_coeff: 1.6
|
||||
overall_coeff: 10
|
||||
tag_exponent: 1.15
|
||||
image_bonus: 1.1
|
||||
viewpoint_bonus: 5
|
||||
viewpoint_bonus: 10
|
||||
wikipedia_bonus: 1.25
|
||||
name_bonus: 3
|
||||
N_important: 60
|
||||
pay_bonus: -1
|
||||
|
@ -5,5 +5,5 @@ max_landmarks: 10
|
||||
max_landmarks_refiner: 20
|
||||
overshoot: 0.0016
|
||||
time_limit: 1
|
||||
gap_rel: 0.05
|
||||
gap_rel: 0.025
|
||||
max_iter: 40
|
@ -31,9 +31,9 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
"shopping": {"type": "shopping", "score": 0},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
# "start": [48.084588, 7.280405]
|
||||
"start": [48.084588, 7.280405]
|
||||
# "start": [45.74445023349939, 4.8222687890538865]
|
||||
"start": [45.75156398104873, 4.827154464827647]
|
||||
# "start": [45.75156398104873, 4.827154464827647]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
|
@ -1,6 +1,6 @@
|
||||
"""Find clusters of interest to add more general areas of visit to the tour."""
|
||||
import logging
|
||||
from typing import Literal
|
||||
from typing import Literal, Tuple
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
@ -33,7 +33,7 @@ class Cluster(BaseModel):
|
||||
"""
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: tuple
|
||||
centroid: Tuple[float, float]
|
||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||
# end: Optional[list] = None
|
||||
|
||||
@ -178,11 +178,12 @@ class ClusterManager:
|
||||
|
||||
# Calculate the centroid as the mean of the points
|
||||
centroid = np.mean(current_cluster, axis=0)
|
||||
centroid = tuple((round(centroid[0], 7), round(centroid[1], 7)))
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
score = len(current_cluster)*2
|
||||
score = len(current_cluster)*3
|
||||
else :
|
||||
score = len(current_cluster)*8
|
||||
score = len(current_cluster)*15
|
||||
locations.append(Cluster(
|
||||
type='area',
|
||||
centroid=centroid,
|
||||
@ -215,7 +216,7 @@ class ClusterManager:
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
bbox = create_bbox(cluster.centroid, 1000)
|
||||
bbox = create_bbox(cluster.centroid, 300)
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
|
||||
@ -223,10 +224,10 @@ class ClusterManager:
|
||||
if self.cluster_type == 'shopping' :
|
||||
selectors.append('"shop"="mall"')
|
||||
new_name = 'Shopping Area'
|
||||
t = 40
|
||||
t = 30
|
||||
else :
|
||||
new_name = 'Neighborhood'
|
||||
t = 15
|
||||
t = 20
|
||||
|
||||
min_dist = float('inf')
|
||||
osm_id = 0
|
||||
@ -238,7 +239,7 @@ class ClusterManager:
|
||||
result = self.overpass.send_query(bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = 'ids center'
|
||||
out = 'ids center tags'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
@ -259,9 +260,9 @@ class ClusterManager:
|
||||
d = get_distance(cluster.centroid, coords)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = name
|
||||
osm_type = osm_type # Add type: 'way' or 'relation'
|
||||
osm_id = id # Add OSM id
|
||||
new_name = name # add name
|
||||
osm_type = osm_type # add type: 'way' or 'relation'
|
||||
osm_id = id # add OSM id
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
|
@ -39,7 +39,6 @@ class LandmarkManager:
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
self.tag_exponent = parameters['tag_exponent']
|
||||
self.image_bonus = parameters['image_bonus']
|
||||
self.name_bonus = parameters['name_bonus']
|
||||
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
@ -147,6 +146,8 @@ class LandmarkManager:
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.is_place_of_worship :
|
||||
score *= self.church_coeff
|
||||
if landmark.is_viewpoint :
|
||||
score *= self.viewpoint_bonus
|
||||
if landmarktype == 'nature' :
|
||||
score *= self.nature_coeff
|
||||
|
||||
@ -201,7 +202,7 @@ class LandmarkManager:
|
||||
|
||||
return_list += self._to_landmarks(result, landmarktype, preference_level)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
# self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
@ -267,7 +268,7 @@ class LandmarkManager:
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
if value == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
|
Loading…
x
Reference in New Issue
Block a user