fixed optimizer. works fine now
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m17s
Build and release APK / Build APK (pull_request) Successful in 5m56s
Build web / Build Web (pull_request) Successful in 1m15s

This commit is contained in:
Kilian Scheidecker 2024-06-10 14:24:37 +02:00
parent c58c10b057
commit adbb6466d9
5 changed files with 20689 additions and 101 deletions

View File

@ -1,46 +1,80 @@
import math as m
from OSMPythonTools.api import Api
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder, Nominatim
from dataclasses import dataclass
from pydantic import BaseModel
import math as m
from structs.landmarks import Landmark, LandmarkType
from structs.preferences import Preferences, Preference
from typing import List
from typing import Tuple
RADIUS = 0.0005 # size of the bbox in degrees. 0.0005 ~ 50m
BBOX_SIDE = 10 # size of bbox in km for general area, 10km
RADIUS_CLOSE_TO = 50 # size of area in m for close features, 5àm radius
MIN_SCORE = 100 # discard elements with score < 100
BBOX_SIDE = 10 # size of bbox in *km* for general area, 10km
RADIUS_CLOSE_TO = 25 # size of area in *m* for close features, 5àm radius
MIN_SCORE = 30 # discard elements with score < 100
MIN_TAGS = 5 # discard elements withs less than 5 tags
SIGHTSEEING = LandmarkType(landmark_type='sightseeing')
NATURE = LandmarkType(landmark_type='nature')
SHOPPING = LandmarkType(landmark_type='shopping')
# Include th json here
# Include the json here
# Create a list of all things to visit given some preferences and a city. Ready for the optimizer
def generate_landmarks(coordinates: Tuple[float, float], preferences: Preferences) :
def generate_landmarks(preferences: Preferences, city_country: str = None, coordinates: Tuple[float, float] = None)->Tuple[List[Landmark], List[Landmark]] :
l_sights = ["'tourism'='museum'", "'tourism'='attraction'", "'tourism'='gallery'", 'historic', "'amenity'='arts_centre'", "'amenity'='planetarium'", "'amenity'='place_of_worship'", "'amenity'='fountain'", '"water"="reflecting_pool"']
l_nature = ["'leisure'='park'", 'geological', "'natural'='geyser'", "'natural'='hot_spring'", '"natural"="arch"', '"natural"="cave_entrance"', '"natural"="volcano"', '"natural"="stone"', '"tourism"="alpine_hut"', '"tourism"="picnic_site"', '"tourism"="viewpoint"', '"tourism"="zoo"', '"waterway"="waterfall"']
l_shop = ["'shop'='department_store'", "'shop'='mall'"] #, '"shop"="collector"', '"shop"="antiques"']
L = []
# Use 'City, Country'
if city_country is not None :
# List for sightseeing
L1 = get_landmarks(coordinates, l_sights, LandmarkType(landmark_type='sightseeing'))
if preferences.sightseeing.score != 0 :
L1 = get_landmarks_nominatim(city_country, l_sights, SIGHTSEEING)
correct_score(L1, preferences.sightseeing)
L += L1
# List for nature
L2 = get_landmarks(coordinates, l_nature, LandmarkType(landmark_type='nature'))
if preferences.nature.score != 0 :
L2 = get_landmarks_nominatim(city_country, l_nature, NATURE)
correct_score(L2, preferences.nature)
L += L2
# List for shopping
L3 = get_landmarks(coordinates, l_shop, LandmarkType(landmark_type='shopping'))
if preferences.shopping.score != 0 :
L3 = get_landmarks_nominatim(city_country, l_shop, SHOPPING)
correct_score(L3, preferences.shopping)
L += L3
L = L1 + L2 + L3
# Use coordinates
elif coordinates is not None :
return cleanup_list(L)
# List for sightseeing
if preferences.sightseeing.score != 0 :
L1 = get_landmarks_coords(coordinates, l_sights, SIGHTSEEING)
correct_score(L1, preferences.sightseeing)
L += L1
# List for nature
if preferences.nature.score != 0 :
L2 = get_landmarks_coords(coordinates, l_nature, NATURE)
correct_score(L2, preferences.nature)
L += L2
# List for shopping
if preferences.shopping.score != 0 :
L3 = get_landmarks_coords(coordinates, l_shop, SHOPPING)
correct_score(L3, preferences.shopping)
L += L3
return L, cleanup_list(L)
# Determines if two locations are close to each other
def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float]) :
def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float])->bool :
alpha = (180*RADIUS_CLOSE_TO)/(6371000*m.pi)
if abs(loc1[0] - loc2[0]) + abs(loc1[1] - loc2[1]) < alpha*2 :
@ -49,7 +83,7 @@ def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float]) :
return False
# Remove duplicate elements and elements with low score
def cleanup_list(L: List[Landmark]) :
def cleanup_list(L: List[Landmark])->List[Landmark] :
L_clean = []
names = []
@ -70,7 +104,6 @@ def cleanup_list(L: List[Landmark]) :
return L_clean
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
def correct_score(L: List[Landmark], preference: Preference) :
@ -81,8 +114,8 @@ def correct_score(L: List[Landmark], preference: Preference) :
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {L[0].name}")
for elem in L :
elem.attractiveness = int(elem.attractiveness/100) + elem.n_tags # arbitrary correction of the balance score vs number of tags
elem.attractiveness = elem.attractiveness*preference.score # arbitrary computation
elem.attractiveness = int(elem.attractiveness) + elem.n_tags*100 # arbitrary correction of the balance score vs number of tags
elem.attractiveness = int(elem.attractiveness*preference.score/500) # arbitrary computation
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
def correct_score_test(L: List[Landmark], preference: Preference) :
@ -103,7 +136,9 @@ def count_elements_within_radius(coordinates: Tuple[float, float]) -> int:
lat = coordinates[0]
lon = coordinates[1]
bbox = {'latLower':lat-RADIUS,'lonLower':lon-RADIUS,'latHigher':lat+RADIUS,'lonHigher': lon+RADIUS}
alpha = (180*RADIUS_CLOSE_TO)/(6371000*m.pi)
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
overpass = Overpass()
# Build the query to find elements within the radius
@ -148,11 +183,11 @@ def create_bbox(coordinates: Tuple[float, float], side_length: int) -> Tuple[flo
return min_lat, min_lon, max_lat, max_lon
# Generates the list of landmarks for a given Landmarktype. Needs coordinates, a list of amenities and the corresponding LandmarkType
def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarktype: LandmarkType):
def get_landmarks_coords(coordinates: Tuple[float, float], l: List[Landmark], landmarktype: LandmarkType)->List[Landmark]:
overpass = Overpass()
# Generate a bbox around currunt coordinates
# Generate a bbox around current coordinates
bbox = create_bbox(coordinates, BBOX_SIDE)
# Initialize some variables
@ -164,6 +199,46 @@ def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarkt
result = overpass.query(query)
N += result.countElements()
for elem in result.elements():
name = elem.tag('name') # Add name, decode to ASCII
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
# skip if unprecise location
if name is None or location[0] is None:
continue
else :
osm_type = elem.type() # Add type : 'way' or 'relation'
osm_id = elem.id() # Add OSM id
elem_type = landmarktype # Add the landmark type as 'sightseeing
n_tags = len(elem.tags().keys()) # Add number of tags
# Add score of given landmark based on the number of surrounding elements
score = count_elements_within_radius(location)
if score is not None :
# Generate the landmark and append it to the list
landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
L.append(landmark)
return L
def get_landmarks_nominatim(city_country: str, l: List[Landmark], landmarktype: LandmarkType)->List[Landmark] :
overpass = Overpass()
nominatim = Nominatim()
areaId = nominatim.query(city_country).areaId()
# Initialize some variables
N = 0
L = []
for amenity in l :
query = overpassQueryBuilder(area=areaId, elementType=['way', 'relation'], selector=amenity, includeCenter=True, out='body')
result = overpass.query(query)
N += result.countElements()
for elem in result.elements():
name = elem.tag('name') # Add name
@ -188,4 +263,3 @@ def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarkt
L.append(landmark)
return L

View File

@ -12,13 +12,13 @@ app = FastAPI()
# Assuming frontend is calling like this :
#"http://127.0.0.1:8000/process?param1={param1}&param2={param2}"
# This should become main at some point
@app.post("/optimizer/{longitude}/{latitude}")
def main(longitude: float, latitude: float, preferences: Preferences = Body(...)) -> List[Landmark]:
@app.post("/optimizer_coords/{longitude}/{latitude}/{city_country}")
def main1(preferences: Preferences = Body(...), longitude: float = None, latitude: float = None, city_country: str = None) -> List[Landmark]:
# From frontend get longitude, latitude and prefence list
# Generate the landmark list
landmarks = generate_landmarks(tuple((longitude, latitude)), preferences)
landmarks = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=tuple((longitude, latitude)))
# Set the max distance
max_steps = 90

View File

@ -1,8 +1,40 @@
from scipy.optimize import linprog
import numpy as np
from typing import List
from typing import Tuple
from scipy.optimize import linprog
from scipy.linalg import block_diag
from structs.landmarks import Landmark, LandmarkType
from structs.preferences import Preference, Preferences
from structs.landmarks import Landmark
from math import radians, sin, cos, acos
DETOUR_FACTOR = 1.3 # detour factor for straightline distance
AVG_WALKING_SPEED = 4.8 # average walking speed in km/h
# Function that returns the distance in meters from one location to another
def get_distance(p1: Tuple[float, float], p2: Tuple[float, float]) :
# Compute the straight-line distance in km
if p1 == p2 :
return 0, 0
else:
dist = 6371.01 * acos(sin(radians(p1[0]))*sin(radians(p2[0])) + cos(radians(p1[0]))*cos(radians(p2[0]))*cos(radians(p1[1]) - radians(p2[1])))
# Consider the detour factor for average city
wdist = dist*DETOUR_FACTOR
# Time to walk this distance (in minutes)
wtime = wdist/AVG_WALKING_SPEED*60
if wtime > 15 :
wtime = 5*round(wtime/5)
else :
wtime = round(wtime)
return round(wdist, 1), wtime
# landmarks = [Landmark_1, Landmark_2, ...]
@ -35,10 +67,10 @@ def untangle(resx: list) -> list:
return order
# Just to print the result
def print_res(res, landmarks: list, P) -> list:
X = abs(res.x)
order = untangle(X)
def print_res(res, order, landmarks: List[Landmark], P) -> list:
things = []
"""N = int(np.sqrt(len(X)))
@ -49,7 +81,7 @@ def print_res(res, landmarks: list, P) -> list:
for i,x in enumerate(X) : X[i] = round(x,0)
print(order)"""
if (X.sum()+1)**2 == len(X) :
if len(order) == len(landmarks):
print('\nAll landmarks can be visited within max_steps, the following order is suggested : ')
else :
print('Could not visit all the landmarks, the following order is suggested : ')
@ -59,10 +91,141 @@ def print_res(res, landmarks: list, P) -> list:
things.append(landmarks[idx].name)
steps = path_length(P, abs(res.x))
print("\nSteps walked : " + str(steps))
print("\nMinutes walked : " + str(steps))
print(f"\nVisited {len(order)} out of {len(landmarks)} landmarks")
return things
# prevent the creation of similar circles
def prevent_circle(resx, landmarks: List[Landmark], A_ub, b_ub) -> bool:
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_edges = resx.sum() # number of edges
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
vertices_visited = ind_a
vertices_visited.remove(0)
ones = [1]*L
h = [0]*N
for i in range(L) :
if i in vertices_visited :
h[i*L:i*L+L] = ones
A_ub = np.vstack((A_ub, h))
b_ub.append(len(vertices_visited)-1)
return A_ub, b_ub
def break_circle2(circle_vertices, landmarks: List[Landmark], A_ub, b_ub) -> bool:
L = len(landmarks) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
if L-1 in circle_vertices :
circle_vertices.remove(L-1)
ones = [1]*L
h = [0]*L*L
for i in range(L) :
if i in circle_vertices :
h[i*L:i*L+L] = ones
A_ub = np.vstack((A_ub, h))
b_ub.append(len(circle_vertices)-1)
return A_ub, b_ub
# Checks if the path is connected
def is_connected(resx, landmarks: List[Landmark]) -> bool:
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_edges = resx.sum() # number of edges
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
edges = []
edges_visited = []
vertices_visited = []
edge1 = (ind_a[0], ind_b[0])
edges_visited.append(edge1)
vertices_visited.append(edge1[0])
for i, a in enumerate(ind_a) :
edges.append((a, ind_b[i])) # Create the list of edges
flag = False
remaining = edges
remaining.remove(edge1)
# This can be further optimized
#while len(vertices_visited) < n_edges + 1 :
break_flag = False
while len(remaining) > 0 and not break_flag:
for edge2 in remaining :
if edge2[0] == edge1[1] :
if edge1[1] in vertices_visited :
edges_visited.append(edge2)
break_flag = True
break
#continue # continue vs break vs needed at all ?
else :
vertices_visited.append(edge1[1])
edges_visited.append(edge2)
remaining.remove(edge2)
edge1 = edge2
elif edge1[1] == L-1 or edge1[1] in vertices_visited:
break_flag = True
break
#break
#if flag is True :
# break
vertices_visited.append(edge1[1])
if len(vertices_visited) == n_edges +1 :
flag = True
circle = []
else:
flag = False
circle = edges_visited
"""j = 0
for i in vertices_visited :
if landmarks[i].name == 'start' :
ordered_visit = vertices_visited[j:] + vertices_visited[:j]
break
j+=1"""
return flag, vertices_visited, circle
# Checks for cases of circular symmetry in the result
def has_circle(resx: list) :
N = len(resx) # length of res
@ -127,13 +290,13 @@ def break_sym(N, A_ub, b_ub):
return A_ub, b_ub
# Constraint to not have circular paths. Want to go from start -> finish without unconnected loops
def break_circle(N, A_ub, b_ub, circle) :
l = [0]*N*N
def break_circle(L, A_ub, b_ub, circle) :
l = [0]*L*L
for index in circle :
x = index[0]
y = index[1]
l[x*N+y] = 1
l[x*L+y] = 1
A_ub = np.vstack((A_ub,l))
b_ub.append(len(circle)-1)
@ -147,19 +310,29 @@ def break_circle(N, A_ub, b_ub, circle) :
# Constraint to respect max number of travels
def respect_number(N, A_ub, b_ub):
h = []
"""h = []
for i in range(N) : h.append([1]*N)
T = block_diag(*h)
"""for l in T :
for l in T :
for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
return np.vstack((A_ub, T)), b_ub + [1]*N
#return np.vstack((A_ub, T)), b_ub + [1]*N
ones = [1]*N
zeros = [0]*N
for i in range(N) :
h = zeros*i + ones + zeros*(N-1-i)
A_ub = np.vstack((A_ub, h))
b_ub.append(1)
return A_ub, b_ub
# Constraint to tie the problem together. Necessary but not sufficient to avoid circles
def respect_order(N: int, A_eq, b_eq):
for i in range(N-1) : # Prevent stacked ones
if i == 0 :
if i == 0 or i == N-1: # Don't touch start or finish
continue
else :
l = [0]*N
@ -171,10 +344,6 @@ def respect_order(N: int, A_eq, b_eq):
A_eq = np.vstack((A_eq,l))
b_eq.append(0)
"""for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
return A_eq, b_eq
# Compute manhattan distance between 2 locations
@ -183,27 +352,41 @@ def manhattan_distance(loc1: tuple, loc2: tuple):
x2, y2 = loc2
return abs(x1 - x2) + abs(y1 - y2)
# Constraint to not stay in position
# Constraint to not stay in position. Removes d11, d22, d33, etc.
def init_eq_not_stay(N: int):
l = [0]*N*N
for i in range(N) :
for j in range(N) :
if j == i :
l[j + i*N] = 1
l[N-1] = 1 # cannot skip from start to finish
#A_eq = np.array([np.array(xi) for xi in A_eq]) # Must convert A_eq into an np array
l = np.array(np.array(l))
"""for i in range(7):
print(l[i*7:i*7+7])"""
l = np.array(np.array(l))
return [l], [0]
# Constraint to ensure start at start and finish at goal
def respect_start_finish(N, A_eq: list, b_eq: list):
ls = [1]*N + [0]*N*(N-1) # sets only horizontal ones for start (go from)
ljump = [0]*N*N
ljump[N-1] = 1 # Prevent start finish jump
lg = [0]*N*N
for k in range(N-1) : # sets only vertical ones for goal (go to)
if k != 0 : # Prevent the shortcut start -> finish
lg[k*N+N-1] = 1
A_eq = np.vstack((A_eq,ls))
A_eq = np.vstack((A_eq,ljump))
A_eq = np.vstack((A_eq,lg))
b_eq.append(1)
b_eq.append(0)
b_eq.append(1)
return A_eq, b_eq
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
# We want to maximize the sightseeing : max(c) st. A*x < b and A_eq*x = b_eq
def init_ub_dist(landmarks: list, max_steps: int):
def init_ub_dist(landmarks: List[Landmark], max_steps: int):
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = []
# Coefficients of inequality constraints (left-hand side)
@ -212,7 +395,8 @@ def init_ub_dist(landmarks: list, max_steps: int):
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
dist_table[j] = manhattan_distance(spot1.location, spot2.location)
d, t = get_distance(spot1.location, spot2.location)
dist_table[j] = t
A.append(dist_table)
c = c*len(landmarks)
A_ub = []
@ -222,31 +406,31 @@ def init_ub_dist(landmarks: list, max_steps: int):
return c, A_ub, [max_steps]
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
def respect_user_mustsee(landmarks: List[Landmark], A_eq: list, b_eq: list) :
L = len(landmarks)
H = 0 # sort of heuristic to get an idea of the number of steps needed
for i in landmarks :
if i.name == "départ" : elem_prev = i # list of all matches
for i, elem in enumerate(landmarks) :
if elem.attractiveness == -1 :
l = [0]*L*L
if elem.name != "arrivée" :
for j in range(L) :
l[j +i*L] = 1
else : # This ensures we go to goal
elem_prev = landmarks[0]
for i, elem in enumerate(landmarks) :
if elem.must_do is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
for j in range(L) : # sets the horizontal ones (go from)
l[j +i*L] = 1 # sets the vertical ones (go to) double check if good
for k in range(L-1) :
l[k*L+L-1] = 1
H += manhattan_distance(elem.location, elem_prev.location)
elem_prev = elem
"""for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
A_eq = np.vstack((A_eq,l))
b_eq.append(1)
b_eq.append(2)
d, t = get_distance(elem.location, elem_prev.location)
H += t
elem_prev = elem
return A_eq, b_eq, H
# Computes the path length given path matrix (dist_table) and a result
@ -261,7 +445,7 @@ def solve_optimization (landmarks, max_steps, printing_details) :
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
P = A_ub # store the paths for later. Needed to compute path length
A_ub, b_ub = respect_number(N, A_ub, b_ub) # Respect max number of visits.
A_ub, b_ub = respect_number(N, A_ub, b_ub) # Respect max number of visits (no more possible stops than landmarks).
# TODO : Problems with circular symmetry
A_ub, b_ub = break_sym(N, A_ub, b_ub) # break the symmetry. Only use the upper diagonal values
@ -269,7 +453,7 @@ def solve_optimization (landmarks, max_steps, printing_details) :
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = init_eq_not_stay(N) # Force solution not to stay in same place
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq, b_eq = respect_start_finish(N, A_eq, b_eq) # Force start and finish positions
A_eq, b_eq = respect_order(N, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
# Bounds for variables (x can only be 0 or 1)
@ -298,20 +482,27 @@ def solve_optimization (landmarks, max_steps, printing_details) :
# If there is a solution, we're good to go, just check for
else :
circle = has_circle(res.x)
t, order, circle = is_connected(res.x, landmarks)
i = 0
# Break the circular symmetry if needed
while len(circle) != 0 :
A_ub, b_ub = break_circle(landmarks, A_ub, b_ub, circle)
A_ub, b_ub = prevent_circle(res.x, landmarks, A_ub, b_ub)
A_ub, b_ub = break_circle(len(landmarks), A_ub, b_ub, circle)
A_ub, b_ub = break_circle2(order, landmarks, A_ub, b_ub)
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
circle = has_circle(res.x)
t, order, circle = is_connected(res.x, landmarks)
if t :
break
#circle = has_circle(res.x)
print(i)
i += 1
if printing_details is True :
if i != 0 :
print(f"Neded to recompute paths {i} times because of unconnected loops...")
X = print_res(res, landmarks, P)
t, order, [] = is_connected(res.x, landmarks)
X = print_res(res, order, landmarks, P)
return X
else :
return untangle(res.x)

View File

@ -1,13 +1,25 @@
import pandas as pd
from optimizer import solve_optimization
from landmarks_manager import generate_landmarks
from structs.landmarks import LandmarkTest
from structs.landmarks import Landmark
from structs.landmarktype import LandmarkType
from structs.preferences import Preferences, Preference
from fastapi import FastAPI, Query, Body
from fastapi.encoders import jsonable_encoder
from typing import List
# Helper function to create a .txt file with results
def write_data(L: List[Landmark]):
data = pd.DataFrame()
i = 0
for landmark in L :
data[i] = jsonable_encoder(landmark)
i += 1
data.to_json('landmarks.txt', indent = 2, force_ascii=False)
def test3(city_country: str) -> List[Landmark]:
@ -25,7 +37,9 @@ def test3(city_country: str) -> List[Landmark]:
type=LandmarkType(landmark_type='shopping'),
score = 5))
landmarks = generate_landmarks(city_country, preferences)
coords = None
landmarks = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=coords)
max_steps = 9
@ -47,21 +61,33 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
nature=Preference(
name='nature',
type=LandmarkType(landmark_type='nature'),
score = 0),
score = 5),
shopping=Preference(
name='shopping',
type=LandmarkType(landmark_type='shopping'),
score = 5))
landmarks = generate_landmarks(coordinates, preferences)
city_country = None
max_steps = 90
landmarks, landmarks_short = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=coordinates)
visiting_order = solve_optimization(landmarks, max_steps, True)
#write_data(landmarks)
start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.8375946, 2.2949904), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.8375946, 2.2949904), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
test = landmarks_short
test.append(finish)
test.insert(0, start)
max_walking_time = 4 # hours
visiting_order = solve_optimization(test, max_walking_time*60, True)
print(len(visiting_order))
return len(visiting_order)
test3(tuple((48.834378, 2.322113)))
test4(tuple((48.834378, 2.322113)))

20297
landmarks.txt Normal file

File diff suppressed because it is too large Load Diff