first homemade OSM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m50s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m44s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m50s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m44s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
This commit is contained in:
parent
98576cff0a
commit
c668158341
File diff suppressed because one or more lines are too long
@ -60,15 +60,18 @@ sightseeing:
|
||||
- cantilever
|
||||
- abandoned
|
||||
building:
|
||||
- church
|
||||
- chapel
|
||||
- mosque
|
||||
- synagogue
|
||||
- ruins
|
||||
- temple
|
||||
# - government
|
||||
- cathedral
|
||||
- castle
|
||||
|
||||
# unused sightseeing/buildings:
|
||||
# - church
|
||||
# - chapel
|
||||
# - mosque
|
||||
# - synagogue
|
||||
# - ruins
|
||||
# - temple
|
||||
# - government
|
||||
# - cathedral
|
||||
# - castle
|
||||
# - museum
|
||||
|
||||
museums:
|
||||
|
@ -4,9 +4,9 @@ church_coeff: 0.65
|
||||
nature_coeff: 1.35
|
||||
overall_coeff: 10
|
||||
tag_exponent: 1.15
|
||||
image_bonus: 10
|
||||
image_bonus: 1.1
|
||||
viewpoint_bonus: 5
|
||||
wikipedia_bonus: 4
|
||||
wikipedia_bonus: 1.1
|
||||
name_bonus: 3
|
||||
N_important: 40
|
||||
pay_bonus: -1
|
||||
|
288
backend/src/sandbox/overpass_test.py
Normal file
288
backend/src/sandbox/overpass_test.py
Normal file
@ -0,0 +1,288 @@
|
||||
from typing import Literal, List, Optional
|
||||
from pydantic import BaseModel
|
||||
import urllib.request
|
||||
import urllib.parse
|
||||
import json
|
||||
import yaml
|
||||
from pathlib import Path
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
|
||||
OSM_ENDPOINT = 'http://overpass-api.de/api/'
|
||||
LOCATION_PREFIX = Path('src')
|
||||
PARAMETERS_DIR = LOCATION_PREFIX / 'parameters'
|
||||
AMENITY_SELECTORS_PATH = PARAMETERS_DIR / 'amenity_selectors.yaml'
|
||||
|
||||
|
||||
ElementTypes = List[Literal['way', 'node', 'relation']]
|
||||
|
||||
|
||||
|
||||
# Output to frontend
|
||||
class Landmark(BaseModel) :
|
||||
"""
|
||||
A class representing a landmark or point of interest (POI) in the context of a trip.
|
||||
|
||||
The Landmark class is used to model visitable locations, such as tourist attractions,
|
||||
natural sites, shopping locations, and start/end points in travel itineraries. It
|
||||
holds information about the landmark's attributes and supports comparisons and
|
||||
calculations, such as distance between landmarks.
|
||||
|
||||
Attributes:
|
||||
name (str): The name of the landmark.
|
||||
type (Literal): The type of the landmark, which can be one of ['sightseeing', 'nature',
|
||||
'shopping', 'start', 'finish'].
|
||||
location (tuple): A tuple representing the (latitude, longitude) of the landmark.
|
||||
osm_type (str): The OpenStreetMap (OSM) type of the landmark.
|
||||
osm_id (int): The OpenStreetMap (OSM) ID of the landmark.
|
||||
attractiveness (int): A score representing the attractiveness of the landmark.
|
||||
n_tags (int): The number of tags associated with the landmark.
|
||||
image_url (Optional[str]): A URL to an image of the landmark.
|
||||
website_url (Optional[str]): A URL to the landmark's official website.
|
||||
description (Optional[str]): A text description of the landmark.
|
||||
duration (Optional[int]): The estimated time to visit the landmark (in minutes).
|
||||
name_en (Optional[str]): The English name of the landmark.
|
||||
uuid (UUID): A unique identifier for the landmark, generated by default using uuid4.
|
||||
must_do (Optional[bool]): Whether the landmark is a "must-do" attraction.
|
||||
must_avoid (Optional[bool]): Whether the landmark should be avoided.
|
||||
is_secondary (Optional[bool]): Whether the landmark is secondary or less important.
|
||||
time_to_reach_next (Optional[int]): Estimated time (in minutes) to reach the next landmark.
|
||||
next_uuid (Optional[UUID]): UUID of the next landmark in sequence (if applicable).
|
||||
"""
|
||||
|
||||
# Properties of the landmark
|
||||
name : str
|
||||
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
|
||||
location : tuple
|
||||
osm_type : str
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
wiki_url : Optional[str] = None
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0
|
||||
name_en : Optional[str] = None
|
||||
|
||||
|
||||
# Additional properties depending on specific tour
|
||||
must_do : Optional[bool] = False
|
||||
must_avoid : Optional[bool] = False
|
||||
is_secondary : Optional[bool] = False
|
||||
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
|
||||
# More properties to define the score
|
||||
is_viewpoint : Optional[bool] = False
|
||||
is_cathedral : Optional[bool] = False
|
||||
is_place_of_worship : Optional[bool] = False
|
||||
|
||||
|
||||
def OverpassQueryBuilder(area: tuple, element_types: ElementTypes, selector: str,
|
||||
conditions=[], out='center'):
|
||||
|
||||
if not isinstance(conditions, list) :
|
||||
conditions = [conditions]
|
||||
|
||||
query = '('
|
||||
search_area = f"({', '.join(map(str, area))})"
|
||||
if conditions :
|
||||
conditions = '(if: ' + ' && '.join(conditions) + ')'
|
||||
else :
|
||||
conditions = ''
|
||||
|
||||
for elem in element_types :
|
||||
query += elem + '[' + selector + ']' + conditions + search_area + ';'
|
||||
|
||||
query += ');' + f'out {out};'
|
||||
|
||||
return query
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
||||
Args:
|
||||
d (dict): A dictionary of key-value pairs representing the selector.
|
||||
|
||||
Returns:
|
||||
list: A list of strings representing the Overpass query selectors.
|
||||
"""
|
||||
return_list = []
|
||||
for key, value in d.items():
|
||||
if isinstance(value, list):
|
||||
val = '|'.join(value)
|
||||
return_list.append(f'{key}~"^({val})$"')
|
||||
elif isinstance(value, str) and len(value) == 0:
|
||||
return_list.append(f'{key}')
|
||||
else:
|
||||
return_list.append(f'{key}={value}')
|
||||
return return_list
|
||||
|
||||
|
||||
def send_overpass_query(query: str) -> dict:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
|
||||
|
||||
Args:
|
||||
query (str): The Overpass QL query to be sent to the Overpass API.
|
||||
|
||||
Returns:
|
||||
dict: The parsed JSON response from the Overpass API, or None if the request fails.
|
||||
"""
|
||||
|
||||
# Define the Overpass API endpoint
|
||||
overpass_url = "https://overpass-api.de/api/interpreter"
|
||||
|
||||
# Prepare the data to be sent as POST request, encoded as bytes
|
||||
data = urllib.parse.urlencode({'data': query}).encode('utf-8')
|
||||
|
||||
# Create a custom header with a User-Agent
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',
|
||||
}
|
||||
|
||||
try:
|
||||
# Create a Request object with the specified URL, data, and headers
|
||||
request = urllib.request.Request(overpass_url, data=data, headers=headers)
|
||||
|
||||
# Send the request and read the response
|
||||
with urllib.request.urlopen(request) as response:
|
||||
# Read and decode the response
|
||||
response_data = response.read().decode('utf-8')
|
||||
return ET.fromstring(response_data)
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
print(f"Error connecting to Overpass API: {e}")
|
||||
return None
|
||||
except json.JSONDecodeError:
|
||||
print("Error decoding the JSON response from Overpass API.")
|
||||
return None
|
||||
|
||||
|
||||
|
||||
def parse_result(root: ET.Element, elem_type) -> List[Landmark]:
|
||||
|
||||
landmarks = []
|
||||
if root is None :
|
||||
return landmarks
|
||||
|
||||
for osm_type in ['node', 'way', 'relation'] :
|
||||
for elem in root.findall(osm_type):
|
||||
|
||||
# Extract basic info from the landmark.
|
||||
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
|
||||
center = elem.find('center')
|
||||
tags = elem.findall('tag')
|
||||
|
||||
# Extract the center latitude and longitude if available.
|
||||
if name is not None and center is not None:
|
||||
lat = center.get('lat')
|
||||
lon = center.get('lon')
|
||||
coords = tuple((lat, lon))
|
||||
else :
|
||||
continue
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=elem_type,
|
||||
location=coords,
|
||||
osm_id=elem.get('id'),
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for tag in tags:
|
||||
key = tag.get('k')
|
||||
value = tag.get('v')
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and elem_type != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
else :
|
||||
landmark.duration = 5
|
||||
|
||||
else:
|
||||
set_score(landmark, elem_type)
|
||||
landmarks.append(landmark)
|
||||
continue
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
def set_score(landmark: Landmark, landmarktype: str) :
|
||||
|
||||
score = landmark.n_tags**1.15
|
||||
if landmark.wiki_url :
|
||||
score *= 1.1
|
||||
if landmark.image_url :
|
||||
score *= 1.1
|
||||
if landmark.website_url :
|
||||
score *= 1.1
|
||||
if landmark.is_place_of_worship :
|
||||
score *= 0.65
|
||||
if landmark.is_viewpoint :
|
||||
# print(f"{landmark.name}: n_tags={landmark.n_tags} and score={score*3*1.35*10}")
|
||||
score *= 3
|
||||
if landmarktype == 'nature' :
|
||||
score *= 1.35
|
||||
|
||||
landmark.attractiveness = int(score * 10)
|
||||
|
||||
|
||||
with AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
amenity_selectors = yaml.safe_load(f)
|
||||
amenity_selector = amenity_selectors['nature']
|
||||
bbox = tuple(('around:1714', 45.7576485, 4.8330241))
|
||||
|
||||
landmarks = []
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
|
||||
query = OverpassQueryBuilder(area=bbox,
|
||||
element_types=['way', 'relation'],
|
||||
selector=sel,
|
||||
# conditions='count_tags()>5',
|
||||
out='center')
|
||||
print(query + '\n')
|
||||
|
||||
root = send_overpass_query(query)
|
||||
|
||||
landmarks += parse_result(root, 'nature')
|
||||
|
||||
|
||||
print(len(landmarks))
|
@ -45,8 +45,11 @@ class Landmark(BaseModel) :
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
|
||||
# Optional properties to gather more information.
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
wiki_url : Optional[str] = None
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0
|
||||
name_en : Optional[str] = None
|
||||
@ -62,6 +65,10 @@ class Landmark(BaseModel) :
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
next_uuid : Optional[UUID] = None
|
||||
|
||||
# More properties to define the score
|
||||
is_viewpoint : Optional[bool] = False
|
||||
is_place_of_worship : Optional[bool] = False
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
String representation of the Landmark object.
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""Linked and ordered list of Landmarks that represents the visiting order."""
|
||||
|
||||
from .landmark import Landmark
|
||||
from ..utils.get_time_separation import get_time
|
||||
from ..utils.get_time_distance import get_time
|
||||
|
||||
class LinkedLandmarks:
|
||||
"""
|
||||
|
@ -11,7 +11,7 @@ def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
'''
|
||||
def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
|
||||
@ -54,7 +54,7 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
assert len(landmarks) > 2 # check that there is something to visit
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
# assert 2==3
|
||||
|
||||
'''
|
||||
|
||||
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
@ -67,6 +67,7 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 120
|
||||
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
@ -96,7 +97,7 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
# assert 2 == 3
|
||||
|
||||
|
||||
'''
|
||||
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
@ -335,7 +336,7 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
|
||||
'''
|
||||
|
||||
# def test_new_trip_single_prefs(client):
|
||||
# response = client.post(
|
||||
|
@ -9,7 +9,7 @@ from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_separation import get_distance
|
||||
from .get_time_distance import get_distance
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
"""Computes the distance (in meters) or the walking time (in minutes) between two coordinates."""
|
||||
"""Contains various helper functions to help with distance or score computations."""
|
||||
from math import sin, cos, sqrt, atan2, radians
|
||||
import yaml
|
||||
|
@ -1,13 +1,12 @@
|
||||
"""Module used to import data from OSM and arrange them in categories."""
|
||||
import logging
|
||||
import yaml
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_manager import ClusterManager
|
||||
from .overpass import OverpassQueryBuilder, send_overpass_query, parse_result
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
@ -54,8 +53,8 @@ class LandmarkManager:
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
# self.overpass = Overpass()
|
||||
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
@ -78,13 +77,13 @@ class LandmarkManager:
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
self.logger.debug('Starting to fetch landmarks...')
|
||||
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
|
||||
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
|
||||
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique
|
||||
# Create a bbox using the around technique, tuple of strings
|
||||
bbox = tuple((f"around:{min(2000, reachable_bbox_side/2)}", str(center_coordinates[0]), str(center_coordinates[1])))
|
||||
|
||||
# list for sightseeing
|
||||
@ -134,7 +133,21 @@ class LandmarkManager:
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
def set_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
|
||||
|
||||
score = landmark.n_tags**self.tag_exponent
|
||||
if landmark.wiki_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.image_url :
|
||||
score *= self.image_bonus
|
||||
if landmark.website_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.is_place_of_worship :
|
||||
score *= self.church_coeff
|
||||
|
||||
landmark.attractiveness = int(score * preference_level)
|
||||
|
||||
'''
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
@ -170,15 +183,11 @@ class LandmarkManager:
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = element_types,
|
||||
# selector can in principle be a list already,
|
||||
# but it generates the intersection of the queries
|
||||
# we want the union
|
||||
query = OverpassQueryBuilder(
|
||||
area = bbox,
|
||||
element_types = element_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
@ -295,7 +304,63 @@ class LandmarkManager:
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
'''
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
- Scores are assigned to landmarks based on their attributes and surrounding elements.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = []
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
# self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
element_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = OverpassQueryBuilder(
|
||||
area = bbox,
|
||||
element_types = element_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = send_overpass_query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
return_list = parse_result(result, landmarktype)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import pulp as pl
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from .get_time_separation import get_time
|
||||
from .get_time_distance import get_time
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
|
199
backend/src/utils/overpass.py
Normal file
199
backend/src/utils/overpass.py
Normal file
@ -0,0 +1,199 @@
|
||||
from typing import Literal, List
|
||||
import urllib
|
||||
import json
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
|
||||
ElementTypes = List[Literal['way', 'node', 'relation']]
|
||||
|
||||
|
||||
|
||||
def OverpassQueryBuilder(area: tuple, element_types: ElementTypes, selector: str,
|
||||
conditions=[], out='center'):
|
||||
"""
|
||||
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
|
||||
|
||||
Args:
|
||||
area (tuple): A tuple representing the geographical search area, typically in the format
|
||||
(radius, latitude, longitude). The first element is a string like "around:2000"
|
||||
specifying the search radius, and the second and third elements represent
|
||||
the latitude and longitude as floats or strings.
|
||||
element_types (list[str]): A list of OSM element types to search for. Must be one or more of
|
||||
'Way', 'Node', or 'Relation'.
|
||||
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
|
||||
conditions (list, optional): A list of conditions to apply as additional filters for the
|
||||
selected OSM elements. The conditions should be written in
|
||||
the Overpass QL format, and they are combined with '&&' if
|
||||
multiple are provided. Defaults to an empty list.
|
||||
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
|
||||
Defaults to 'center'.
|
||||
|
||||
Returns:
|
||||
str: The constructed Overpass QL query string.
|
||||
|
||||
Notes:
|
||||
- If no conditions are provided, the query will just use the `selector` to filter the OSM
|
||||
elements without additional constraints.
|
||||
- The search area must always formatted as "(radius, lat, lon)".
|
||||
"""
|
||||
if not isinstance(conditions, list) :
|
||||
conditions = [conditions]
|
||||
|
||||
query = '('
|
||||
search_area = f"({', '.join(map(str, area))})"
|
||||
|
||||
if conditions :
|
||||
conditions = '(if: ' + ' && '.join(conditions) + ')'
|
||||
else :
|
||||
conditions = ''
|
||||
|
||||
for elem in element_types :
|
||||
query += elem + '[' + selector + ']' + conditions + search_area + ';'
|
||||
|
||||
query += ');' + f'out {out};'
|
||||
|
||||
return query
|
||||
|
||||
|
||||
def send_overpass_query(query: str) -> dict:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
|
||||
|
||||
Args:
|
||||
query (str): The Overpass QL query to be sent to the Overpass API.
|
||||
|
||||
Returns:
|
||||
dict: The parsed JSON response from the Overpass API, or None if the request fails.
|
||||
"""
|
||||
|
||||
# Define the Overpass API endpoint
|
||||
overpass_url = "https://overpass-api.de/api/interpreter"
|
||||
|
||||
# Prepare the data to be sent as POST request, encoded as bytes
|
||||
data = urllib.parse.urlencode({'data': query}).encode('utf-8')
|
||||
|
||||
# Create a custom header with a User-Agent
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',
|
||||
}
|
||||
|
||||
try:
|
||||
# Create a Request object with the specified URL, data, and headers
|
||||
request = urllib.request.Request(overpass_url, data=data, headers=headers)
|
||||
|
||||
# Send the request and read the response
|
||||
with urllib.request.urlopen(request) as response:
|
||||
# Read and decode the response
|
||||
response_data = response.read().decode('utf-8')
|
||||
return ET.fromstring(response_data)
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
print(f"Error connecting to Overpass API: {e}")
|
||||
return None
|
||||
except json.JSONDecodeError:
|
||||
print("Error decoding the JSON response from Overpass API.")
|
||||
return None
|
||||
|
||||
|
||||
def parse_result(root: ET.Element, elem_type) -> List[Landmark]:
|
||||
|
||||
landmarks = []
|
||||
if root is None :
|
||||
return landmarks
|
||||
|
||||
for osm_type in ['node', 'way', 'relation'] :
|
||||
for elem in root.findall(osm_type):
|
||||
|
||||
# Extract basic info from the landmark.
|
||||
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
|
||||
center = elem.find('center')
|
||||
tags = elem.findall('tag')
|
||||
|
||||
# Extract the center latitude and longitude if available.
|
||||
if name is not None and center is not None:
|
||||
lat = float(center.get('lat'))
|
||||
lon = float(center.get('lon'))
|
||||
coords = tuple((lat, lon))
|
||||
else :
|
||||
continue
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=elem_type,
|
||||
location=coords,
|
||||
osm_id=elem.get('id'),
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for tag in tags:
|
||||
key = tag.get('k')
|
||||
value = tag.get('v')
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and elem_type != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
else :
|
||||
landmark.duration = 5
|
||||
|
||||
else:
|
||||
set_score(landmark, elem_type)
|
||||
landmarks.append(landmark)
|
||||
continue
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
|
||||
def set_score(landmark: Landmark, landmarktype: str) :
|
||||
|
||||
score = landmark.n_tags**1.15
|
||||
if landmark.wiki_url :
|
||||
score *= 1.1
|
||||
if landmark.image_url :
|
||||
score *= 1.1
|
||||
if landmark.website_url :
|
||||
score *= 1.1
|
||||
if landmark.is_place_of_worship :
|
||||
score *= 0.65
|
||||
if landmark.is_viewpoint :
|
||||
# print(f"{landmark.name}: n_tags={landmark.n_tags} and score={score*3*1.35*10}")
|
||||
score *= 3
|
||||
if landmarktype == 'nature' :
|
||||
score *= 1.35
|
||||
|
||||
landmark.attractiveness = int(score * 10)
|
@ -6,7 +6,7 @@ from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
|
||||
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from . import take_most_important, get_time_separation
|
||||
from . import get_time_distance, take_most_important
|
||||
from .optimizer import Optimizer
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
@ -195,7 +195,7 @@ class Refiner :
|
||||
|
||||
# Step 4: Use nearest neighbor heuristic to visit all landmarks
|
||||
while unvisited_landmarks:
|
||||
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_separation.get_time(current_landmark.location, lm.location))
|
||||
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_distance.get_time(current_landmark.location, lm.location))
|
||||
path.append(nearest_landmark)
|
||||
coordinates.append(nearest_landmark.location)
|
||||
current_landmark = nearest_landmark
|
||||
|
Loading…
x
Reference in New Issue
Block a user