first homemade OSM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m50s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m44s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m50s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m44s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
This commit is contained in:
@@ -1,13 +1,12 @@
|
||||
"""Module used to import data from OSM and arrange them in categories."""
|
||||
import logging
|
||||
import yaml
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_manager import ClusterManager
|
||||
from .overpass import OverpassQueryBuilder, send_overpass_query, parse_result
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
@@ -54,8 +53,8 @@ class LandmarkManager:
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
# self.overpass = Overpass()
|
||||
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
@@ -78,13 +77,13 @@ class LandmarkManager:
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
self.logger.debug('Starting to fetch landmarks...')
|
||||
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
|
||||
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
|
||||
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique
|
||||
# Create a bbox using the around technique, tuple of strings
|
||||
bbox = tuple((f"around:{min(2000, reachable_bbox_side/2)}", str(center_coordinates[0]), str(center_coordinates[1])))
|
||||
|
||||
# list for sightseeing
|
||||
@@ -134,7 +133,21 @@ class LandmarkManager:
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
def set_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
|
||||
|
||||
score = landmark.n_tags**self.tag_exponent
|
||||
if landmark.wiki_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.image_url :
|
||||
score *= self.image_bonus
|
||||
if landmark.website_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.is_place_of_worship :
|
||||
score *= self.church_coeff
|
||||
|
||||
landmark.attractiveness = int(score * preference_level)
|
||||
|
||||
'''
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
@@ -170,15 +183,11 @@ class LandmarkManager:
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = element_types,
|
||||
# selector can in principle be a list already,
|
||||
# but it generates the intersection of the queries
|
||||
# we want the union
|
||||
query = OverpassQueryBuilder(
|
||||
area = bbox,
|
||||
element_types = element_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
@@ -295,7 +304,63 @@ class LandmarkManager:
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
'''
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
- Scores are assigned to landmarks based on their attributes and surrounding elements.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = []
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
# self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
element_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = OverpassQueryBuilder(
|
||||
area = bbox,
|
||||
element_types = element_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = send_overpass_query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
return_list = parse_result(result, landmarktype)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
|
Reference in New Issue
Block a user