working cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m19s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 7m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m19s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 7m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
This commit is contained in:
parent
c668158341
commit
ca40de82dd
1
backend/.gitignore
vendored
1
backend/.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
# osm-cache and wikidata cache
|
||||
cache_XML/
|
||||
cache/
|
||||
apicache/
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
133
backend/src/overpass/caching_strategy.py
Normal file
133
backend/src/overpass/caching_strategy.py
Normal file
@ -0,0 +1,133 @@
|
||||
import os
|
||||
import xml.etree.ElementTree as ET
|
||||
import hashlib
|
||||
import ujson
|
||||
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
|
||||
|
||||
def get_cache_key(query: str) -> str:
|
||||
"""
|
||||
Generate a unique cache key for the query using a hash function.
|
||||
This ensures that queries with different parameters are cached separately.
|
||||
"""
|
||||
return hashlib.md5(query.encode('utf-8')).hexdigest()
|
||||
|
||||
|
||||
class CachingStrategyBase:
|
||||
def get(self, key):
|
||||
raise NotImplementedError('Subclass should implement get')
|
||||
|
||||
def set(self, key, data):
|
||||
raise NotImplementedError('Subclass should implement set')
|
||||
|
||||
def close(self):
|
||||
pass
|
||||
|
||||
|
||||
# For later use if xml does not suit well
|
||||
class JSONCache(CachingStrategyBase):
|
||||
def __init__(self, cache_dir=OSM_CACHE_DIR):
|
||||
# Add the class name as a suffix to the directory
|
||||
self._cache_dir = f'{cache_dir}_JSON'
|
||||
if not os.path.exists(self._cache_dir):
|
||||
os.makedirs(self._cache_dir)
|
||||
|
||||
def _filename(self, key):
|
||||
return os.path.join(self._cache_dir, f'{key}.json')
|
||||
|
||||
def get(self, key):
|
||||
filename = self._filename(key)
|
||||
if os.path.exists(filename):
|
||||
with open(filename, 'r') as file:
|
||||
return ujson.load(file)
|
||||
return None
|
||||
|
||||
def set(self, key, value):
|
||||
with open(self._filename(key), 'w') as file:
|
||||
ujson.dump(value, file)
|
||||
|
||||
|
||||
class XMLCache(CachingStrategyBase):
|
||||
def __init__(self, cache_dir=OSM_CACHE_DIR):
|
||||
# Add the class name as a suffix to the directory
|
||||
self._cache_dir = f'{cache_dir}_XML'
|
||||
if not os.path.exists(self._cache_dir):
|
||||
os.makedirs(self._cache_dir)
|
||||
|
||||
def _filename(self, key):
|
||||
return os.path.join(self._cache_dir, f'{key}.xml')
|
||||
|
||||
def get(self, key):
|
||||
"""Retrieve XML data from the cache and parse it as an ElementTree."""
|
||||
filename = self._filename(key)
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
# Parse and return the cached XML data
|
||||
tree = ET.parse(filename)
|
||||
return tree.getroot() # Return the root element of the parsed XML
|
||||
except ET.ParseError:
|
||||
print(f"Error parsing cached XML file: {filename}")
|
||||
return None
|
||||
return None
|
||||
|
||||
def set(self, key, value):
|
||||
"""Save the XML data as an ElementTree to the cache."""
|
||||
filename = self._filename(key)
|
||||
tree = ET.ElementTree(value) # value is expected to be an ElementTree root element
|
||||
try:
|
||||
# Write the XML data to a file
|
||||
with open(filename, 'wb') as file:
|
||||
tree.write(file, encoding='utf-8', xml_declaration=True)
|
||||
except IOError as e:
|
||||
print(f"Error writing to cache file: {filename} - {e}")
|
||||
|
||||
|
||||
class CachingStrategy:
|
||||
__strategy = XMLCache() # Default caching strategy
|
||||
|
||||
# Dictionary to map string identifiers to caching strategy classes
|
||||
__strategies = {
|
||||
'XML': XMLCache,
|
||||
'JSON': JSONCache,
|
||||
# Add more strategies here if needed
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def use(cls, strategy_name='XML', **kwargs):
|
||||
"""
|
||||
Set the caching strategy based on the strategy_name provided.
|
||||
|
||||
Args:
|
||||
strategy_name (str): The name of the caching strategy (e.g., 'XML').
|
||||
**kwargs: Additional keyword arguments to pass when initializing the strategy.
|
||||
"""
|
||||
# If a previous strategy exists, close it
|
||||
if cls.__strategy:
|
||||
cls.__strategy.close()
|
||||
|
||||
# Retrieve the strategy class based on the strategy name
|
||||
strategy_class = cls.__strategies.get(strategy_name)
|
||||
|
||||
if not strategy_class:
|
||||
raise ValueError(f"Unknown caching strategy: {strategy_name}")
|
||||
|
||||
# Instantiate the new strategy with the provided arguments
|
||||
cls.__strategy = strategy_class(**kwargs)
|
||||
return cls.__strategy
|
||||
|
||||
@classmethod
|
||||
def get(cls, key):
|
||||
"""Get data from the current strategy's cache."""
|
||||
if not cls.__strategy:
|
||||
raise RuntimeError("Caching strategy has not been set.")
|
||||
return cls.__strategy.get(key)
|
||||
|
||||
@classmethod
|
||||
def set(cls, key, value):
|
||||
"""Set data in the current strategy's cache."""
|
||||
if not cls.__strategy:
|
||||
raise RuntimeError("Caching strategy has not been set.")
|
||||
cls.__strategy.set(key, value)
|
||||
|
||||
|
114
backend/src/overpass/overpass.py
Normal file
114
backend/src/overpass/overpass.py
Normal file
@ -0,0 +1,114 @@
|
||||
from typing import Literal, List
|
||||
import urllib
|
||||
import json
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
from .caching_strategy import get_cache_key, CachingStrategy
|
||||
|
||||
|
||||
ElementTypes = List[Literal['way', 'node', 'relation']]
|
||||
|
||||
|
||||
def build_query(area: tuple, element_types: ElementTypes, selector: str,
|
||||
conditions=[], out='center'):
|
||||
"""
|
||||
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
|
||||
|
||||
Args:
|
||||
area (tuple): A tuple representing the geographical search area, typically in the format
|
||||
(radius, latitude, longitude). The first element is a string like "around:2000"
|
||||
specifying the search radius, and the second and third elements represent
|
||||
the latitude and longitude as floats or strings.
|
||||
element_types (list[str]): A list of OSM element types to search for. Must be one or more of
|
||||
'Way', 'Node', or 'Relation'.
|
||||
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
|
||||
conditions (list, optional): A list of conditions to apply as additional filters for the
|
||||
selected OSM elements. The conditions should be written in
|
||||
the Overpass QL format, and they are combined with '&&' if
|
||||
multiple are provided. Defaults to an empty list.
|
||||
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
|
||||
Defaults to 'center'.
|
||||
|
||||
Returns:
|
||||
str: The constructed Overpass QL query string.
|
||||
|
||||
Notes:
|
||||
- If no conditions are provided, the query will just use the `selector` to filter the OSM
|
||||
elements without additional constraints.
|
||||
- The search area must always formatted as "(radius, lat, lon)".
|
||||
"""
|
||||
if not isinstance(conditions, list) :
|
||||
conditions = [conditions]
|
||||
|
||||
query = '('
|
||||
|
||||
# Round the radius to nearest 50 and coordinates to generate less queries
|
||||
search_radius = round(area[0] / 50) * 50
|
||||
loc = tuple((round(area[1], 2), round(area[2], 2)))
|
||||
search_area = f"(around:{search_radius}, {str(loc[0])}, {str(loc[1])})"
|
||||
|
||||
if conditions :
|
||||
conditions = '(if: ' + ' && '.join(conditions) + ')'
|
||||
else :
|
||||
conditions = ''
|
||||
|
||||
for elem in element_types :
|
||||
query += elem + '[' + selector + ']' + conditions + search_area + ';'
|
||||
|
||||
query += ');' + f'out {out};'
|
||||
|
||||
return query
|
||||
|
||||
|
||||
def send_overpass_query(query: str, use_cache: bool = True) -> dict:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
|
||||
|
||||
Args:
|
||||
query (str): The Overpass QL query to be sent to the Overpass API.
|
||||
|
||||
Returns:
|
||||
dict: The parsed JSON response from the Overpass API, or None if the request fails.
|
||||
"""
|
||||
|
||||
# Generate a cache key for the current query
|
||||
cache_key = get_cache_key(query)
|
||||
|
||||
# Try to fetch the result from the cache
|
||||
cached_response = CachingStrategy.get(cache_key)
|
||||
if cached_response:
|
||||
print("Cache hit!")
|
||||
return cached_response
|
||||
|
||||
# Define the Overpass API endpoint
|
||||
overpass_url = "https://overpass-api.de/api/interpreter"
|
||||
|
||||
# Prepare the data to be sent as POST request, encoded as bytes
|
||||
data = urllib.parse.urlencode({'data': query}).encode('utf-8')
|
||||
|
||||
# Create a custom header with a User-Agent
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',
|
||||
}
|
||||
|
||||
try:
|
||||
# Create a Request object with the specified URL, data, and headers
|
||||
request = urllib.request.Request(overpass_url, data=data, headers=headers)
|
||||
|
||||
# Send the request and read the response
|
||||
with urllib.request.urlopen(request) as response:
|
||||
# Read and decode the response
|
||||
response_data = response.read().decode('utf-8')
|
||||
root = ET.fromstring(response_data)
|
||||
|
||||
# Cache the response data as an ElementTree root
|
||||
CachingStrategy.set(cache_key, root)
|
||||
|
||||
return root
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
print(f"Error connecting to Overpass API: {e}")
|
||||
return None
|
||||
except json.JSONDecodeError:
|
||||
print("Error decoding the JSON response from Overpass API.")
|
||||
return None
|
@ -11,7 +11,7 @@ def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
'''
|
||||
|
||||
def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
|
||||
@ -54,7 +54,7 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
assert len(landmarks) > 2 # check that there is something to visit
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
# assert 2==3
|
||||
'''
|
||||
|
||||
|
||||
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
@ -97,7 +97,7 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
# assert 2 == 3
|
||||
|
||||
'''
|
||||
|
||||
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
@ -336,7 +336,7 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
'''
|
||||
|
||||
|
||||
# def test_new_trip_single_prefs(client):
|
||||
# response = client.post(
|
||||
|
@ -1,12 +1,15 @@
|
||||
"""Module used to import data from OSM and arrange them in categories."""
|
||||
import logging
|
||||
import yaml
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_manager import ClusterManager
|
||||
from .overpass import OverpassQueryBuilder, send_overpass_query, parse_result
|
||||
from ..overpass.overpass import build_query, send_overpass_query
|
||||
from ..overpass.caching_strategy import CachingStrategy
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
@ -53,8 +56,7 @@ class LandmarkManager:
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
# self.overpass = Overpass()
|
||||
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
CachingStrategy.use('XML', cache_dir=OSM_CACHE_DIR)
|
||||
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
@ -84,35 +86,32 @@ class LandmarkManager:
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique, tuple of strings
|
||||
bbox = tuple((f"around:{min(2000, reachable_bbox_side/2)}", str(center_coordinates[0]), str(center_coordinates[1])))
|
||||
bbox = tuple((min(2000, reachable_bbox_side/2), center_coordinates[0], center_coordinates[1]))
|
||||
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
self.logger.debug('Fetching sightseeing landmarks...')
|
||||
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.debug('Fetching sightseeing clusters...')
|
||||
|
||||
# special pipeline for historic neighborhoods
|
||||
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||
historic_clusters = neighborhood_manager.generate_clusters()
|
||||
all_landmarks.update(historic_clusters)
|
||||
self.logger.debug('Sightseeing clusters done')
|
||||
# neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||
# historic_clusters = neighborhood_manager.generate_clusters()
|
||||
# all_landmarks.update(historic_clusters)
|
||||
# self.logger.debug('Sightseeing clusters done')
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
self.logger.debug('Fetching nature landmarks...')
|
||||
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
self.logger.debug('Fetching shopping landmarks...')
|
||||
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
|
||||
self.logger.debug('Fetching shopping clusters...')
|
||||
|
||||
# set time for all shopping activites :
|
||||
@ -121,10 +120,10 @@ class LandmarkManager:
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ClusterManager(bbox, 'shopping')
|
||||
shopping_clusters = shopping_manager.generate_clusters()
|
||||
all_landmarks.update(shopping_clusters)
|
||||
self.logger.debug('Shopping clusters done')
|
||||
# shopping_manager = ClusterManager(bbox, 'shopping')
|
||||
# shopping_clusters = shopping_manager.generate_clusters()
|
||||
# all_landmarks.update(shopping_clusters)
|
||||
# self.logger.debug('Shopping clusters done')
|
||||
|
||||
|
||||
|
||||
@ -133,8 +132,19 @@ class LandmarkManager:
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
def set_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
|
||||
def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
|
||||
"""
|
||||
Calculate and set the attractiveness score for a given landmark.
|
||||
|
||||
This method evaluates the landmark's attractiveness based on its properties
|
||||
(number of tags, presence of Wikipedia URL, image, website, and whether it's
|
||||
a place of worship) and adjusts the score using the user's preference level.
|
||||
|
||||
Args:
|
||||
landmark (Landmark): The landmark object to score.
|
||||
landmarktype (str): The type of the landmark (currently unused).
|
||||
preference_level (int): The user's preference level for this landmark type.
|
||||
"""
|
||||
score = landmark.n_tags**self.tag_exponent
|
||||
if landmark.wiki_url :
|
||||
score *= self.wikipedia_bonus
|
||||
@ -144,11 +154,13 @@ class LandmarkManager:
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.is_place_of_worship :
|
||||
score *= self.church_coeff
|
||||
if landmarktype == 'nature' :
|
||||
score *= self.nature_coeff
|
||||
|
||||
landmark.attractiveness = int(score * preference_level)
|
||||
landmark.attractiveness = int(score * preference_level * 2)
|
||||
|
||||
'''
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
@ -183,165 +195,7 @@ class LandmarkManager:
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = OverpassQueryBuilder(
|
||||
area = bbox,
|
||||
element_types = element_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name')
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# TODO: exclude these from the get go
|
||||
# handle unprecise and no-name locations
|
||||
if name is None or location[0] is None:
|
||||
if osm_type == 'node' and 'viewpoint' in elem.tags().values():
|
||||
name = 'Viewpoint'
|
||||
name_en = 'Viewpoint'
|
||||
location = (elem.lat(), elem.lon())
|
||||
else :
|
||||
continue
|
||||
|
||||
# skip if part of another building
|
||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||
continue
|
||||
|
||||
elem_type = landmarktype # Add the landmark type as 'sightseeing,
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
score = n_tags**self.tag_exponent # Add score
|
||||
duration = 5 # Set base duration to 5 minutes
|
||||
# skip = False # Set skipping parameter to false
|
||||
tag_values = set(elem.tags().values()) # Store tag values
|
||||
|
||||
|
||||
# Retrieve image, name and website :
|
||||
image_url = elem.tag('image')
|
||||
website_url = elem.tag('website')
|
||||
if website_url is None :
|
||||
website_url = elem.tag('wikipedia')
|
||||
name_en = elem.tag('name:en')
|
||||
|
||||
if elem_type != "nature" and elem.tag('leisure') == "park":
|
||||
elem_type = "nature"
|
||||
|
||||
if elem.tag('wikipedia') is not None :
|
||||
score += self.wikipedia_bonus
|
||||
|
||||
# Skip element if it is an administrative boundary or a disused thing or it is an appartement and useless amenities
|
||||
if elem.tag('boundary') is not None or elem.tag('disused') is not None:
|
||||
continue
|
||||
if 'apartments' in elem.tags().values():
|
||||
continue
|
||||
if elem.tag('historic') is not None and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']:
|
||||
continue
|
||||
|
||||
# Adjust scoring, browse through tag keys using wildcards
|
||||
for tag_key in elem.tags().keys():
|
||||
if "pay" in tag_key:
|
||||
# payment options are misleading and should not count for the scoring.
|
||||
score += self.pay_bonus
|
||||
|
||||
if "building:" in tag_key:
|
||||
# do not count the building description as being particularly useful
|
||||
n_tags -= 1
|
||||
|
||||
# if landmarktype != "shopping":
|
||||
# if "shop" in tag_key:
|
||||
# skip = True
|
||||
# break
|
||||
# if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
||||
# skip = True
|
||||
# break
|
||||
|
||||
# if skip:
|
||||
# continue
|
||||
|
||||
score = score_function(score)
|
||||
|
||||
if "place_of_worship" in tag_values :
|
||||
if 'cathedral' in tag_values :
|
||||
duration = 10
|
||||
else :
|
||||
score *= self.church_coeff
|
||||
|
||||
elif 'viewpoint' in tag_values :
|
||||
# viewpoints must count more
|
||||
score = score * self.viewpoint_bonus
|
||||
|
||||
elif "museum" in tag_values or "aquarium" in tag_values or "planetarium" in tag_values:
|
||||
duration = 60
|
||||
|
||||
# finally create our own landmark object
|
||||
landmark = Landmark(
|
||||
name = name,
|
||||
type = elem_type,
|
||||
location = location,
|
||||
osm_type = osm_type,
|
||||
osm_id = osm_id,
|
||||
attractiveness = int(score),
|
||||
must_do = False,
|
||||
n_tags = int(n_tags),
|
||||
duration = int(duration),
|
||||
name_en = name_en,
|
||||
image_url = image_url,
|
||||
website_url = website_url
|
||||
)
|
||||
return_list.append(landmark)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
'''
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
- Scores are assigned to landmarks based on their attributes and surrounding elements.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = []
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
# self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
element_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = OverpassQueryBuilder(
|
||||
query = build_query(
|
||||
area = bbox,
|
||||
element_types = element_types,
|
||||
selector = sel,
|
||||
@ -356,12 +210,110 @@ class LandmarkManager:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
return_list = parse_result(result, landmarktype)
|
||||
return_list += self.parse_overpass_result(result, landmarktype, preference_level)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
def parse_overpass_result(self, root: ET.Element, landmarktype, preference_level) -> list[Landmark]:
|
||||
"""
|
||||
Parse the Overpass API result and extract landmarks.
|
||||
|
||||
This method processes the XML root element returned by the Overpass API and
|
||||
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
|
||||
relevant information such as name, coordinates, and tags, and converts them
|
||||
into Landmark objects.
|
||||
|
||||
Args:
|
||||
root (ET.Element): The root element of the XML response from Overpass API.
|
||||
elem_type (str): The type of landmark (e.g., node, way, relation).
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects extracted from the XML data.
|
||||
"""
|
||||
if root is None :
|
||||
return []
|
||||
|
||||
landmarks = []
|
||||
for osm_type in ['node', 'way', 'relation'] :
|
||||
for elem in root.findall(osm_type):
|
||||
# self.logger.debug('new landmark')
|
||||
|
||||
# Extract basic info from the landmark.
|
||||
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
|
||||
center = elem.find('center')
|
||||
tags = elem.findall('tag')
|
||||
|
||||
# Extract the center latitude and longitude if available.
|
||||
if name is not None and center is not None:
|
||||
lat = float(center.get('lat'))
|
||||
lon = float(center.get('lon'))
|
||||
coords = tuple((lat, lon))
|
||||
else :
|
||||
continue
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=landmarktype,
|
||||
location=coords,
|
||||
osm_id=elem.get('id'),
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for tag in tags:
|
||||
key = tag.get('k')
|
||||
value = tag.get('v')
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and landmarktype != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
else :
|
||||
landmark.duration = 5
|
||||
|
||||
else:
|
||||
self.set_landmark_score(landmark, landmarktype, preference_level)
|
||||
landmarks.append(landmark)
|
||||
# self.logger.debug('new landmark added')
|
||||
continue
|
||||
|
||||
return landmarks
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
@ -1,199 +0,0 @@
|
||||
from typing import Literal, List
|
||||
import urllib
|
||||
import json
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
|
||||
ElementTypes = List[Literal['way', 'node', 'relation']]
|
||||
|
||||
|
||||
|
||||
def OverpassQueryBuilder(area: tuple, element_types: ElementTypes, selector: str,
|
||||
conditions=[], out='center'):
|
||||
"""
|
||||
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
|
||||
|
||||
Args:
|
||||
area (tuple): A tuple representing the geographical search area, typically in the format
|
||||
(radius, latitude, longitude). The first element is a string like "around:2000"
|
||||
specifying the search radius, and the second and third elements represent
|
||||
the latitude and longitude as floats or strings.
|
||||
element_types (list[str]): A list of OSM element types to search for. Must be one or more of
|
||||
'Way', 'Node', or 'Relation'.
|
||||
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
|
||||
conditions (list, optional): A list of conditions to apply as additional filters for the
|
||||
selected OSM elements. The conditions should be written in
|
||||
the Overpass QL format, and they are combined with '&&' if
|
||||
multiple are provided. Defaults to an empty list.
|
||||
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
|
||||
Defaults to 'center'.
|
||||
|
||||
Returns:
|
||||
str: The constructed Overpass QL query string.
|
||||
|
||||
Notes:
|
||||
- If no conditions are provided, the query will just use the `selector` to filter the OSM
|
||||
elements without additional constraints.
|
||||
- The search area must always formatted as "(radius, lat, lon)".
|
||||
"""
|
||||
if not isinstance(conditions, list) :
|
||||
conditions = [conditions]
|
||||
|
||||
query = '('
|
||||
search_area = f"({', '.join(map(str, area))})"
|
||||
|
||||
if conditions :
|
||||
conditions = '(if: ' + ' && '.join(conditions) + ')'
|
||||
else :
|
||||
conditions = ''
|
||||
|
||||
for elem in element_types :
|
||||
query += elem + '[' + selector + ']' + conditions + search_area + ';'
|
||||
|
||||
query += ');' + f'out {out};'
|
||||
|
||||
return query
|
||||
|
||||
|
||||
def send_overpass_query(query: str) -> dict:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
|
||||
|
||||
Args:
|
||||
query (str): The Overpass QL query to be sent to the Overpass API.
|
||||
|
||||
Returns:
|
||||
dict: The parsed JSON response from the Overpass API, or None if the request fails.
|
||||
"""
|
||||
|
||||
# Define the Overpass API endpoint
|
||||
overpass_url = "https://overpass-api.de/api/interpreter"
|
||||
|
||||
# Prepare the data to be sent as POST request, encoded as bytes
|
||||
data = urllib.parse.urlencode({'data': query}).encode('utf-8')
|
||||
|
||||
# Create a custom header with a User-Agent
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',
|
||||
}
|
||||
|
||||
try:
|
||||
# Create a Request object with the specified URL, data, and headers
|
||||
request = urllib.request.Request(overpass_url, data=data, headers=headers)
|
||||
|
||||
# Send the request and read the response
|
||||
with urllib.request.urlopen(request) as response:
|
||||
# Read and decode the response
|
||||
response_data = response.read().decode('utf-8')
|
||||
return ET.fromstring(response_data)
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
print(f"Error connecting to Overpass API: {e}")
|
||||
return None
|
||||
except json.JSONDecodeError:
|
||||
print("Error decoding the JSON response from Overpass API.")
|
||||
return None
|
||||
|
||||
|
||||
def parse_result(root: ET.Element, elem_type) -> List[Landmark]:
|
||||
|
||||
landmarks = []
|
||||
if root is None :
|
||||
return landmarks
|
||||
|
||||
for osm_type in ['node', 'way', 'relation'] :
|
||||
for elem in root.findall(osm_type):
|
||||
|
||||
# Extract basic info from the landmark.
|
||||
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
|
||||
center = elem.find('center')
|
||||
tags = elem.findall('tag')
|
||||
|
||||
# Extract the center latitude and longitude if available.
|
||||
if name is not None and center is not None:
|
||||
lat = float(center.get('lat'))
|
||||
lon = float(center.get('lon'))
|
||||
coords = tuple((lat, lon))
|
||||
else :
|
||||
continue
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=elem_type,
|
||||
location=coords,
|
||||
osm_id=elem.get('id'),
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for tag in tags:
|
||||
key = tag.get('k')
|
||||
value = tag.get('v')
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and elem_type != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
else :
|
||||
landmark.duration = 5
|
||||
|
||||
else:
|
||||
set_score(landmark, elem_type)
|
||||
landmarks.append(landmark)
|
||||
continue
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
|
||||
def set_score(landmark: Landmark, landmarktype: str) :
|
||||
|
||||
score = landmark.n_tags**1.15
|
||||
if landmark.wiki_url :
|
||||
score *= 1.1
|
||||
if landmark.image_url :
|
||||
score *= 1.1
|
||||
if landmark.website_url :
|
||||
score *= 1.1
|
||||
if landmark.is_place_of_worship :
|
||||
score *= 0.65
|
||||
if landmark.is_viewpoint :
|
||||
# print(f"{landmark.name}: n_tags={landmark.n_tags} and score={score*3*1.35*10}")
|
||||
score *= 3
|
||||
if landmarktype == 'nature' :
|
||||
score *= 1.35
|
||||
|
||||
landmark.attractiveness = int(score * 10)
|
Loading…
x
Reference in New Issue
Block a user