parent
3f1c16b575
commit
e600f40c1a
@ -10,11 +10,44 @@ class landmark :
|
||||
self.attractiveness = attractiveness
|
||||
self.loc = loc
|
||||
|
||||
|
||||
|
||||
|
||||
def untangle2(resx: list) :
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
n_edges = resx.sum() # number of edges
|
||||
|
||||
order = []
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
|
||||
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
indx = nonzero_tup[0].tolist()
|
||||
indy = nonzero_tup[1].tolist()
|
||||
|
||||
vert = (indx[0], indy[0])
|
||||
|
||||
order.append(vert[0])
|
||||
order.append(vert[1])
|
||||
|
||||
while len(order) < n_edges + 1 :
|
||||
ind = indx.index(vert[1])
|
||||
|
||||
vert = (indx[ind], indy[ind])
|
||||
|
||||
order.append(vert[1])
|
||||
|
||||
return order
|
||||
|
||||
|
||||
|
||||
|
||||
# Convert the result (edges from j to k like d_25 = edge between vertex 2 and vertex 5) into the list of indices corresponding to the landmarks
|
||||
def untangle(res: list) :
|
||||
N = len(res) # length of res
|
||||
def untangle(resx: list) :
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
n_landmarks = res.sum() # number of visited landmarks
|
||||
n_landmarks = resx.sum() # number of edges
|
||||
visit_order = []
|
||||
cnt = 0
|
||||
|
||||
@ -40,47 +73,67 @@ def untangle(res: list) :
|
||||
return visit_order
|
||||
|
||||
# Just to print the result
|
||||
def print_res(res: list, P) :
|
||||
def print_res(res: list, landmarks: list, P) :
|
||||
X = abs(res.x)
|
||||
order = untangle(X)
|
||||
|
||||
N = int(np.sqrt(len(X)))
|
||||
for i in range(N):
|
||||
print(X[i*N:i*N+N])
|
||||
|
||||
order = untangle2(X)
|
||||
|
||||
order_ideal = [0, 0, 0, 0, 0, 0, 1, 0]
|
||||
|
||||
# print("Optimal value:", -res.fun) # Minimization, so we negate to get the maximum
|
||||
# print("Optimal point:", res.x)
|
||||
# N = int(np.sqrt(len(X)))
|
||||
# for i in range(N):
|
||||
# print(X[i*N:i*N+N])
|
||||
# print(order)
|
||||
|
||||
#for i,x in enumerate(X) : X[i] = round(x,0)
|
||||
|
||||
#print(order)
|
||||
|
||||
if (X.sum()+1)**2 == len(X) :
|
||||
print('\nAll landmarks can be visited within max_steps, the following order is most likely not the fastest')
|
||||
else :
|
||||
print('Could not visit all the landmarks, the following order could be the fastest but not sure')
|
||||
print("Order of visit :")
|
||||
for i, elem in enumerate(landmarks) :
|
||||
if i in order : print('- ' + elem.name)
|
||||
for idx in order :
|
||||
print('- ' + landmarks[idx].name)
|
||||
|
||||
steps = path_length(P, abs(res.x))
|
||||
print("\nSteps walked : " + str(steps))
|
||||
|
||||
# Constraint to use only the upper triangular indices for travel
|
||||
def break_sym(landmarks, A_eq, b_eq):
|
||||
# Constraint to not have d14 and d41 simultaneously
|
||||
def break_sym(landmarks, A_ub, b_ub):
|
||||
L = len(landmarks)
|
||||
l = [0]*L*L
|
||||
for i in range(L) :
|
||||
for j in range(L) :
|
||||
if i >= j :
|
||||
l[j+i*L] = 1
|
||||
upper_ind = np.triu_indices(L,0,L)
|
||||
|
||||
A_eq = np.vstack((A_eq,l))
|
||||
b_eq.append(0)
|
||||
up_ind_x = upper_ind[0]
|
||||
up_ind_y = upper_ind[1]
|
||||
|
||||
return A_eq, b_eq
|
||||
for i, _ in enumerate(up_ind_x) :
|
||||
l = [0]*L*L
|
||||
if up_ind_x[i] != up_ind_y[i] :
|
||||
l[up_ind_x[i]*L + up_ind_y[i]] = 1
|
||||
l[up_ind_y[i]*L + up_ind_x[i]] = 1
|
||||
|
||||
A_ub = np.vstack((A_ub,l))
|
||||
b_ub.append(1)
|
||||
|
||||
"""for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")"""
|
||||
|
||||
return A_ub, b_ub
|
||||
|
||||
# Constraint to respect max number of travels
|
||||
def respect_number(landmarks, A_ub, b_ub):
|
||||
h = []
|
||||
for i in range(len(landmarks)) : h.append([1]*len(landmarks))
|
||||
T = block_diag(*h)
|
||||
"""for l in T :
|
||||
for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")"""
|
||||
return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks)
|
||||
|
||||
# Constraint to tie the problem together and have a connected path
|
||||
@ -99,6 +152,10 @@ def respect_order(landmarks: list, A_eq, b_eq):
|
||||
A_eq = np.vstack((A_eq,l))
|
||||
b_eq.append(0)
|
||||
|
||||
for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")
|
||||
|
||||
return A_eq, b_eq
|
||||
|
||||
# Compute manhattan distance between 2 locations
|
||||
@ -111,12 +168,19 @@ def manhattan_distance(loc1: tuple, loc2: tuple):
|
||||
def init_eq_not_stay(landmarks):
|
||||
L = len(landmarks)
|
||||
l = [0]*L*L
|
||||
|
||||
|
||||
for i in range(L) :
|
||||
for j in range(L) :
|
||||
if j == i :
|
||||
l[j + i*L] = 1
|
||||
l[L-1] = 1 # cannot skip from start to finish
|
||||
#A_eq = np.array([np.array(xi) for xi in A_eq]) # Must convert A_eq into an np array
|
||||
l = np.array(np.array(l))
|
||||
|
||||
"""for i in range(7):
|
||||
print(l[i*7:i*7+7])"""
|
||||
|
||||
return [l], [0]
|
||||
|
||||
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
|
||||
@ -135,24 +199,37 @@ def init_ub_dist(landmarks: list, max_steps: int):
|
||||
c = c*len(landmarks)
|
||||
A_ub = []
|
||||
for line in A :
|
||||
#print(line)
|
||||
A_ub += line
|
||||
return c, A_ub, [max_steps]
|
||||
|
||||
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
|
||||
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
|
||||
L = len(landmarks)
|
||||
H = 0 # sort of heuristic to get an idea of the number of steps needed
|
||||
for i in landmarks :
|
||||
if i.name == "départ" : elem_prev = i # list of all matches
|
||||
for i, elem in enumerate(landmarks) :
|
||||
if elem.attractiveness == -1 :
|
||||
l = [0]*L*L
|
||||
if elem.name != "arrivée" :
|
||||
for j in range(L) :
|
||||
l[j +i*L] = 1
|
||||
|
||||
else : # This ensures we go to goal
|
||||
for k in range(L-1) :
|
||||
l[k*L+L-1] = 1
|
||||
l[k*L+L-1] = 1
|
||||
|
||||
H += manhattan_distance(elem.loc, elem_prev.loc)
|
||||
elem_prev = elem
|
||||
|
||||
"""for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")"""
|
||||
|
||||
A_eq = np.vstack((A_eq,l))
|
||||
b_eq.append(1)
|
||||
return A_eq, b_eq
|
||||
return A_eq, b_eq, H
|
||||
|
||||
# Computes the path length given path matrix (dist_table) and a result
|
||||
def path_length(P: list, resx: list) :
|
||||
@ -161,27 +238,30 @@ def path_length(P: list, resx: list) :
|
||||
# Initialize all landmarks (+ start and goal). Order matters here
|
||||
landmarks = []
|
||||
landmarks.append(landmark("départ", -1, (0, 0)))
|
||||
landmarks.append(landmark("concorde", -1, (5,5)))
|
||||
landmarks.append(landmark("tour eiffel", 99, (1,1))) # PUT IN JSON
|
||||
landmarks.append(landmark("arc de triomphe", 99, (2,3)))
|
||||
landmarks.append(landmark("louvre", 70, (4,2)))
|
||||
landmarks.append(landmark("montmartre", 20, (0,2)))
|
||||
landmarks.append(landmark("tour eiffel", 99, (0,2))) # PUT IN JSON
|
||||
landmarks.append(landmark("arc de triomphe", 99, (0,4)))
|
||||
landmarks.append(landmark("louvre", 99, (0,6)))
|
||||
landmarks.append(landmark("montmartre", 99, (0,10)))
|
||||
landmarks.append(landmark("concorde", 99, (0,8)))
|
||||
landmarks.append(landmark("arrivée", -1, (0, 0)))
|
||||
|
||||
|
||||
|
||||
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
|
||||
max_steps = 25
|
||||
max_steps = 16
|
||||
|
||||
# SET CONSTRAINTS FOR INEQUALITY
|
||||
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
|
||||
P = A_ub # store the paths for later. Needed to compute path length
|
||||
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub) # Respect max number of visits.
|
||||
|
||||
# TODO : Problems with circular symmetry
|
||||
A_ub, b_ub = break_sym(landmarks, A_ub, b_ub) # break the symmetry. Only use the upper diagonal values
|
||||
|
||||
# SET CONSTRAINTS FOR EQUALITY
|
||||
A_eq, b_eq = init_eq_not_stay(landmarks) # Force solution not to stay in same place
|
||||
A_eq, b_eq = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||
A_eq, b_eq = break_sym(landmarks, A_eq, b_eq) # break the symmetry. Only use the upper diagonal values
|
||||
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||
|
||||
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
|
||||
|
||||
# Bounds for variables (x can only be 0 or 1)
|
||||
@ -192,10 +272,17 @@ res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds,
|
||||
|
||||
# Raise error if no solution is found
|
||||
if not res.success :
|
||||
raise ValueError("No solution has been found, please adapt your max steps")
|
||||
print(f"No solution has been found within given timeframe.\nMinimum steps to visit all must_see is : {H}")
|
||||
# Override the max_steps using the heuristic
|
||||
for i, val in enumerate(b_ub) :
|
||||
if val == max_steps : b_ub[i] = H
|
||||
|
||||
# Solve problem again :
|
||||
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
|
||||
|
||||
|
||||
# Print result
|
||||
print_res(res, P)
|
||||
print_res(res, landmarks, P)
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user