massive numpy optimization and more tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 6m58s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 6m58s
This commit is contained in:
@@ -12,6 +12,10 @@ from ..utils.get_time_separation import get_distance
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
|
||||
|
||||
|
||||
class Cluster(BaseModel):
|
||||
""""
|
||||
A class representing an interesting area for shopping or sightseeing.
|
||||
@@ -102,7 +106,6 @@ class ClusterManager:
|
||||
points.append(coords)
|
||||
|
||||
self.all_points = np.array(points)
|
||||
self.valid = True
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
|
||||
@@ -114,12 +117,17 @@ class ClusterManager:
|
||||
|
||||
labels = dbscan.fit_predict(self.all_points)
|
||||
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
# Check that there are at least 2 different clusters
|
||||
if len(set(labels)) > 2 :
|
||||
self.logger.debug(f"Found {len(set(labels))} different clusters.")
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
|
||||
self.valid = True
|
||||
|
||||
# filter the clusters to keep only the largest ones
|
||||
self.filter_clusters()
|
||||
else :
|
||||
self.valid = False
|
||||
|
||||
|
||||
def generate_clusters(self) -> list[Landmark]:
|
||||
|
||||
Reference in New Issue
Block a user