switch to osmnx
This commit is contained in:
parent
49ce8527a3
commit
f9c86261cb
@ -12,5 +12,6 @@ EXPOSE 8000
|
|||||||
|
|
||||||
# Set environment variables used by the deployment. These can be overridden by the user using this image.
|
# Set environment variables used by the deployment. These can be overridden by the user using this image.
|
||||||
ENV NUM_WORKERS=1
|
ENV NUM_WORKERS=1
|
||||||
|
ENV OSM_CACHE_DIR=/cache
|
||||||
|
|
||||||
CMD ["pipenv", "run", "fastapi", "run", "src/main.py", '--port 8000', '--workers $NUM_WORKERS']
|
CMD ["pipenv", "run", "fastapi", "run", "src/main.py", '--port 8000', '--workers $NUM_WORKERS']
|
||||||
|
@ -7,8 +7,9 @@ name = "pypi"
|
|||||||
numpy = "*"
|
numpy = "*"
|
||||||
scipy = "*"
|
scipy = "*"
|
||||||
fastapi = "*"
|
fastapi = "*"
|
||||||
osmpythontools = "*"
|
|
||||||
pydantic = "*"
|
pydantic = "*"
|
||||||
shapely = "*"
|
shapely = "*"
|
||||||
|
osmnx = "*"
|
||||||
|
networkx = "*"
|
||||||
|
|
||||||
[dev-packages]
|
[dev-packages]
|
||||||
|
943
backend/Pipfile.lock
generated
943
backend/Pipfile.lock
generated
File diff suppressed because it is too large
Load Diff
@ -1,11 +0,0 @@
|
|||||||
'leisure'='park'
|
|
||||||
geological
|
|
||||||
'natural'='geyser'
|
|
||||||
'natural'='hot_spring'
|
|
||||||
'natural'='arch'
|
|
||||||
'natural'='volcano'
|
|
||||||
'natural'='stone'
|
|
||||||
'tourism'='alpine_hut'
|
|
||||||
'tourism'='viewpoint'
|
|
||||||
'tourism'='zoo'
|
|
||||||
'waterway'='waterfall'
|
|
@ -1,2 +0,0 @@
|
|||||||
'shop'='department_store'
|
|
||||||
'shop'='mall'
|
|
@ -1,8 +0,0 @@
|
|||||||
'tourism'='museum'
|
|
||||||
'tourism'='attraction'
|
|
||||||
'tourism'='gallery'
|
|
||||||
historic
|
|
||||||
'amenity'='planetarium'
|
|
||||||
'amenity'='place_of_worship'
|
|
||||||
'amenity'='fountain'
|
|
||||||
'water'='reflecting_pool'
|
|
@ -1,9 +1,12 @@
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import os
|
||||||
|
|
||||||
PARAMETERS_DIR = Path('src/parameters')
|
PARAMETERS_DIR = Path('src/parameters')
|
||||||
AMENITY_SELECTORS_PATH = PARAMETERS_DIR / 'amenity_selectors.yaml'
|
AMENITY_SELECTORS_PATH = PARAMETERS_DIR / 'amenity_selectors.yaml'
|
||||||
LANDMARK_PARAMETERS_PATH = PARAMETERS_DIR / 'landmark_parameters.yaml'
|
LANDMARK_PARAMETERS_PATH = PARAMETERS_DIR / 'landmark_parameters.yaml'
|
||||||
OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
|
OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
|
||||||
|
|
||||||
OSM_CACHE_DIR = Path('cache')
|
|
||||||
|
|
||||||
|
cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
|
||||||
|
OSM_CACHE_DIR = Path(cache_dir_string)
|
||||||
|
@ -1,150 +1,71 @@
|
|||||||
import math as m
|
|
||||||
import json, os
|
|
||||||
import yaml
|
import yaml
|
||||||
|
import os
|
||||||
|
import osmnx as ox
|
||||||
|
from shapely.geometry import Point, Polygon, LineString, MultiPolygon
|
||||||
|
|
||||||
from typing import List, Tuple, Optional
|
|
||||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
|
||||||
|
|
||||||
import constants
|
|
||||||
from structs.landmarks import Landmark, LandmarkType
|
from structs.landmarks import Landmark, LandmarkType
|
||||||
from structs.preferences import Preferences, Preference
|
from structs.preferences import Preferences, Preference
|
||||||
|
import constants
|
||||||
|
|
||||||
|
|
||||||
SIGHTSEEING = LandmarkType(landmark_type='sightseeing')
|
SIGHTSEEING = LandmarkType(landmark_type='sightseeing')
|
||||||
NATURE = LandmarkType(landmark_type='nature')
|
NATURE = LandmarkType(landmark_type='nature')
|
||||||
SHOPPING = LandmarkType(landmark_type='shopping')
|
SHOPPING = LandmarkType(landmark_type='shopping')
|
||||||
|
|
||||||
|
ox.config(cache_folder=constants.OSM_CACHE_DIR)
|
||||||
|
|
||||||
# Include the json here
|
# Include the json here
|
||||||
# Create a list of all things to visit given some preferences and a city. Ready for the optimizer
|
# Create a list of all things to visit given some preferences and a city. Ready for the optimizer
|
||||||
def generate_landmarks(preferences: Preferences, coordinates: Tuple[float, float]) :
|
def generate_landmarks(preferences: Preferences, center_coordinates: tuple[float, float]) :
|
||||||
with constants.AMENITY_SELECTORS_PATH.open('r') as f:
|
with constants.AMENITY_SELECTORS_PATH.open('r') as f:
|
||||||
amenity_selectors = yaml.safe_load(f)
|
amenity_selectors = yaml.safe_load(f)
|
||||||
|
|
||||||
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
|
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||||
# even though we don't use the parameters here, we already load them to avoid unnecessary io operations
|
# even though we don't use the parameters here, we already load them to avoid unnecessary io operations
|
||||||
parameters = yaml.safe_load(f)
|
parameters = yaml.safe_load(f)
|
||||||
|
max_distance = parameters['city_bbox_side']
|
||||||
L = []
|
L = []
|
||||||
|
|
||||||
# List for sightseeing
|
# List for sightseeing
|
||||||
if preferences.sightseeing.score != 0 :
|
if preferences.sightseeing.score != 0:
|
||||||
L1 = get_landmarks(amenity_selectors['sightseeing'], SIGHTSEEING, coordinates, parameters)
|
score_func = lambda loc, n_tags: int((count_elements_within_radius(loc, parameters['radius_close_to']) + n_tags * parameters['tag_coeff']) * parameters['church_coeff'])
|
||||||
|
L1 = get_landmarks(amenity_selectors['sightseeing'], SIGHTSEEING, center_coordinates, max_distance, score_func)
|
||||||
correct_score(L1, preferences.sightseeing)
|
correct_score(L1, preferences.sightseeing)
|
||||||
L += L1
|
L += L1
|
||||||
|
|
||||||
# List for nature
|
# List for nature
|
||||||
if preferences.nature.score != 0 :
|
if preferences.nature.score != 0:
|
||||||
L2 = get_landmarks(amenity_selectors['nature'], NATURE, coordinates, parameters)
|
score_func = lambda loc, n_tags: int((count_elements_within_radius(loc, parameters['radius_close_to']) + n_tags * parameters['tag_coeff']) * parameters['park_coeff'])
|
||||||
|
L2 = get_landmarks(amenity_selectors['nature'], NATURE, center_coordinates, max_distance, score_func)
|
||||||
correct_score(L2, preferences.nature)
|
correct_score(L2, preferences.nature)
|
||||||
L += L2
|
L += L2
|
||||||
|
|
||||||
# List for shopping
|
# List for shopping
|
||||||
if preferences.shopping.score != 0 :
|
if preferences.shopping.score != 0:
|
||||||
L3 = get_landmarks(amenity_selectors['shopping'], SHOPPING, coordinates, parameters)
|
score_func = lambda loc, n_tags: count_elements_within_radius(loc, parameters['radius_close_to']) + n_tags * parameters['tag_coeff']
|
||||||
|
L3 = get_landmarks(amenity_selectors['shopping'], SHOPPING, center_coordinates, max_distance, score_func)
|
||||||
correct_score(L3, preferences.shopping)
|
correct_score(L3, preferences.shopping)
|
||||||
L += L3
|
L += L3
|
||||||
|
|
||||||
L = remove_duplicates(L)
|
# remove duplicates
|
||||||
|
L = list(set(L))
|
||||||
return L, take_most_important(L, parameters)
|
print(len(L))
|
||||||
|
L_constrained = take_most_important(L, parameters['N_important'])
|
||||||
|
print(len(L_constrained))
|
||||||
|
return L, L_constrained
|
||||||
|
|
||||||
|
|
||||||
"""def generate_landmarks(preferences: Preferences, city_country: str = None, coordinates: Tuple[float, float] = None) -> Tuple[List[Landmark], List[Landmark]] :
|
|
||||||
|
|
||||||
l_sights, l_nature, l_shop = get_amenities()
|
|
||||||
L = []
|
|
||||||
|
|
||||||
# List for sightseeing
|
|
||||||
if preferences.sightseeing.score != 0 :
|
|
||||||
L1 = get_landmarks(l_sights, SIGHTSEEING, city_country=city_country, coordinates=coordinates)
|
|
||||||
correct_score(L1, preferences.sightseeing)
|
|
||||||
L += L1
|
|
||||||
|
|
||||||
# List for nature
|
|
||||||
if preferences.nature.score != 0 :
|
|
||||||
L2 = get_landmarks(l_nature, NATURE, city_country=city_country, coordinates=coordinates)
|
|
||||||
correct_score(L2, preferences.nature)
|
|
||||||
L += L2
|
|
||||||
|
|
||||||
# List for shopping
|
|
||||||
if preferences.shopping.score != 0 :
|
|
||||||
L3 = get_landmarks(l_shop, SHOPPING, city_country=city_country, coordinates=coordinates)
|
|
||||||
correct_score(L3, preferences.shopping)
|
|
||||||
L += L3
|
|
||||||
|
|
||||||
return remove_duplicates(L), take_most_important(L)
|
|
||||||
"""
|
|
||||||
# Helper function to gather the amenities list
|
|
||||||
# Take the most important landmarks from the list
|
# Take the most important landmarks from the list
|
||||||
def take_most_important(L: List[Landmark], parameters: dict, N: int = 0) -> List[Landmark]:
|
def take_most_important(landmarks: list[Landmark], n_max: int) -> list[Landmark]:
|
||||||
L_copy = []
|
|
||||||
L_clean = []
|
|
||||||
scores = [0]*len(L)
|
|
||||||
names = []
|
|
||||||
name_id = {}
|
|
||||||
|
|
||||||
for i, elem in enumerate(L) :
|
landmarks_sorted = sorted(landmarks, key=lambda x: x.attractiveness, reverse=True)
|
||||||
if elem.name not in names :
|
return landmarks_sorted[:n_max]
|
||||||
names.append(elem.name)
|
|
||||||
name_id[elem.name] = [i]
|
|
||||||
L_copy.append(elem)
|
|
||||||
else :
|
|
||||||
name_id[elem.name] += [i]
|
|
||||||
scores = []
|
|
||||||
for j in name_id[elem.name] :
|
|
||||||
scores.append(L[j].attractiveness)
|
|
||||||
best_id = max(range(len(scores)), key=scores.__getitem__)
|
|
||||||
t = name_id[elem.name][best_id]
|
|
||||||
if t == i :
|
|
||||||
for old in L_copy :
|
|
||||||
if old.name == elem.name :
|
|
||||||
old.attractiveness = L[t].attractiveness
|
|
||||||
|
|
||||||
scores = [0]*len(L_copy)
|
|
||||||
for i, elem in enumerate(L_copy) :
|
|
||||||
scores[i] = elem.attractiveness
|
|
||||||
|
|
||||||
|
|
||||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(parameters['N_important']-N):]
|
|
||||||
|
|
||||||
for i, elem in enumerate(L_copy) :
|
|
||||||
if i in res :
|
|
||||||
L_clean.append(elem)
|
|
||||||
|
|
||||||
return L_clean
|
|
||||||
|
|
||||||
|
|
||||||
# Remove duplicate elements and elements with low score
|
|
||||||
def remove_duplicates(L: List[Landmark]) -> List[Landmark] :
|
|
||||||
"""
|
|
||||||
Removes duplicate landmarks based on their names from the given list.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
L (List[Landmark]): A list of Landmark objects.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List[Landmark]: A list of unique Landmark objects based on their names.
|
|
||||||
"""
|
|
||||||
|
|
||||||
L_clean = []
|
|
||||||
names = []
|
|
||||||
|
|
||||||
for landmark in L :
|
|
||||||
if landmark.name in names:
|
|
||||||
continue
|
|
||||||
|
|
||||||
|
|
||||||
else :
|
|
||||||
names.append(landmark.name)
|
|
||||||
L_clean.append(landmark)
|
|
||||||
|
|
||||||
return L_clean
|
|
||||||
|
|
||||||
|
|
||||||
# Correct the score of a list of landmarks by taking into account preference settings
|
# Correct the score of a list of landmarks by taking into account preference settings
|
||||||
def correct_score(L: List[Landmark], preference: Preference) :
|
def correct_score(L: list[Landmark], preference: Preference) :
|
||||||
|
|
||||||
if len(L) == 0 :
|
if len(L) == 0 :
|
||||||
return
|
return
|
||||||
@ -157,195 +78,111 @@ def correct_score(L: List[Landmark], preference: Preference) :
|
|||||||
|
|
||||||
|
|
||||||
# Function to count elements within a certain radius of a location
|
# Function to count elements within a certain radius of a location
|
||||||
def count_elements_within_radius(coordinates: Tuple[float, float], radius: int) -> int:
|
def count_elements_within_radius(point: Point, radius: int) -> int:
|
||||||
|
|
||||||
lat = coordinates[0]
|
center_coordinates = (point.x, point.y)
|
||||||
lon = coordinates[1]
|
try:
|
||||||
|
landmarks = ox.features_from_point(
|
||||||
alpha = (180*radius)/(6371000*m.pi)
|
center_point = center_coordinates,
|
||||||
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
dist = radius,
|
||||||
|
tags = {'building': True} # this is a common tag to give an estimation of the number of elements in the area
|
||||||
# Build the query to find elements within the radius
|
)
|
||||||
radius_query = overpassQueryBuilder(bbox=[bbox['latLower'],bbox['lonLower'],bbox['latHigher'],bbox['lonHigher']],
|
return len(landmarks)
|
||||||
elementType=['node', 'way', 'relation'])
|
except ox._errors.InsufficientResponseError:
|
||||||
|
return 0
|
||||||
try :
|
|
||||||
overpass = Overpass()
|
|
||||||
radius_result = overpass.query(radius_query)
|
|
||||||
return radius_result.countElements()
|
|
||||||
|
|
||||||
except :
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
# Creates a bounding box around given coordinates
|
|
||||||
def create_bbox(coordinates: Tuple[float, float], side_length: int) -> Tuple[float, float, float, float]:
|
|
||||||
|
|
||||||
lat = coordinates[0]
|
|
||||||
lon = coordinates[1]
|
|
||||||
|
|
||||||
# Half the side length in km (since it's a square bbox)
|
|
||||||
half_side_length_km = side_length / 2.0
|
|
||||||
|
|
||||||
# Convert distance to degrees
|
|
||||||
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
|
|
||||||
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
|
|
||||||
|
|
||||||
# Calculate bbox
|
|
||||||
min_lat = lat - lat_diff
|
|
||||||
max_lat = lat + lat_diff
|
|
||||||
min_lon = lon - lon_diff
|
|
||||||
max_lon = lon + lon_diff
|
|
||||||
|
|
||||||
return min_lat, min_lon, max_lat, max_lon
|
|
||||||
|
|
||||||
|
|
||||||
def get_landmarks(
|
def get_landmarks(
|
||||||
list_amenity: list,
|
amenity_selectors: list[dict],
|
||||||
landmarktype: LandmarkType,
|
landmarktype: LandmarkType,
|
||||||
coordinates: Tuple[float, float],
|
center_coordinates: tuple[float, float],
|
||||||
parameters: dict
|
distance: int,
|
||||||
) -> List[Landmark]:
|
score_function: callable
|
||||||
|
) -> list[Landmark]:
|
||||||
|
|
||||||
|
landmarks = ox.features_from_point(
|
||||||
|
center_point = center_coordinates,
|
||||||
|
dist = distance,
|
||||||
|
tags = amenity_selectors
|
||||||
|
)
|
||||||
|
|
||||||
|
# cleanup the list
|
||||||
|
# remove rows where name is None
|
||||||
|
landmarks = landmarks[landmarks['name'].notna()]
|
||||||
|
# TODO: remove rows that are part of another building
|
||||||
|
|
||||||
|
ret_landmarks = []
|
||||||
|
for element, description in landmarks.iterrows():
|
||||||
|
osm_type = element[0]
|
||||||
|
osm_id = element[1]
|
||||||
|
location = description['geometry']
|
||||||
|
n_tags = len(description['nodes']) if type(description['nodes']) == list else 1
|
||||||
|
|
||||||
|
# print(description['nodes'])
|
||||||
|
print(description['name'])
|
||||||
|
# print(location, type(location))
|
||||||
|
if type(location) == Point:
|
||||||
|
location = location
|
||||||
|
elif type(location) == Polygon or type(location) == MultiPolygon:
|
||||||
|
location = location.centroid
|
||||||
|
elif type(location) == LineString:
|
||||||
|
location = location.interpolate(location.length/2)
|
||||||
|
|
||||||
|
score = score_function(location, n_tags)
|
||||||
|
print(score)
|
||||||
|
landmark = Landmark(
|
||||||
|
name = description['name'],
|
||||||
|
type = landmarktype,
|
||||||
|
location = (location.x, location.y),
|
||||||
|
osm_type = osm_type,
|
||||||
|
osm_id = osm_id,
|
||||||
|
attractiveness = score,
|
||||||
|
must_do = False,
|
||||||
|
n_tags = n_tags
|
||||||
|
)
|
||||||
|
ret_landmarks.append(landmark)
|
||||||
|
|
||||||
|
return ret_landmarks
|
||||||
|
# for elem in G.iterrows():
|
||||||
|
# print(elem)
|
||||||
|
# print(elem.name)
|
||||||
|
# print(elem.address)
|
||||||
|
# name = elem.tag('name') # Add name
|
||||||
|
# location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
||||||
|
|
||||||
|
# # skip if unprecise location
|
||||||
|
# if name is None or location[0] is None:
|
||||||
|
# continue
|
||||||
|
|
||||||
|
# # skip if unused
|
||||||
|
# if 'disused:leisure' in elem.tags().keys():
|
||||||
|
# continue
|
||||||
|
|
||||||
|
# # skip if part of another building
|
||||||
|
# if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||||
|
# continue
|
||||||
|
|
||||||
|
# else :
|
||||||
|
# osm_type = elem.type() # Add type : 'way' or 'relation'
|
||||||
|
# osm_id = elem.id() # Add OSM id
|
||||||
|
# elem_type = landmarktype # Add the landmark type as 'sightseeing
|
||||||
|
# n_tags = len(elem.tags().keys()) # Add number of tags
|
||||||
|
|
||||||
|
# # Add score of given landmark based on the number of surrounding elements. Penalty for churches as there are A LOT
|
||||||
|
# if amenity == "'amenity'='place_of_worship'" :
|
||||||
|
# score = int((count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff'] )*parameters['church_coeff'])
|
||||||
|
# elif amenity == "'leisure'='park'" :
|
||||||
|
# score = int((count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff'] )*parameters['park_coeff'])
|
||||||
|
# else :
|
||||||
|
# score = count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff']
|
||||||
|
|
||||||
|
# if score is not None :
|
||||||
|
# # Generate the landmark and append it to the list
|
||||||
|
# landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
|
||||||
|
# L.append(landmark)
|
||||||
|
|
||||||
|
# return L
|
||||||
|
|
||||||
|
|
||||||
# # Read the parameters from the file
|
|
||||||
# with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/landmarks_manager.params', "r") as f :
|
|
||||||
# parameters = json.loads(f.read())
|
|
||||||
# tag_coeff = parameters['tag coeff']
|
|
||||||
# park_coeff = parameters['park coeff']
|
|
||||||
# church_coeff = parameters['church coeff']
|
|
||||||
# radius = parameters['radius close to']
|
|
||||||
# bbox_side = parameters['city bbox side']
|
|
||||||
|
|
||||||
# Create bbox around start location
|
|
||||||
bbox = create_bbox(coordinates, parameters['city_bbox_side'])
|
|
||||||
|
|
||||||
# Initialize some variables
|
|
||||||
N = 0
|
|
||||||
L = []
|
|
||||||
overpass = Overpass()
|
|
||||||
|
|
||||||
for amenity in list_amenity :
|
|
||||||
query = overpassQueryBuilder(bbox=bbox, elementType=['way', 'relation'], selector=amenity, includeCenter=True, out='body')
|
|
||||||
result = overpass.query(query)
|
|
||||||
N += result.countElements()
|
|
||||||
|
|
||||||
for elem in result.elements():
|
|
||||||
|
|
||||||
name = elem.tag('name') # Add name
|
|
||||||
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
|
||||||
|
|
||||||
# skip if unprecise location
|
|
||||||
if name is None or location[0] is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# skip if unused
|
|
||||||
if 'disused:leisure' in elem.tags().keys():
|
|
||||||
continue
|
|
||||||
|
|
||||||
# skip if part of another building
|
|
||||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
|
||||||
continue
|
|
||||||
|
|
||||||
else :
|
|
||||||
osm_type = elem.type() # Add type : 'way' or 'relation'
|
|
||||||
osm_id = elem.id() # Add OSM id
|
|
||||||
elem_type = landmarktype # Add the landmark type as 'sightseeing
|
|
||||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
|
||||||
|
|
||||||
# Add score of given landmark based on the number of surrounding elements. Penalty for churches as there are A LOT
|
|
||||||
if amenity == "'amenity'='place_of_worship'" :
|
|
||||||
score = int((count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff'] )*parameters['church_coeff'])
|
|
||||||
elif amenity == "'leisure'='park'" :
|
|
||||||
score = int((count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff'] )*parameters['park_coeff'])
|
|
||||||
else :
|
|
||||||
score = count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff']
|
|
||||||
|
|
||||||
if score is not None :
|
|
||||||
# Generate the landmark and append it to the list
|
|
||||||
landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
|
|
||||||
L.append(landmark)
|
|
||||||
|
|
||||||
return L
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""def get_landmarks(list_amenity: list, landmarktype: LandmarkType, city_country: str = None, coordinates: Tuple[float, float] = None) -> List[Landmark] :
|
|
||||||
|
|
||||||
if city_country is None and coordinates is None :
|
|
||||||
raise ValueError("Either one of 'city_country' and 'coordinates' arguments must be specified")
|
|
||||||
|
|
||||||
if city_country is not None and coordinates is not None :
|
|
||||||
raise ValueError("Cannot specify both 'city_country' and 'coordinates' at the same time, please choose either one")
|
|
||||||
|
|
||||||
# Read the parameters from the file
|
|
||||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/landmarks_manager.params', "r") as f :
|
|
||||||
parameters = json.loads(f.read())
|
|
||||||
tag_coeff = parameters['tag coeff']
|
|
||||||
park_coeff = parameters['park coeff']
|
|
||||||
church_coeff = parameters['church coeff']
|
|
||||||
radius = parameters['radius close to']
|
|
||||||
bbox_side = parameters['city bbox side']
|
|
||||||
|
|
||||||
# If city_country is specified :
|
|
||||||
if city_country is not None :
|
|
||||||
nominatim = Nominatim()
|
|
||||||
areaId = nominatim.query(city_country).areaId()
|
|
||||||
bbox = None
|
|
||||||
|
|
||||||
# If coordinates are specified :
|
|
||||||
elif coordinates is not None :
|
|
||||||
bbox = create_bbox(coordinates, bbox_side)
|
|
||||||
areaId = None
|
|
||||||
|
|
||||||
else :
|
|
||||||
raise ValueError("Argument number is not corresponding.")
|
|
||||||
|
|
||||||
# Initialize some variables
|
|
||||||
N = 0
|
|
||||||
L = []
|
|
||||||
overpass = Overpass()
|
|
||||||
|
|
||||||
for amenity in list_amenity :
|
|
||||||
query = overpassQueryBuilder(area=areaId, bbox=bbox, elementType=['way', 'relation'], selector=amenity, includeCenter=True, out='body')
|
|
||||||
result = overpass.query(query)
|
|
||||||
N += result.countElements()
|
|
||||||
|
|
||||||
for elem in result.elements():
|
|
||||||
|
|
||||||
name = elem.tag('name') # Add name
|
|
||||||
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
|
||||||
|
|
||||||
# skip if unprecise location
|
|
||||||
if name is None or location[0] is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# skip if unused
|
|
||||||
if 'disused:leisure' in elem.tags().keys():
|
|
||||||
continue
|
|
||||||
|
|
||||||
# skip if part of another building
|
|
||||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
|
||||||
continue
|
|
||||||
|
|
||||||
else :
|
|
||||||
osm_type = elem.type() # Add type : 'way' or 'relation'
|
|
||||||
osm_id = elem.id() # Add OSM id
|
|
||||||
elem_type = landmarktype # Add the landmark type as 'sightseeing
|
|
||||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
|
||||||
|
|
||||||
# Add score of given landmark based on the number of surrounding elements. Penalty for churches as there are A LOT
|
|
||||||
if amenity == "'amenity'='place_of_worship'" :
|
|
||||||
score = int((count_elements_within_radius(location, radius) + n_tags*tag_coeff )*church_coeff)
|
|
||||||
elif amenity == "'leisure'='park'" :
|
|
||||||
score = int((count_elements_within_radius(location, radius) + n_tags*tag_coeff )*park_coeff)
|
|
||||||
else :
|
|
||||||
score = count_elements_within_radius(location, radius) + n_tags*tag_coeff
|
|
||||||
|
|
||||||
if score is not None :
|
|
||||||
# Generate the landmark and append it to the list
|
|
||||||
landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
|
|
||||||
L.append(landmark)
|
|
||||||
|
|
||||||
return L
|
|
||||||
"""
|
|
@ -1,5 +1,4 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import json, os
|
|
||||||
import yaml
|
import yaml
|
||||||
|
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
|
@ -1,26 +1,32 @@
|
|||||||
nature:
|
nature:
|
||||||
- "'leisure'='park'"
|
leisure: park
|
||||||
- "geological"
|
geological: ''
|
||||||
- "'natural'='geyser'"
|
natural:
|
||||||
- "'natural'='hot_spring'"
|
- geyser
|
||||||
- "'natural'='arch'"
|
- hot_spring
|
||||||
- "'natural'='volcano'"
|
- arch
|
||||||
- "'natural'='stone'"
|
- volcano
|
||||||
- "'tourism'='alpine_hut'"
|
- stone
|
||||||
- "'tourism'='viewpoint'"
|
tourism:
|
||||||
- "'tourism'='zoo'"
|
- alpine_hut
|
||||||
- "'waterway'='waterfall'"
|
- viewpoint
|
||||||
|
- zoo
|
||||||
|
waterway: waterfall
|
||||||
|
|
||||||
shopping:
|
shopping:
|
||||||
- "'shop'='department_store'"
|
shop:
|
||||||
- "'shop'='mall'"
|
- department_store
|
||||||
|
- mall
|
||||||
|
|
||||||
sightseeing:
|
sightseeing:
|
||||||
- "'tourism'='museum'"
|
tourism:
|
||||||
- "'tourism'='attraction'"
|
- museum
|
||||||
- "'tourism'='gallery'"
|
- attraction
|
||||||
- "historic"
|
- gallery
|
||||||
- "'amenity'='planetarium'"
|
historic: ''
|
||||||
- "'amenity'='place_of_worship'"
|
amenity:
|
||||||
- "'amenity'='fountain'"
|
- planetarium
|
||||||
- "'water'='reflecting_pool'"
|
- place_of_worship
|
||||||
|
- fountain
|
||||||
|
water:
|
||||||
|
- reflecting_pool
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
city_bbox_side: 10
|
city_bbox_side: 1500 #m
|
||||||
radius_close_to: 27.5
|
radius_close_to: 30
|
||||||
church_coeff: 0.6
|
church_coeff: 0.6
|
||||||
park_coeff: 1.5
|
park_coeff: 1.5
|
||||||
tag_coeff: 100
|
tag_coeff: 100
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from .landmarktype import LandmarkType
|
from .landmarktype import LandmarkType
|
||||||
|
|
||||||
from uuid import uuid4
|
from uuid import uuid4
|
||||||
@ -28,3 +27,6 @@ class Landmark(BaseModel) :
|
|||||||
|
|
||||||
time_to_reach_next : Optional[int] = 0 # TODO fix this in existing code
|
time_to_reach_next : Optional[int] = 0 # TODO fix this in existing code
|
||||||
next_uuid : Optional[str] = None # TODO implement this ASAP
|
next_uuid : Optional[str] = None # TODO implement this ASAP
|
||||||
|
|
||||||
|
def __hash__(self) -> int:
|
||||||
|
return self.uuid.int
|
@ -90,7 +90,7 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
|||||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.847132, 2.312359), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.847132, 2.312359), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||||
|
|
||||||
# Generate the landmarks from the start location
|
# Generate the landmarks from the start location
|
||||||
landmarks, landmarks_short = generate_landmarks(preferences=preferences, coordinates=start.location)
|
landmarks, landmarks_short = generate_landmarks(preferences=preferences, center_coordinates=start.location)
|
||||||
#write_data(landmarks, "landmarks.txt")
|
#write_data(landmarks, "landmarks.txt")
|
||||||
|
|
||||||
# Insert start and finish to the landmarks list
|
# Insert start and finish to the landmarks list
|
||||||
@ -98,7 +98,7 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
|||||||
landmarks_short.append(finish)
|
landmarks_short.append(finish)
|
||||||
|
|
||||||
# TODO use these parameters in another way
|
# TODO use these parameters in another way
|
||||||
max_walking_time = 2 # hours
|
max_walking_time = 3 # hours
|
||||||
detour = 30 # minutes
|
detour = 30 # minutes
|
||||||
|
|
||||||
# First stage optimization
|
# First stage optimization
|
||||||
|
Loading…
x
Reference in New Issue
Block a user