Compare commits
	
		
			8 Commits
		
	
	
		
			94a7adac6c
			...
			e18a9c63e6
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| e18a9c63e6 | |||
| 5fcadbe8d8 | |||
| 5afb646381 | |||
| d0e837377b | |||
| d94c69c545 | |||
| 9e595ad933 | |||
| 53d56f3e30 | |||
| f39d02f967 | 
							
								
								
									
										3
									
								
								.vscode/settings.json
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								.vscode/settings.json
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,3 @@ | |||||||
|  | { | ||||||
|  |     "cmake.ignoreCMakeListsMissing": true | ||||||
|  | } | ||||||
| @@ -1,12 +1,37 @@ | |||||||
| # Backend | # Backend | ||||||
|  |  | ||||||
| This repository contains the backend code for the application. It utilizes FastAPI that allows to quickly create a RESTful API that exposes the endpoints of the route optimizer. | This repository contains the backend code for the application. It utilizes **FastAPI** to quickly create a RESTful API that exposes the endpoints of the route optimizer. | ||||||
|  |  | ||||||
|  |  | ||||||
| ## Getting Started | ## Getting Started | ||||||
| - The code of the python application is located in the `src` directory. |  | ||||||
| - Package management is handled with `pipenv` and the dependencies are listed in the `Pipfile`. | ### Directory Structure | ||||||
| - Since the application is aimed to be deployed in a container, the `Dockerfile` is provided to build the image. | - The code for the Python application is located in the `src` directory. | ||||||
|  | - Package management is handled with **pipenv**, and the dependencies are listed in the `Pipfile`. | ||||||
|  | - Since the application is designed to be deployed in a container, the `Dockerfile` is provided to build the image. | ||||||
|  |  | ||||||
|  | ### Setting Up the Development Environment | ||||||
|  |  | ||||||
|  | To set up your development environment using **pipenv**, follow these steps: | ||||||
|  |  | ||||||
|  | 1. Install `pipenv` by running: | ||||||
|  |     ```bash | ||||||
|  |     sudo apt install pipenv | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  | 2. Create and activate a virtual environment: | ||||||
|  |     ```bash | ||||||
|  |     pipenv shell | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  | 3. Install the dependencies listed in the `Pipfile`: | ||||||
|  |     ```bash | ||||||
|  |     pipenv install | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  | 4. The virtual environment will be created under: | ||||||
|  |     ```bash | ||||||
|  |     ~/.local/share/virtualenvs/... | ||||||
|  |     ``` | ||||||
|  |  | ||||||
| ### Deployment | ### Deployment | ||||||
| To deploy the backend docker container, we use kubernetes. Modifications to the backend are automatically pushed to a two-stage environment through the CI pipeline. See [deployment/README](deployment/README.md] for further information. | To deploy the backend docker container, we use kubernetes. Modifications to the backend are automatically pushed to a two-stage environment through the CI pipeline. See [deployment/README](deployment/README.md] for further information. | ||||||
|   | |||||||
| @@ -45,7 +45,6 @@ sightseeing: | |||||||
|     - gallery |     - gallery | ||||||
|     - artwork |     - artwork | ||||||
|     - aquarium |     - aquarium | ||||||
|  |  | ||||||
|   historic: '' |   historic: '' | ||||||
|   amenity: |   amenity: | ||||||
|     - planetarium |     - planetarium | ||||||
|   | |||||||
| @@ -23,7 +23,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] = | |||||||
|         sightseeing=Preference(type='sightseeing', score = 5), |         sightseeing=Preference(type='sightseeing', score = 5), | ||||||
|         nature=Preference(type='nature', score = 5), |         nature=Preference(type='nature', score = 5), | ||||||
|         shopping=Preference(type='shopping', score = 5), |         shopping=Preference(type='shopping', score = 5), | ||||||
|         max_time_minute=100, |         max_time_minute=15, | ||||||
|         detour_tolerance_minute=0 |         detour_tolerance_minute=0 | ||||||
|     ) |     ) | ||||||
|  |  | ||||||
| @@ -74,6 +74,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] = | |||||||
| # test(tuple((48.8344400, 2.3220540)))       # Café Chez César  | # test(tuple((48.8344400, 2.3220540)))       # Café Chez César  | ||||||
| # test(tuple((48.8375946, 2.2949904)))       # Point random | # test(tuple((48.8375946, 2.2949904)))       # Point random | ||||||
| # test(tuple((47.377859, 8.540585)))         # Zurich HB | # test(tuple((47.377859, 8.540585)))         # Zurich HB | ||||||
| # test(tuple((45.758217, 4.831814)))      # Lyon Bellecour | # test(tuple((45.758217, 4.831814)))         # Lyon Bellecour | ||||||
| test(tuple((48.5848435, 7.7332974)))      # Strasbourg Gare | # test(tuple((48.5848435, 7.7332974)))       # Strasbourg Gare | ||||||
| # test(tuple((48.2067858, 16.3692340)))      # Vienne | # test(tuple((48.2067858, 16.3692340)))      # Vienne | ||||||
|  | test(tuple((48.084588, 7.280405)))         # Turckheim  | ||||||
|   | |||||||
| @@ -94,6 +94,8 @@ class LandmarkManager: | |||||||
|         if preferences.shopping.score != 0: |         if preferences.shopping.score != 0: | ||||||
|             score_function = lambda score: score * 10 * preferences.shopping.score / 5 |             score_function = lambda score: score * 10 * preferences.shopping.score / 5 | ||||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function) |             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function) | ||||||
|  |             # set time for all shopping activites : | ||||||
|  |             for landmark in current_landmarks : landmark.duration = 45 | ||||||
|             all_landmarks.update(current_landmarks) |             all_landmarks.update(current_landmarks) | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -246,11 +248,11 @@ class LandmarkManager: | |||||||
|                 image_url = None |                 image_url = None | ||||||
|                 name_en = None |                 name_en = None | ||||||
|  |  | ||||||
|                 # remove specific tags |                 # Adjust scoring | ||||||
|                 skip = False |                 skip = False | ||||||
|                 for tag in elem.tags().keys(): |                 for tag in elem.tags().keys(): | ||||||
|                     if "pay" in tag: |                     if "pay" in tag: | ||||||
|                         # payment options are a good sign |                         # payment options are misleading and should not count for the scoring. | ||||||
|                         score += self.pay_bonus |                         score += self.pay_bonus | ||||||
|  |  | ||||||
|                     if "disused" in tag: |                     if "disused" in tag: | ||||||
| @@ -263,10 +265,12 @@ class LandmarkManager: | |||||||
|                         score += self.wikipedia_bonus |                         score += self.wikipedia_bonus | ||||||
|  |  | ||||||
|                     if "viewpoint" in tag: |                     if "viewpoint" in tag: | ||||||
|  |                         # viewpoints must count more | ||||||
|                         score += self.viewpoint_bonus |                         score += self.viewpoint_bonus | ||||||
|                         duration = 10 |                         duration = 10 | ||||||
|  |  | ||||||
|                     if "image" in tag: |                     if "image" in tag: | ||||||
|  |                         # images must count more | ||||||
|                         score += self.image_bonus |                         score += self.image_bonus | ||||||
|  |  | ||||||
|                     if elem_type != "nature": |                     if elem_type != "nature": | ||||||
| @@ -282,6 +286,7 @@ class LandmarkManager: | |||||||
|                             skip = True |                             skip = True | ||||||
|                             break |                             break | ||||||
|  |  | ||||||
|  |                     # Extract image, website and english name | ||||||
|                     if tag in ['website', 'contact:website']: |                     if tag in ['website', 'contact:website']: | ||||||
|                         website_url = elem.tag(tag) |                         website_url = elem.tag(tag) | ||||||
|                     if tag == 'image': |                     if tag == 'image': | ||||||
| @@ -295,10 +300,9 @@ class LandmarkManager: | |||||||
|                 score = score_function(score) |                 score = score_function(score) | ||||||
|                 if "place_of_worship" in elem.tags().values(): |                 if "place_of_worship" in elem.tags().values(): | ||||||
|                     score = score * self.church_coeff |                     score = score * self.church_coeff | ||||||
|                     duration = 15 |                     duration = 10 | ||||||
|                  |                  | ||||||
|                 elif "museum" in elem.tags().values(): |                 elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values(): | ||||||
|                     score = score * self.church_coeff |  | ||||||
|                     duration = 60 |                     duration = 60 | ||||||
|                  |                  | ||||||
|                 else: |                 else: | ||||||
|   | |||||||
| @@ -487,7 +487,7 @@ class Optimizer: | |||||||
|  |  | ||||||
|         # Raise error if no solution is found |         # Raise error if no solution is found | ||||||
|         if not res.success : |         if not res.success : | ||||||
|             raise ArithmeticError("No solution could be found, the problem is overconstrained. Please adapt your must_dos") |             raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).") | ||||||
|  |  | ||||||
|         # If there is a solution, we're good to go, just check for connectiveness |         # If there is a solution, we're good to go, just check for connectiveness | ||||||
|         order, circles = self.is_connected(res.x) |         order, circles = self.is_connected(res.x) | ||||||
|   | |||||||
| @@ -2,6 +2,7 @@ import yaml, logging | |||||||
|  |  | ||||||
| from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull | from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull | ||||||
| from math import pi | from math import pi | ||||||
|  | from typing import List | ||||||
|  |  | ||||||
| from structs.landmark import Landmark | from structs.landmark import Landmark | ||||||
| from . import take_most_important, get_time_separation | from . import take_most_important, get_time_separation | ||||||
| @@ -133,6 +134,21 @@ class Refiner : | |||||||
|             i += 1 |             i += 1 | ||||||
|      |      | ||||||
|         return tour |         return tour | ||||||
|  |      | ||||||
|  |     def integrate_landmarks(self, sub_list: List[Landmark], main_list: List[Landmark]) : | ||||||
|  |         """ | ||||||
|  |         Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched. | ||||||
|  |          | ||||||
|  |         Args:  | ||||||
|  |             sub_list    : the list of Landmarks to be inserted inside of the 'main_list'. | ||||||
|  |             main_list   : the original list with start and finish. | ||||||
|  |  | ||||||
|  |         Returns: | ||||||
|  |             the full list. | ||||||
|  |         """ | ||||||
|  |         sub_list.append(main_list[-1])          # add finish back | ||||||
|  |         return main_list[:-1] + sub_list        # create full set of possible landmarks | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]: |     def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]: | ||||||
| @@ -253,6 +269,11 @@ class Refiner : | |||||||
|         except : |         except : | ||||||
|             better_tour_poly = concave_hull(MultiPoint(coords))  # Create concave hull with "core" of tour leaving out start and finish |             better_tour_poly = concave_hull(MultiPoint(coords))  # Create concave hull with "core" of tour leaving out start and finish | ||||||
|             xs, ys = better_tour_poly.exterior.xy |             xs, ys = better_tour_poly.exterior.xy | ||||||
|  |             """  | ||||||
|  |             ERROR HERE :  | ||||||
|  |                 Exception has occurred: AttributeError | ||||||
|  |                 'LineString' object has no attribute 'exterior' | ||||||
|  |             """ | ||||||
|  |  | ||||||
|  |  | ||||||
|         # reverse the xs and ys |         # reverse the xs and ys | ||||||
| @@ -315,26 +336,30 @@ class Refiner : | |||||||
|  |  | ||||||
|         self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path") |         self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path") | ||||||
|  |  | ||||||
|         # full set of visitable landmarks |         # Full set of visitable landmarks. | ||||||
|         full_set = base_tour[:-1] + minor_landmarks   # create full set of possible landmarks (without finish) |         full_set = self.integrate_landmarks(minor_landmarks, base_tour)     # could probably be optimized with less overhead | ||||||
|         full_set.append(base_tour[-1])                # add finish back |  | ||||||
|  |  | ||||||
|         # get a new tour |         # Generate a new tour with the optimizer. | ||||||
|         new_tour = self.optimizer.solve_optimization( |         new_tour = self.optimizer.solve_optimization( | ||||||
|             max_time = max_time + detour, |             max_time = max_time + detour, | ||||||
|             landmarks = full_set,  |             landmarks = full_set,  | ||||||
|             max_landmarks = self.max_landmarks_refiner |             max_landmarks = self.max_landmarks_refiner | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |         # If unsuccessful optimization, use the base_tour. | ||||||
|         if new_tour is None: |         if new_tour is None: | ||||||
|             self.logger.warning("No solution found for the refined tour. Returning the initial tour.") |             self.logger.warning("No solution found for the refined tour. Returning the initial tour.") | ||||||
|             new_tour = base_tour |             new_tour = base_tour | ||||||
|  |  | ||||||
|  |         # If only one landmark, return it. | ||||||
|  |         if len(new_tour) < 4 : | ||||||
|  |             return new_tour | ||||||
|  |  | ||||||
|         # Find shortest path using the nearest neighbor heuristic |         # Find shortest path using the nearest neighbor heuristic. | ||||||
|         better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour) |         better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour) | ||||||
|  |  | ||||||
|         # Fix the tour using Polygons if the path looks weird |         # Fix the tour using Polygons if the path looks weird.  | ||||||
|  |         # Conditions : circular trip and invalid polygon. | ||||||
|         if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid : |         if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid : | ||||||
|             better_tour = self.fix_using_polygon(better_tour) |             better_tour = self.fix_using_polygon(better_tour) | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user