cleanup and presentable
This commit is contained in:
parent
da8a7d4574
commit
facb52b33e
@ -2,7 +2,7 @@
|
||||
|
||||
#import "@preview/based:0.2.0": base64
|
||||
|
||||
#let code_font_scale = 0.6em
|
||||
#let code_font_scale = 0.5em
|
||||
|
||||
#let cell_matcher(cell, cell_tag) = {
|
||||
// Matching function to check if a cell has a specific tag
|
||||
|
Binary file not shown.
@ -1,8 +1,5 @@
|
||||
#import "@preview/diatypst:0.2.0": *
|
||||
|
||||
// #set text(font: "Cantarell")
|
||||
// #set heading(numbering: (..nums)=>"")
|
||||
|
||||
#show: slides.with(
|
||||
title: "N-Body project ",
|
||||
subtitle: "Computational Astrophysics, HS24",
|
||||
@ -13,15 +10,13 @@
|
||||
// ratio: 16/9,
|
||||
)
|
||||
|
||||
#show footnote.entry: set text(size: 0.6em)
|
||||
#set footnote.entry(gap: 3pt)
|
||||
#set align(horizon)
|
||||
|
||||
|
||||
#import "helpers.typ"
|
||||
|
||||
// KINDA COOL:
|
||||
// _diatypst_ defines some default styling for elements, e.g Terms created with ```typc / Term: Definition``` will look like this
|
||||
|
||||
// / *Term*: Definition
|
||||
|
||||
|
||||
|
||||
// Setup of code location
|
||||
#let t1 = json("../task1.ipynb")
|
||||
@ -41,10 +36,7 @@
|
||||
|
||||
|
||||
== Overview - the system
|
||||
Get a feel for the particles and their distribution. [#link(<task1:plot_particle_distribution>)[code]]
|
||||
|
||||
|
||||
|
||||
Get a feel for the particles and their distribution
|
||||
#columns(2)[
|
||||
#helpers.image_cell(t1, "plot_particle_distribution")
|
||||
// Note: for visibility the outer particles are not shown.
|
||||
@ -54,15 +46,24 @@ Get a feel for the particles and their distribution. [#link(<task1:plot_particle
|
||||
- a _spherical_ distribution
|
||||
|
||||
$==>$ treat the system as a *globular cluster*
|
||||
|
||||
#footnote[Unit handling [#link(<task1:function_apply_units>)[code]]]
|
||||
]
|
||||
|
||||
// It is a small globular cluster with
|
||||
// - 5*10^4 stars => m in terms of msol
|
||||
// - radius - 10 pc
|
||||
// Densities are now expressed in M_sol / pc^3
|
||||
// Forces are now expressed
|
||||
|
||||
|
||||
|
||||
== Density
|
||||
We compare the computed density with the analytical model provided by the _Hernquist_ model:
|
||||
Compare the computed density
|
||||
#footnote[Density sampling [#link(<task1:function_density_distribution>)[code]]]
|
||||
with the analytical model provided by the _Hernquist_ model:
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 2fr),
|
||||
columns: (3fr, 4fr),
|
||||
inset: 0.5em,
|
||||
block[
|
||||
$
|
||||
@ -72,15 +73,12 @@ We compare the computed density with the analytical model provided by the _Hernq
|
||||
$
|
||||
r_"hm" = (1 + sqrt(2)) dot a
|
||||
$
|
||||
|
||||
#text(size: 0.6em)[
|
||||
Density sampling [#link(<task1:function_density_distribution>)[code]];
|
||||
]
|
||||
],
|
||||
block[
|
||||
#helpers.image_cell(t1, "plot_density_distribution")
|
||||
]
|
||||
)
|
||||
|
||||
// Note that by construction, the first shell contains no particles
|
||||
// => the numerical density is zero there
|
||||
// Having more bins means to have shells that are nearly empty
|
||||
@ -89,45 +87,41 @@ We compare the computed density with the analytical model provided by the _Hernq
|
||||
|
||||
|
||||
== Force computation
|
||||
// N Body and variations
|
||||
#grid(
|
||||
columns: (2fr, 1fr),
|
||||
columns: (3fr, 2fr),
|
||||
inset: 0.5em,
|
||||
block[
|
||||
#helpers.image_cell(t1, "plot_force_radial")
|
||||
// The radial force is computed as the sum of the forces of all particles in the system.
|
||||
#text(size: 0.6em)[
|
||||
Analytical force [#link(<task1:function_analytical_forces>)[code]];
|
||||
$N^2$ force [#link(<task1:function_n2_forces>)[code]];
|
||||
$epsilon$ computation [#link(<task1:function_interparticle_distance>)[code]];
|
||||
]
|
||||
],
|
||||
block[
|
||||
Discussion:
|
||||
- the analytical method replicates the behavior accurately
|
||||
- at small softenings the $N^2$ method has noisy artifacts
|
||||
- a $1 dot epsilon$ softening is a good compromise between accuracy and stability
|
||||
- the analytical
|
||||
#footnote[Analytical force [#link(<task1:function_analytical_forces>)[code]]]
|
||||
method replicates the behavior accurately
|
||||
- at small softenings the $N^2$
|
||||
#footnote[$N^2$ force [#link(<task1:function_n2_forces>)[code]]]
|
||||
method has noisy artifacts
|
||||
- a $1 dot epsilon$
|
||||
#footnote[$epsilon$ computation [#link(<task1:function_interparticle_distance>)[code]]]
|
||||
softening is a good compromise between accuracy and stability
|
||||
]
|
||||
)
|
||||
|
||||
// basic $N^2$ matches analytical solution without dropoff. but: noisy data from "bad" samples
|
||||
// $N^2$ with softening matches analytical solution but has a dropoff. No noisy data.
|
||||
|
||||
// => softening $\approx 1 \varepsilon$ is a sweet spot since the dropoff is "late"
|
||||
|
||||
|
||||
== Relaxation
|
||||
|
||||
We express system relaxation in terms of the dynamical time of the system.
|
||||
$
|
||||
t_"relax" = overbrace(N / (8 log N), n_"relax") dot t_"crossing"
|
||||
$
|
||||
where the crossing time of the system can be estimated through the half-mass velocity $t_"crossing" = v(r_"hm")/r_"hm"$.
|
||||
|
||||
We find a relaxation of [#link(<task1:compute_relaxation_time>)[code]].
|
||||
We find a relaxation of $approx 30 "Myr"$ ([#link(<task1:compute_relaxation_time>)[code]])
|
||||
|
||||
|
||||
// === Discussion
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
inset: 0.5em,
|
||||
@ -140,6 +134,7 @@ We find a relaxation of [#link(<task1:compute_relaxation_time>)[code]].
|
||||
- $=>$ relaxation time increases
|
||||
]
|
||||
)
|
||||
|
||||
// The estimate for $n_{relax}$ comes from the contribution of each star-star encounter to the velocity dispersion. This depends on the perpendicular force
|
||||
|
||||
// $\implies$ a bigger softening length leads to a smaller $\delta v$.
|
||||
@ -164,7 +159,7 @@ We find a relaxation of [#link(<task1:compute_relaxation_time>)[code]].
|
||||
)[
|
||||
#helpers.image_cell(t2, "plot_particle_distribution")
|
||||
|
||||
$=>$ use $M_"sys" approx 10^4 M_"sol" + M_"BH"$
|
||||
$==>$ use $M_"sys" approx 10^4 M_"sol" + M_"BH"$
|
||||
]
|
||||
|
||||
|
||||
@ -180,55 +175,83 @@ We find a relaxation of [#link(<task1:compute_relaxation_time>)[code]].
|
||||
inset: 0.5em,
|
||||
block[
|
||||
#helpers.image_cell(t2, "plot_force_radial_single")
|
||||
// The radial force is computed as the sum of the forces of all particles in the system.
|
||||
#text(size: 0.6em)[
|
||||
$N^2$ force [#link(<task1:function_n2_forces>)[code]];
|
||||
$epsilon$ computation [#link(<task1:function_interparticle_distance>)[code]];
|
||||
Mesh force [#link(<task2:function_mesh_force>)[code]];
|
||||
]
|
||||
],
|
||||
block[
|
||||
Discussion:
|
||||
- using the (established) baseline of $N^2$ with $1 dot epsilon$ softening
|
||||
- small grids are stable but inaccurate at the center
|
||||
- using the (established) baseline of $N^2$
|
||||
#footnote[$N^2$ force [#link(<task1:function_n2_forces>)[code]]]
|
||||
with $1 dot epsilon$
|
||||
#footnote[$epsilon$ computation [#link(<task1:function_interparticle_distance>)[code]]]
|
||||
softening
|
||||
- small grids
|
||||
#footnote[Mesh force [#link(<task2:function_mesh_force>)[code]]]
|
||||
are stable but inaccurate at the center
|
||||
- very large grids have issues with overdiscretization
|
||||
|
||||
$==> 75 times 75 times 75$ as a good compromise
|
||||
]
|
||||
)
|
||||
|
||||
// Some other comments:
|
||||
// - see the artifacts because of the even grid numbers (hence the switch to 75)
|
||||
// overdiscretization for large grids -> vertical spread even though r is constant
|
||||
// this becomes even more apparent when looking at the data without noise - the artifacts remain
|
||||
]
|
||||
)
|
||||
//
|
||||
// We can not rely on the interparticle distance computation for a disk!
|
||||
// Given softening length 0.037 does not match the mean interparticle distance 0.0262396757880128
|
||||
//
|
||||
// Discussion of the discrepancies
|
||||
// TODO
|
||||
|
||||
|
||||
#helpers.image_cell(t2, "plot_force_computation_time")
|
||||
// Computed for 10^4 particles => mesh will scale better for larger systems
|
||||
|
||||
== Time integration
|
||||
=== Runge-Kutta
|
||||
*Integration step*
|
||||
#helpers.code_reference_cell(t2, "function_runge_kutta")
|
||||
|
||||
*Timesteps*
|
||||
Chosen such that displacement is small (compared to the inter-particle distance) [#link(<task2:integration_timestep>)[code]]:
|
||||
$
|
||||
op(d)t = 10^(-4) dot S / v_"part"
|
||||
$
|
||||
|
||||
// too large timesteps lead to instable systems <=> integration not accurate enough
|
||||
|
||||
*Full integration*
|
||||
|
||||
[#link(<task2:function_time_integration>)[code]]
|
||||
|
||||
|
||||
#pagebreak()
|
||||
=== Results
|
||||
#align(center, block(
|
||||
height: 1fr,
|
||||
)[
|
||||
== First results
|
||||
#helpers.image_cell(t2, "plot_system_evolution")
|
||||
])
|
||||
|
||||
|
||||
== Varying the softening
|
||||
|
||||
#helpers.image_cell(t2, "plot_second_system_evolution")
|
||||
|
||||
|
||||
== Stability [#link("../task2_nsquare_integration.gif")[1 epsilon]]
|
||||
#page(
|
||||
columns: 2
|
||||
)[
|
||||
#helpers.image_cell(t2, "plot_integration_stability")
|
||||
]
|
||||
|
||||
|
||||
== Particle mesh solver
|
||||
sdlsd
|
||||
|
||||
#helpers.image_cell(t2, "plot_pm_solver_integration")
|
||||
|
||||
#helpers.image_cell(t2, "plot_pm_solver_stability")
|
||||
|
||||
|
||||
= Appendix - Code <appendix>
|
||||
|
||||
== Code
|
||||
#helpers.code_cell(t1, "plot_particle_distribution")
|
||||
<task1:plot_particle_distribution>
|
||||
#helpers.code_reference_cell(t1, "function_apply_units")
|
||||
<task1:function_apply_units>
|
||||
|
||||
#pagebreak(weak: true)
|
||||
|
||||
@ -260,6 +283,15 @@ sdlsd
|
||||
#helpers.code_reference_cell(t2, "function_mesh_force")
|
||||
<task2:function_mesh_force>
|
||||
|
||||
#pagebreak(weak: true)
|
||||
|
||||
#helpers.code_cell(t2, "integration_timestep")
|
||||
<task2:integration_timestep>
|
||||
|
||||
#pagebreak(weak: true)
|
||||
|
||||
#helpers.code_cell(t2, "function_time_integration")
|
||||
<task2:function_time_integration>
|
||||
|
||||
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
BIN
nbody/task2_nsquare_integration.gif
Normal file
BIN
nbody/task2_nsquare_integration.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 403 KiB |
@ -13,7 +13,7 @@ def cached_forces(cache_path: Path, particles: np.ndarray, force_function:callab
|
||||
|
||||
n_particles = particles.shape[0]
|
||||
|
||||
kwargs_str = "_".join([f"{k}_{v}" for k, v in func_kwargs.items()])
|
||||
kwargs_str = kwargs_to_str(func_kwargs)
|
||||
|
||||
force_cache = cache_path / f"forces__{force_function.__name__}__n_{n_particles}__kwargs_{kwargs_str}.npy"
|
||||
time_cache = cache_path / f"time__{force_function.__name__}__n_{n_particles}__kwargs_{kwargs_str}.npy"
|
||||
@ -26,8 +26,27 @@ def cached_forces(cache_path: Path, particles: np.ndarray, force_function:callab
|
||||
force = force_function(particles, **func_kwargs)
|
||||
np.save(force_cache, force)
|
||||
time = 0
|
||||
np.info(f"Timing {force_function.__name__} for {n_particles} particles")
|
||||
logger.info(f"Timing {force_function.__name__} for {n_particles} particles")
|
||||
time = timeit.timeit(lambda: force_function(particles, **func_kwargs), number=10)
|
||||
np.save(time_cache, time)
|
||||
|
||||
return force, time
|
||||
|
||||
|
||||
|
||||
def kwargs_to_str(kwargs: dict):
|
||||
"""
|
||||
Converts a dictionary of keyword arguments to a string.
|
||||
"""
|
||||
base_str = ""
|
||||
for k, v in kwargs.items():
|
||||
print(type(v))
|
||||
if type(v) == float:
|
||||
base_str += f"{k}_{v:.3f}"
|
||||
elif type(v) == callable:
|
||||
base_str += f"{k}_{v.__name__}"
|
||||
else:
|
||||
base_str += f"{k}_{v}"
|
||||
base_str += "__"
|
||||
|
||||
return base_str
|
||||
|
@ -71,7 +71,6 @@ def mesh_poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
|
||||
logger.debug(f"Proceeding to poisson equation with {rho_hat.shape=}, {k_inv.shape=}")
|
||||
grad_phi_hat = - 4 * np.pi * G * rho_hat * k_inv * 1j
|
||||
# nabla^2 phi => -i * k * nabla phi = 4 pi G rho => nabla phi = - i * rho * k / k^2
|
||||
# TODO: check minus
|
||||
grad_phi = np.real(fft.ifftn(grad_phi_hat))
|
||||
return grad_phi
|
||||
|
||||
@ -133,9 +132,7 @@ def mesh_poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
|
||||
rho_hat = fft.fftn(mesh)
|
||||
|
||||
# we also need the wave numbers
|
||||
spacing_3d = np.linalg.norm([spacing, spacing, spacing])
|
||||
k = fft.fftfreq(mesh.shape[0], spacing) * (2 * np.pi)
|
||||
# TODO: check if this is correct
|
||||
# assuming the grid is cubic
|
||||
kx, ky, kz = np.meshgrid(k, k, k)
|
||||
k_sr = kx**2 + ky**2 + kz**2
|
||||
@ -145,10 +142,9 @@ def mesh_poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
|
||||
logger.debug(f"Count of ksquare zeros: {np.sum(k_sr == 0)}")
|
||||
show_mesh_information(np.abs(k_sr), "k_square")
|
||||
|
||||
k_sr[k_sr == 0] = np.inf
|
||||
k_sr[k_sr == 0] = 1e-10
|
||||
# k_inv = k_vec / k_sr # allows for element-wise division
|
||||
|
||||
# logger.debug(f"Proceeding to poisson equation with {rho_hat.shape=}, {k_inv.shape=}")
|
||||
phi_hat = - 4 * np.pi * G * rho_hat / k_sr
|
||||
# nabla^2 phi becomes -i * k * nabla phi_hat = 4 pi G rho_hat
|
||||
# => nabla phi = - i * rho * k / k^2
|
||||
@ -156,6 +152,7 @@ def mesh_poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
|
||||
return phi
|
||||
|
||||
|
||||
|
||||
#### Helper functions for star mapping
|
||||
def create_mesh(min_pos: float, max_pos: float, n_grid: int) -> tuple[np.ndarray, np.ndarray, float]:
|
||||
"""
|
||||
@ -239,3 +236,57 @@ def mesh_plot_2d(mesh: np.ndarray, name: str, only_z: bool = False):
|
||||
axs[2].imshow(np.sum(mesh, axis=2), origin='lower')
|
||||
axs[2].set_title("Flattened in z")
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
##################################
|
||||
# For the presentation - without logging
|
||||
def mesh__forces(particles: np.ndarray, G: float = 1, n_grid: int = 50, mapping: callable = None) -> np.ndarray:
|
||||
"""
|
||||
Computes the gravitational force acting on a set of particles using a mesh-based approach.
|
||||
Assumes that the particles array has the following columns: x, y, z, m.
|
||||
"""
|
||||
max_pos = np.max(np.abs(particles[:, :3]))
|
||||
mesh, axis, spacing = create_mesh(-max_pos, max_pos, n_grid)
|
||||
|
||||
fill_mesh(particles, mesh, axis, mapping)
|
||||
# we want a density mesh:
|
||||
cell_volume = spacing**3
|
||||
rho = mesh / cell_volume
|
||||
|
||||
# compute the potential and its gradient
|
||||
phi = mesh_poisson(rho, G, spacing)
|
||||
|
||||
# get the acceleration from finite differences of the potential
|
||||
ax, ay, az = np.gradient(phi, spacing)
|
||||
a_vec = - np.stack([ax, ay, az], axis=0)
|
||||
|
||||
# compute the particle forces from the mesh potential
|
||||
forces = np.zeros_like(particles[:, :3])
|
||||
ijks = np.digitize(particles[:, :3], axis) - 1
|
||||
|
||||
for i in range(particles.shape[0]):
|
||||
m = particles[i, 3]
|
||||
idx = ijks[i]
|
||||
forces[i] = m * a_vec[..., idx[0], idx[1], idx[2]]
|
||||
|
||||
return forces
|
||||
|
||||
|
||||
def mesh__poisson(mesh: np.ndarray, G: float, spacing: float) -> np.ndarray:
|
||||
"""
|
||||
Solves the poisson equation for the mesh using the FFT.
|
||||
Returns the the potential - phi
|
||||
"""
|
||||
rho_hat = fft.fftn(mesh)
|
||||
|
||||
# we also need the wave numbers
|
||||
k = fft.fftfreq(mesh.shape[0], spacing) * (2 * np.pi)
|
||||
# assuming the grid is cubic
|
||||
kx, ky, kz = np.meshgrid(k, k, k)
|
||||
k_sr = kx**2 + ky**2 + kz**2
|
||||
|
||||
k_sr[k_sr == 0] = np.inf
|
||||
|
||||
phi_hat = - 4 * np.pi * G * rho_hat / k_sr
|
||||
return np.real(fft.ifftn(phi_hat))
|
||||
|
@ -77,7 +77,8 @@ def to_particles_3d(y: np.ndarray) -> np.ndarray:
|
||||
n_steps = y.shape[0]
|
||||
n_particles = y.shape[1] // 7
|
||||
y = y.reshape((n_steps, n_particles, 7))
|
||||
# logger.debug(f"Unflattened array into {y.shape=}")
|
||||
|
||||
logger.info(f"Unflattened array into {y.shape=}")
|
||||
return y
|
||||
|
||||
|
||||
|
@ -12,3 +12,11 @@ def model_density_distribution(r_bins: np.ndarray, M: float = 5, a: float = 5) -
|
||||
"""
|
||||
rho = M / (2 * np.pi) * a / (r_bins * (r_bins + a)**3)
|
||||
return rho
|
||||
|
||||
|
||||
def model_particle_count(r_bins: np.ndarray, M: float = 5, a: float = 5, mi: float = 1) -> np.ndarray:
|
||||
rho = model_density_distribution(r_bins, M, a)
|
||||
v_shells = 4/3 * np.pi * (r_bins[1:]**3 - r_bins[:-1]**3)
|
||||
v_shells = np.insert(v_shells, 0, 4/3 * np.pi * r_bins[0]**3)
|
||||
n_shells = rho * v_shells / mi
|
||||
return n_shells
|
||||
|
@ -1,6 +1,9 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from astropy import units as u
|
||||
from matplotlib.animation import FuncAnimation
|
||||
from pathlib import Path
|
||||
from .units import apply_units
|
||||
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -42,6 +45,16 @@ def density_distribution(r_bins: np.ndarray, particles: np.ndarray, ret_error: b
|
||||
else:
|
||||
return density
|
||||
|
||||
def particle_count(r_bins, particles):
|
||||
r = np.linalg.norm(particles[:, :3], axis=1)
|
||||
# r_bins = np.insert(r_bins, 0, 0)
|
||||
count = np.zeros_like(r_bins)
|
||||
|
||||
for i in range(len(r_bins) - 1):
|
||||
mask = (r >= r_bins[i]) & (r < r_bins[i+1])
|
||||
count[i] = np.count_nonzero(mask)
|
||||
return count
|
||||
|
||||
|
||||
|
||||
def r_distribution(particles: np.ndarray):
|
||||
@ -94,17 +107,16 @@ def mean_interparticle_distance(particles: np.ndarray):
|
||||
epsilon = (1 / rho)**(1/3)
|
||||
logger.info(f"Found mean interparticle distance: {epsilon}")
|
||||
return epsilon
|
||||
# TODO: check if this is correct
|
||||
|
||||
|
||||
|
||||
def half_mass_radius(particles: np.ndarray):
|
||||
"""
|
||||
Computes the half mass radius of a set of particles.
|
||||
Assumes that the particles array has the following columns: x, y, z ...
|
||||
Assumes that the particles array has the following columns: x, y, z, m, ...
|
||||
"""
|
||||
if particles.shape[1] < 3:
|
||||
raise ValueError("Particles array must have at least 3 columns: x, y, z")
|
||||
if particles.shape[1] < 4:
|
||||
raise ValueError("Particles array must have at least 4 columns: x, y, z, m")
|
||||
|
||||
# even though in the simple example, all the masses are the same, we will consider the general case
|
||||
total_mass = np.sum(particles[:, 3])
|
||||
@ -125,31 +137,6 @@ def half_mass_radius(particles: np.ndarray):
|
||||
|
||||
|
||||
|
||||
def total_energy(particles: np.ndarray):
|
||||
"""
|
||||
Computes the total energy of a set of particles.
|
||||
Assumes that the particles array has the following columns: x, y, z, vx, vy, vz, m.
|
||||
Uses the approximation that the particles are in a central potential as computed in analytical.py
|
||||
"""
|
||||
if particles.shape[1] != 7:
|
||||
raise ValueError("Particles array must have 7 columns: x, y, z, vx, vy, vz, m")
|
||||
|
||||
# compute the kinetic energy
|
||||
v = particles[:, 3:6]
|
||||
m = particles[:, 6]
|
||||
ke = 0.5 * np.sum(m * np.linalg.norm(v, axis=1)**2)
|
||||
|
||||
# # compute the potential energy
|
||||
# forces = forces_basic.analytical_forces(particles)
|
||||
# r = np.linalg.norm(particles[:, :3], axis=1)
|
||||
# pe_particles = -forces[:, 0] * particles[:, 0] - forces[:, 1] * particles[:, 1] - forces[:, 2] * particles[:, 2]
|
||||
# pe = np.sum(pe_particles)
|
||||
# # TODO: i am pretty sure this is wrong
|
||||
pe = 0
|
||||
return ke + pe
|
||||
|
||||
|
||||
|
||||
def particles_plot_3d(positions: np.ndarray, masses: np.ndarray, title: str = "Particle distribution (3D)"):
|
||||
"""
|
||||
Plots a 3D scatter plot of a set of particles.
|
||||
@ -214,3 +201,129 @@ def particles_plot_2d(particles: np.ndarray, title: str = "Flattened distributio
|
||||
plt.show()
|
||||
else:
|
||||
ax.hist2d(x, y, bins=100, cmap='coolwarm')
|
||||
|
||||
|
||||
def particles_plot_2d_multiframe(particles_3d: np.ndarray, t_range: np.ndarray, title: str):
|
||||
# reduce the font size
|
||||
fig, axs = plt.subplots(4, 6, figsize=(20, 12))
|
||||
fig.suptitle(title)
|
||||
|
||||
# make sure we have enough time steps to show
|
||||
diff = axs.size - particles_3d.shape[0]
|
||||
if diff > 0:
|
||||
logger.debug(f"Adding dummy time steps: {diff=} -> {axs.size=}")
|
||||
plot_t_range = np.concatenate([t_range, np.zeros(diff)])
|
||||
plot_particles_in_time = particles_3d
|
||||
elif diff < 0:
|
||||
logger.debug(f"Too many steps to plot - reducing: {particles_3d.shape[0]} -> {axs.size}")
|
||||
# skip some of the time steps
|
||||
plot_t_range = []
|
||||
plot_particles_in_time = []
|
||||
for i in range(axs.size):
|
||||
idx = int(i / axs.size * particles_3d.shape[0])
|
||||
# make sure we have the first and last time step are included
|
||||
if i == 0:
|
||||
idx = 0
|
||||
elif i == axs.size - 1:
|
||||
idx = particles_3d.shape[0] - 1
|
||||
|
||||
plot_t_range.append(t_range[idx])
|
||||
plot_particles_in_time.append(particles_3d[idx])
|
||||
else:
|
||||
plot_t_range = t_range
|
||||
plot_particles_in_time = particles_3d
|
||||
|
||||
for p, t, a in zip(plot_particles_in_time, plot_t_range, axs.flat):
|
||||
a.set_title(f"t={t:.2g}")
|
||||
particles_plot_2d(p, ax=a)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def particles_plot_2d_animated(particles_3d: np.ndarray, t_range: np.ndarray, output: Path):
|
||||
# Also: show the 2D evolution as a GIF
|
||||
plt.ioff()
|
||||
fig, ax = plt.subplots()
|
||||
fig.suptitle("Particle evolution (top view)")
|
||||
ax.set_aspect('equal')
|
||||
xmax = np.max(particles_3d[:, :, :3])
|
||||
ax.set_xlim(-xmax, xmax)
|
||||
ax.set_ylim(-xmax, xmax)
|
||||
ax.set_xlabel('x')
|
||||
ax.set_ylabel('y')
|
||||
|
||||
def update(i):
|
||||
ax.set_title(f"t={t_range[i]:.2g}")
|
||||
particles_plot_2d(particles_3d[i], ax=ax)
|
||||
ax.set_xlim(-xmax, xmax) # Ensure x limits remain fixed
|
||||
ax.set_ylim(-xmax, xmax) # Ensure y limits remain fixed
|
||||
|
||||
ani = FuncAnimation(fig, update, frames=range(len(particles_3d)), repeat=False)
|
||||
ani.save(output, writer='ffmpeg', fps=5)
|
||||
plt.close(fig)
|
||||
plt.ion()
|
||||
|
||||
|
||||
|
||||
def particles_plot_radial_evolution(particles_3d: np.ndarray, t_range: np.ndarray):
|
||||
# radial extrema of the particles - disk surface
|
||||
n_steps = particles_3d.shape[0]
|
||||
r_mins = np.zeros(n_steps)
|
||||
r_maxs = np.zeros(n_steps)
|
||||
r_hms = np.zeros(n_steps)
|
||||
for i in range(n_steps):
|
||||
p = particles_3d[i, ...]
|
||||
# exclude the black hole
|
||||
r = np.linalg.norm(p[1:,:3], axis=1)
|
||||
# plt.plot(r[1::100], alpha=0.5)
|
||||
r_mins[i] = np.min(r)
|
||||
r_maxs[i] = np.max(r)
|
||||
r_hms[i] = half_mass_radius(p)
|
||||
|
||||
r_mins = apply_units(r_mins, "position")
|
||||
r_maxs = apply_units(r_maxs, "position")
|
||||
|
||||
plt.figure()
|
||||
plt.plot(t_range, r_mins, label='$r_{min}$', color=plt.cm.Blues(0.5))
|
||||
plt.plot(t_range, r_maxs, label='$r_{max}$', color=plt.cm.Blues(0.8))
|
||||
plt.fill_between(t_range, r_mins, r_maxs, color=plt.cm.Blues(0.2))
|
||||
plt.plot(t_range, r_hms, label='$r_{hm}$', color=plt.cm.Greens(0.5))
|
||||
|
||||
# show the initial conditions
|
||||
plt.hlines(r_mins[0], t_range[0], t_range[-1], color='black', linestyle='--')
|
||||
plt.hlines(r_maxs[0], t_range[0], t_range[-1], color='black', linestyle='--')
|
||||
|
||||
|
||||
plt.title(f'Radial extrema over {n_steps} timesteps')
|
||||
plt.xlabel('Integration time')
|
||||
plt.ylabel(f'{r_mins.unit:latex}')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
def particles_plot_orbits(particles_3d: np.ndarray, t_range: np.ndarray):
|
||||
# particle orbits
|
||||
fig, axs = plt.subplots(2, 1)
|
||||
axs[0].set_position([0, 0.3, 1, 0.6])
|
||||
axs[0].set_xlabel('x')
|
||||
axs[0].set_ylabel('y')
|
||||
|
||||
axs[1].set_position([0, 0, 1, 0.2])
|
||||
axs[1].set_xlabel("t")
|
||||
axs[1].set_ylabel('z')
|
||||
fig.suptitle('Particle orbits')
|
||||
|
||||
print(particles_3d.shape)
|
||||
mid = particles_3d.shape[1] // 2
|
||||
particle_idx = [1, 2, 3, 4, 5, mid-2, mid-1, mid, mid+1, mid+2, -5, -4, -3, -2, -1]
|
||||
colors = plt.cm.Blues(np.linspace(0.2, 0.8, len(particle_idx)))
|
||||
for i, idx in enumerate(particle_idx):
|
||||
x = particles_3d[:, idx, 0]
|
||||
y = particles_3d[:, idx, 1]
|
||||
z = particles_3d[:, idx, 2]
|
||||
axs[0].plot(x, y, label=f'p{idx}', color=colors[i])
|
||||
axs[1].plot(z, label=f'p{idx}', color=colors[i])
|
||||
|
||||
# plt.legend()
|
||||
plt.show()
|
@ -97,34 +97,18 @@ def particles_to_mesh(particles: np.ndarray, mesh: np.ndarray, axis: np.ndarray,
|
||||
mesh[ijk[0], ijk[1], ijk[2]] += weight * m
|
||||
|
||||
|
||||
'''
|
||||
#### Actually need to patch this
|
||||
def ode_setup(particles: np.ndarray, force_function: callable) -> tuple[np.ndarray, callable]:
|
||||
def pm_ode_setup(particles: np.ndarray, force_function: callable, boundary_condition: str) -> tuple[np.ndarray, callable]:
|
||||
"""
|
||||
Linearizes the ODE system for the particles interacting gravitationally.
|
||||
Returns:
|
||||
- the Y0 array corresponding to the initial conditions (x0 and v0)
|
||||
- the function that computes the right hand side of the ODE with function signature f(t, y)
|
||||
Assumes that the particles array has the following columns: x, y, z, vx, vy, vz, m.
|
||||
Returns a linear ode function that can be integrated by an ODE solver and implements the given boundary conditions.
|
||||
"""
|
||||
if particles.shape[1] != 7:
|
||||
raise ValueError("Particles array must have 7 columns: x, y, z, vx, vy, vz, m")
|
||||
|
||||
# for the integrators we need to flatten array which contains 7 columns for now
|
||||
# we don't really care how we reshape as long as we unflatten consistently
|
||||
particles = particles.flatten()
|
||||
logger.debug(f"Reshaped 7 columns into {particles.shape=}")
|
||||
|
||||
def f(y, t):
|
||||
def f(p, t):
|
||||
"""
|
||||
Computes the right hand side of the ODE system.
|
||||
The ODE system is linearized around the current positions and velocities.
|
||||
"""
|
||||
p = to_particles(y)
|
||||
# this is explicitly a copy, which has shape (n, 7)
|
||||
# columns x, y, z, vx, vy, vz, m
|
||||
# (need to keep y intact since integrators make multiple function calls)
|
||||
|
||||
forces = force_function(p[:, [0, 1, 2, -1]])
|
||||
|
||||
# compute the accelerations
|
||||
@ -139,12 +123,6 @@ def ode_setup(particles: np.ndarray, force_function: callable) -> tuple[np.ndarr
|
||||
# the masses remain unchanged
|
||||
# p[:, -1] = p[:, -1]
|
||||
|
||||
# flatten the array again
|
||||
# logger.debug(f"As particles: {y}")
|
||||
p = p.reshape(-1, copy=False)
|
||||
|
||||
# logger.debug(f"As column: {y}")
|
||||
return p
|
||||
|
||||
return particles, f
|
||||
'''
|
||||
return f
|
||||
|
Loading…
x
Reference in New Issue
Block a user