working cache
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m19s
				
			
		
			
				
	
				Run linting on the backend code / Build (pull_request) Successful in 25s
				
			
		
			
				
	
				Run testing on the backend code / Build (pull_request) Failing after 7m37s
				
			
		
			
				
	
				Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m19s
				
			Run linting on the backend code / Build (pull_request) Successful in 25s
				
			Run testing on the backend code / Build (pull_request) Failing after 7m37s
				
			Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
				
			This commit is contained in:
		
							
								
								
									
										1
									
								
								backend/.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								backend/.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -1,4 +1,5 @@
 | 
			
		||||
# osm-cache and wikidata cache
 | 
			
		||||
cache_XML/
 | 
			
		||||
cache/
 | 
			
		||||
apicache/
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										133
									
								
								backend/src/overpass/caching_strategy.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								backend/src/overpass/caching_strategy.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,133 @@
 | 
			
		||||
import os
 | 
			
		||||
import xml.etree.ElementTree as ET
 | 
			
		||||
import hashlib
 | 
			
		||||
import ujson
 | 
			
		||||
 | 
			
		||||
from ..constants import OSM_CACHE_DIR
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_cache_key(query: str) -> str:
 | 
			
		||||
    """
 | 
			
		||||
    Generate a unique cache key for the query using a hash function.
 | 
			
		||||
    This ensures that queries with different parameters are cached separately.
 | 
			
		||||
    """
 | 
			
		||||
    return hashlib.md5(query.encode('utf-8')).hexdigest()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CachingStrategyBase:
 | 
			
		||||
    def get(self, key):
 | 
			
		||||
        raise NotImplementedError('Subclass should implement get')
 | 
			
		||||
 | 
			
		||||
    def set(self, key, data):
 | 
			
		||||
        raise NotImplementedError('Subclass should implement set')
 | 
			
		||||
 | 
			
		||||
    def close(self):
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# For later use if xml does not suit well
 | 
			
		||||
class JSONCache(CachingStrategyBase):
 | 
			
		||||
    def __init__(self, cache_dir=OSM_CACHE_DIR):
 | 
			
		||||
        # Add the class name as a suffix to the directory
 | 
			
		||||
        self._cache_dir = f'{cache_dir}_JSON'
 | 
			
		||||
        if not os.path.exists(self._cache_dir):
 | 
			
		||||
            os.makedirs(self._cache_dir)
 | 
			
		||||
 | 
			
		||||
    def _filename(self, key):
 | 
			
		||||
        return os.path.join(self._cache_dir, f'{key}.json')
 | 
			
		||||
 | 
			
		||||
    def get(self, key):
 | 
			
		||||
        filename = self._filename(key)
 | 
			
		||||
        if os.path.exists(filename):
 | 
			
		||||
            with open(filename, 'r') as file:
 | 
			
		||||
                return ujson.load(file)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def set(self, key, value):
 | 
			
		||||
        with open(self._filename(key), 'w') as file:
 | 
			
		||||
            ujson.dump(value, file)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class XMLCache(CachingStrategyBase):
 | 
			
		||||
    def __init__(self, cache_dir=OSM_CACHE_DIR):
 | 
			
		||||
        # Add the class name as a suffix to the directory
 | 
			
		||||
        self._cache_dir = f'{cache_dir}_XML'
 | 
			
		||||
        if not os.path.exists(self._cache_dir):
 | 
			
		||||
            os.makedirs(self._cache_dir)
 | 
			
		||||
 | 
			
		||||
    def _filename(self, key):
 | 
			
		||||
        return os.path.join(self._cache_dir, f'{key}.xml')
 | 
			
		||||
 | 
			
		||||
    def get(self, key):
 | 
			
		||||
        """Retrieve XML data from the cache and parse it as an ElementTree."""
 | 
			
		||||
        filename = self._filename(key)
 | 
			
		||||
        if os.path.exists(filename):
 | 
			
		||||
            try:
 | 
			
		||||
                # Parse and return the cached XML data
 | 
			
		||||
                tree = ET.parse(filename)
 | 
			
		||||
                return tree.getroot()  # Return the root element of the parsed XML
 | 
			
		||||
            except ET.ParseError:
 | 
			
		||||
                print(f"Error parsing cached XML file: {filename}")
 | 
			
		||||
                return None
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def set(self, key, value):
 | 
			
		||||
        """Save the XML data as an ElementTree to the cache."""
 | 
			
		||||
        filename = self._filename(key)
 | 
			
		||||
        tree = ET.ElementTree(value)  # value is expected to be an ElementTree root element
 | 
			
		||||
        try:
 | 
			
		||||
            # Write the XML data to a file
 | 
			
		||||
            with open(filename, 'wb') as file:
 | 
			
		||||
                tree.write(file, encoding='utf-8', xml_declaration=True)
 | 
			
		||||
        except IOError as e:
 | 
			
		||||
            print(f"Error writing to cache file: {filename} - {e}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CachingStrategy:
 | 
			
		||||
    __strategy = XMLCache()  # Default caching strategy
 | 
			
		||||
 | 
			
		||||
    # Dictionary to map string identifiers to caching strategy classes
 | 
			
		||||
    __strategies = {
 | 
			
		||||
        'XML': XMLCache,
 | 
			
		||||
        'JSON': JSONCache,
 | 
			
		||||
        # Add more strategies here if needed
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def use(cls, strategy_name='XML', **kwargs):
 | 
			
		||||
        """
 | 
			
		||||
        Set the caching strategy based on the strategy_name provided.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            strategy_name (str): The name of the caching strategy (e.g., 'XML').
 | 
			
		||||
            **kwargs: Additional keyword arguments to pass when initializing the strategy.
 | 
			
		||||
        """
 | 
			
		||||
        # If a previous strategy exists, close it
 | 
			
		||||
        if cls.__strategy:
 | 
			
		||||
            cls.__strategy.close()
 | 
			
		||||
        
 | 
			
		||||
        # Retrieve the strategy class based on the strategy name
 | 
			
		||||
        strategy_class = cls.__strategies.get(strategy_name)
 | 
			
		||||
        
 | 
			
		||||
        if not strategy_class:
 | 
			
		||||
            raise ValueError(f"Unknown caching strategy: {strategy_name}")
 | 
			
		||||
        
 | 
			
		||||
        # Instantiate the new strategy with the provided arguments
 | 
			
		||||
        cls.__strategy = strategy_class(**kwargs)
 | 
			
		||||
        return cls.__strategy
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def get(cls, key):
 | 
			
		||||
        """Get data from the current strategy's cache."""
 | 
			
		||||
        if not cls.__strategy:
 | 
			
		||||
            raise RuntimeError("Caching strategy has not been set.")
 | 
			
		||||
        return cls.__strategy.get(key)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def set(cls, key, value):
 | 
			
		||||
        """Set data in the current strategy's cache."""
 | 
			
		||||
        if not cls.__strategy:
 | 
			
		||||
            raise RuntimeError("Caching strategy has not been set.")
 | 
			
		||||
        cls.__strategy.set(key, value)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										114
									
								
								backend/src/overpass/overpass.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								backend/src/overpass/overpass.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,114 @@
 | 
			
		||||
from typing import Literal, List
 | 
			
		||||
import urllib
 | 
			
		||||
import json
 | 
			
		||||
import xml.etree.ElementTree as ET
 | 
			
		||||
 | 
			
		||||
from .caching_strategy import get_cache_key, CachingStrategy
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
ElementTypes = List[Literal['way', 'node', 'relation']]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def build_query(area: tuple, element_types: ElementTypes, selector: str, 
 | 
			
		||||
                         conditions=[], out='center'):
 | 
			
		||||
    """
 | 
			
		||||
    Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        area (tuple): A tuple representing the geographical search area, typically in the format 
 | 
			
		||||
                      (radius, latitude, longitude). The first element is a string like "around:2000" 
 | 
			
		||||
                      specifying the search radius, and the second and third elements represent 
 | 
			
		||||
                      the latitude and longitude as floats or strings.
 | 
			
		||||
        element_types (list[str]): A list of OSM element types to search for. Must be one or more of 
 | 
			
		||||
                                   'Way', 'Node', or 'Relation'.
 | 
			
		||||
        selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
 | 
			
		||||
        conditions (list, optional): A list of conditions to apply as additional filters for the 
 | 
			
		||||
                                     selected OSM elements. The conditions should be written in 
 | 
			
		||||
                                     the Overpass QL format, and they are combined with '&&' if 
 | 
			
		||||
                                     multiple are provided. Defaults to an empty list.
 | 
			
		||||
        out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'. 
 | 
			
		||||
                             Defaults to 'center'.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        str: The constructed Overpass QL query string.
 | 
			
		||||
 | 
			
		||||
    Notes:
 | 
			
		||||
        - If no conditions are provided, the query will just use the `selector` to filter the OSM 
 | 
			
		||||
          elements without additional constraints.
 | 
			
		||||
        - The search area must always formatted as "(radius, lat, lon)".
 | 
			
		||||
    """
 | 
			
		||||
    if not isinstance(conditions, list) :
 | 
			
		||||
        conditions = [conditions]
 | 
			
		||||
 | 
			
		||||
    query = '('
 | 
			
		||||
 | 
			
		||||
    # Round the radius to nearest 50 and coordinates to generate less queries
 | 
			
		||||
    search_radius = round(area[0] / 50) * 50
 | 
			
		||||
    loc = tuple((round(area[1], 2), round(area[2], 2)))
 | 
			
		||||
    search_area = f"(around:{search_radius}, {str(loc[0])}, {str(loc[1])})"
 | 
			
		||||
 | 
			
		||||
    if conditions :
 | 
			
		||||
        conditions = '(if: ' + ' && '.join(conditions) + ')'
 | 
			
		||||
    else :
 | 
			
		||||
        conditions = ''
 | 
			
		||||
 | 
			
		||||
    for elem in element_types :
 | 
			
		||||
        query += elem + '[' + selector + ']' + conditions + search_area + ';'
 | 
			
		||||
 | 
			
		||||
    query += ');' + f'out {out};'
 | 
			
		||||
 | 
			
		||||
    return query
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def send_overpass_query(query: str, use_cache: bool = True) -> dict:
 | 
			
		||||
    """
 | 
			
		||||
    Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        query (str): The Overpass QL query to be sent to the Overpass API.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        dict: The parsed JSON response from the Overpass API, or None if the request fails.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Generate a cache key for the current query
 | 
			
		||||
    cache_key = get_cache_key(query)
 | 
			
		||||
 | 
			
		||||
    # Try to fetch the result from the cache
 | 
			
		||||
    cached_response = CachingStrategy.get(cache_key)
 | 
			
		||||
    if cached_response:
 | 
			
		||||
        print("Cache hit!")
 | 
			
		||||
        return cached_response
 | 
			
		||||
 | 
			
		||||
    # Define the Overpass API endpoint
 | 
			
		||||
    overpass_url = "https://overpass-api.de/api/interpreter"
 | 
			
		||||
 | 
			
		||||
    # Prepare the data to be sent as POST request, encoded as bytes
 | 
			
		||||
    data = urllib.parse.urlencode({'data': query}).encode('utf-8')
 | 
			
		||||
 | 
			
		||||
    # Create a custom header with a User-Agent
 | 
			
		||||
    headers = {
 | 
			
		||||
        'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        # Create a Request object with the specified URL, data, and headers
 | 
			
		||||
        request = urllib.request.Request(overpass_url, data=data, headers=headers)
 | 
			
		||||
        
 | 
			
		||||
        # Send the request and read the response
 | 
			
		||||
        with urllib.request.urlopen(request) as response:
 | 
			
		||||
            # Read and decode the response
 | 
			
		||||
            response_data = response.read().decode('utf-8')
 | 
			
		||||
            root = ET.fromstring(response_data)
 | 
			
		||||
 | 
			
		||||
            # Cache the response data as an ElementTree root
 | 
			
		||||
            CachingStrategy.set(cache_key, root)
 | 
			
		||||
 | 
			
		||||
            return root
 | 
			
		||||
 | 
			
		||||
    except urllib.error.URLError as e:
 | 
			
		||||
        print(f"Error connecting to Overpass API: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    except json.JSONDecodeError:
 | 
			
		||||
        print("Error decoding the JSON response from Overpass API.")
 | 
			
		||||
        return None
 | 
			
		||||
@@ -11,7 +11,7 @@ def client():
 | 
			
		||||
    """Client used to call the app."""
 | 
			
		||||
    return TestClient(app)
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
def test_turckheim(client, request):    # pylint: disable=redefined-outer-name
 | 
			
		||||
    """
 | 
			
		||||
    Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
 | 
			
		||||
@@ -54,7 +54,7 @@ def test_turckheim(client, request):    # pylint: disable=redefined-outer-name
 | 
			
		||||
    assert len(landmarks) > 2           # check that there is something to visit
 | 
			
		||||
    assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
 | 
			
		||||
    # assert 2==3
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name
 | 
			
		||||
    """
 | 
			
		||||
@@ -97,7 +97,7 @@ def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name
 | 
			
		||||
    assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
 | 
			
		||||
    # assert 2 == 3
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
def test_cologne(client, request) :   # pylint: disable=redefined-outer-name
 | 
			
		||||
    """
 | 
			
		||||
    Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
 | 
			
		||||
@@ -336,7 +336,7 @@ def test_shopping(client, request) :   # pylint: disable=redefined-outer-name
 | 
			
		||||
    assert response.status_code == 200  # check for successful planning
 | 
			
		||||
    assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
 | 
			
		||||
    assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# def test_new_trip_single_prefs(client):
 | 
			
		||||
#     response = client.post(
 | 
			
		||||
 
 | 
			
		||||
@@ -1,12 +1,15 @@
 | 
			
		||||
"""Module used to import data from OSM and arrange them in categories."""
 | 
			
		||||
import logging
 | 
			
		||||
import yaml
 | 
			
		||||
import xml.etree.ElementTree as ET
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from ..structs.preferences import Preferences
 | 
			
		||||
from ..structs.landmark import Landmark
 | 
			
		||||
from .take_most_important import take_most_important
 | 
			
		||||
from .cluster_manager import ClusterManager
 | 
			
		||||
from .overpass import OverpassQueryBuilder, send_overpass_query, parse_result
 | 
			
		||||
from ..overpass.overpass import build_query, send_overpass_query
 | 
			
		||||
from ..overpass.caching_strategy import CachingStrategy
 | 
			
		||||
 | 
			
		||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
 | 
			
		||||
 | 
			
		||||
@@ -53,8 +56,7 @@ class LandmarkManager:
 | 
			
		||||
            self.walking_speed = parameters['average_walking_speed']
 | 
			
		||||
            self.detour_factor = parameters['detour_factor']
 | 
			
		||||
 | 
			
		||||
        # self.overpass = Overpass()
 | 
			
		||||
        # CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
 | 
			
		||||
        CachingStrategy.use('XML', cache_dir=OSM_CACHE_DIR)
 | 
			
		||||
 | 
			
		||||
        self.logger.info('LandmakManager successfully initialized.')
 | 
			
		||||
 | 
			
		||||
@@ -84,35 +86,32 @@ class LandmarkManager:
 | 
			
		||||
        all_landmarks = set()
 | 
			
		||||
 | 
			
		||||
        # Create a bbox using the around technique, tuple of strings
 | 
			
		||||
        bbox = tuple((f"around:{min(2000, reachable_bbox_side/2)}", str(center_coordinates[0]), str(center_coordinates[1])))
 | 
			
		||||
        bbox = tuple((min(2000, reachable_bbox_side/2), center_coordinates[0], center_coordinates[1]))
 | 
			
		||||
 | 
			
		||||
        # list for sightseeing
 | 
			
		||||
        if preferences.sightseeing.score != 0:
 | 
			
		||||
            self.logger.debug('Fetching sightseeing landmarks...')
 | 
			
		||||
            score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
 | 
			
		||||
            current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
 | 
			
		||||
            current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
 | 
			
		||||
            all_landmarks.update(current_landmarks)
 | 
			
		||||
            self.logger.debug('Fetching sightseeing clusters...')
 | 
			
		||||
 | 
			
		||||
            # special pipeline for historic neighborhoods
 | 
			
		||||
            neighborhood_manager = ClusterManager(bbox, 'sightseeing')
 | 
			
		||||
            historic_clusters = neighborhood_manager.generate_clusters()
 | 
			
		||||
            all_landmarks.update(historic_clusters)
 | 
			
		||||
            self.logger.debug('Sightseeing clusters done')
 | 
			
		||||
            # neighborhood_manager = ClusterManager(bbox, 'sightseeing')
 | 
			
		||||
            # historic_clusters = neighborhood_manager.generate_clusters()
 | 
			
		||||
            # all_landmarks.update(historic_clusters)
 | 
			
		||||
            # self.logger.debug('Sightseeing clusters done')
 | 
			
		||||
 | 
			
		||||
        # list for nature
 | 
			
		||||
        if preferences.nature.score != 0:
 | 
			
		||||
            self.logger.debug('Fetching nature landmarks...')
 | 
			
		||||
            score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
 | 
			
		||||
            current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
 | 
			
		||||
            current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
 | 
			
		||||
            all_landmarks.update(current_landmarks)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        # list for shopping
 | 
			
		||||
        if preferences.shopping.score != 0:
 | 
			
		||||
            self.logger.debug('Fetching shopping landmarks...')
 | 
			
		||||
            score_function = lambda score: score * 10 * preferences.shopping.score / 5
 | 
			
		||||
            current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
 | 
			
		||||
            current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
 | 
			
		||||
            self.logger.debug('Fetching shopping clusters...')
 | 
			
		||||
 | 
			
		||||
            # set time for all shopping activites :
 | 
			
		||||
@@ -121,10 +120,10 @@ class LandmarkManager:
 | 
			
		||||
            all_landmarks.update(current_landmarks)
 | 
			
		||||
 | 
			
		||||
            # special pipeline for shopping malls
 | 
			
		||||
            shopping_manager = ClusterManager(bbox, 'shopping')
 | 
			
		||||
            shopping_clusters = shopping_manager.generate_clusters()
 | 
			
		||||
            all_landmarks.update(shopping_clusters)
 | 
			
		||||
            self.logger.debug('Shopping clusters done')
 | 
			
		||||
            # shopping_manager = ClusterManager(bbox, 'shopping')
 | 
			
		||||
            # shopping_clusters = shopping_manager.generate_clusters()
 | 
			
		||||
            # all_landmarks.update(shopping_clusters)
 | 
			
		||||
            # self.logger.debug('Shopping clusters done')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -133,8 +132,19 @@ class LandmarkManager:
 | 
			
		||||
 | 
			
		||||
        return all_landmarks, landmarks_constrained
 | 
			
		||||
 | 
			
		||||
    def set_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
 | 
			
		||||
    def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
 | 
			
		||||
        """
 | 
			
		||||
        Calculate and set the attractiveness score for a given landmark.
 | 
			
		||||
 | 
			
		||||
        This method evaluates the landmark's attractiveness based on its properties 
 | 
			
		||||
        (number of tags, presence of Wikipedia URL, image, website, and whether it's 
 | 
			
		||||
        a place of worship) and adjusts the score using the user's preference level.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
        landmark (Landmark): The landmark object to score.
 | 
			
		||||
        landmarktype (str): The type of the landmark (currently unused).
 | 
			
		||||
        preference_level (int): The user's preference level for this landmark type.
 | 
			
		||||
        """
 | 
			
		||||
        score = landmark.n_tags**self.tag_exponent
 | 
			
		||||
        if landmark.wiki_url :
 | 
			
		||||
            score *= self.wikipedia_bonus
 | 
			
		||||
@@ -144,11 +154,13 @@ class LandmarkManager:
 | 
			
		||||
            score *= self.wikipedia_bonus
 | 
			
		||||
        if landmark.is_place_of_worship :
 | 
			
		||||
            score *= self.church_coeff
 | 
			
		||||
        if landmarktype == 'nature' :
 | 
			
		||||
            score *= self.nature_coeff
 | 
			
		||||
 | 
			
		||||
        landmark.attractiveness = int(score * preference_level)
 | 
			
		||||
        landmark.attractiveness = int(score * preference_level * 2)
 | 
			
		||||
 | 
			
		||||
    '''
 | 
			
		||||
    def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
 | 
			
		||||
 | 
			
		||||
    def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]:
 | 
			
		||||
        """
 | 
			
		||||
        Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
 | 
			
		||||
 | 
			
		||||
@@ -183,165 +195,7 @@ class LandmarkManager:
 | 
			
		||||
                query_conditions = []
 | 
			
		||||
                element_types.append('node')
 | 
			
		||||
 | 
			
		||||
            query = OverpassQueryBuilder(
 | 
			
		||||
                area = bbox,
 | 
			
		||||
                element_types = element_types,
 | 
			
		||||
                selector = sel,
 | 
			
		||||
                conditions = query_conditions,        # except for nature....
 | 
			
		||||
                out = 'center'
 | 
			
		||||
                )
 | 
			
		||||
            self.logger.debug(f"Query: {query}")
 | 
			
		||||
 | 
			
		||||
            try:
 | 
			
		||||
                result = self.overpass.query(query)
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                self.logger.error(f"Error fetching landmarks: {e}")
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            for elem in result.elements():
 | 
			
		||||
 | 
			
		||||
                name = elem.tag('name')
 | 
			
		||||
                location = (elem.centerLat(), elem.centerLon())
 | 
			
		||||
                osm_type = elem.type()              # Add type: 'way' or 'relation'
 | 
			
		||||
                osm_id = elem.id()                  # Add OSM id
 | 
			
		||||
 | 
			
		||||
                # TODO: exclude these from the get go
 | 
			
		||||
                # handle unprecise and no-name locations
 | 
			
		||||
                if name is None or location[0] is None:
 | 
			
		||||
                    if osm_type == 'node' and 'viewpoint' in elem.tags().values():
 | 
			
		||||
                        name = 'Viewpoint'
 | 
			
		||||
                        name_en = 'Viewpoint'
 | 
			
		||||
                        location = (elem.lat(), elem.lon())
 | 
			
		||||
                    else :
 | 
			
		||||
                        continue
 | 
			
		||||
 | 
			
		||||
                # skip if part of another building
 | 
			
		||||
                if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                elem_type = landmarktype                # Add the landmark type as 'sightseeing,
 | 
			
		||||
                n_tags = len(elem.tags().keys())        # Add number of tags
 | 
			
		||||
                score = n_tags**self.tag_exponent       # Add score
 | 
			
		||||
                duration = 5                            # Set base duration to 5 minutes
 | 
			
		||||
                # skip = False                            # Set skipping parameter to false
 | 
			
		||||
                tag_values = set(elem.tags().values())  # Store tag values
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
                # Retrieve image, name and website :
 | 
			
		||||
                image_url = elem.tag('image')
 | 
			
		||||
                website_url = elem.tag('website')
 | 
			
		||||
                if website_url is None :
 | 
			
		||||
                    website_url = elem.tag('wikipedia')
 | 
			
		||||
                name_en = elem.tag('name:en')
 | 
			
		||||
 | 
			
		||||
                if elem_type != "nature" and elem.tag('leisure') == "park":
 | 
			
		||||
                    elem_type = "nature"
 | 
			
		||||
 | 
			
		||||
                if elem.tag('wikipedia') is not None :
 | 
			
		||||
                    score += self.wikipedia_bonus
 | 
			
		||||
 | 
			
		||||
                # Skip element if it is an administrative boundary or a disused thing or it is an appartement and useless amenities
 | 
			
		||||
                if elem.tag('boundary') is not None or elem.tag('disused') is not None:
 | 
			
		||||
                    continue
 | 
			
		||||
                if 'apartments' in elem.tags().values():
 | 
			
		||||
                    continue
 | 
			
		||||
                if elem.tag('historic') is not None and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']:
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                # Adjust scoring, browse through tag keys using wildcards
 | 
			
		||||
                for tag_key in elem.tags().keys():
 | 
			
		||||
                    if "pay" in tag_key:
 | 
			
		||||
                        # payment options are misleading and should not count for the scoring.
 | 
			
		||||
                        score += self.pay_bonus
 | 
			
		||||
 | 
			
		||||
                    if "building:" in tag_key:
 | 
			
		||||
                        # do not count the building description as being particularly useful
 | 
			
		||||
                        n_tags -= 1
 | 
			
		||||
 | 
			
		||||
                    # if landmarktype != "shopping":
 | 
			
		||||
                    #     if "shop" in tag_key:
 | 
			
		||||
                    #         skip = True
 | 
			
		||||
                    #         break
 | 
			
		||||
                        # if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
 | 
			
		||||
                        #     skip = True
 | 
			
		||||
                        #     break
 | 
			
		||||
 | 
			
		||||
                # if skip:
 | 
			
		||||
                #     continue
 | 
			
		||||
 | 
			
		||||
                score = score_function(score)
 | 
			
		||||
 | 
			
		||||
                if "place_of_worship" in tag_values :
 | 
			
		||||
                    if 'cathedral' in tag_values :
 | 
			
		||||
                        duration = 10
 | 
			
		||||
                    else :
 | 
			
		||||
                        score *= self.church_coeff
 | 
			
		||||
 | 
			
		||||
                elif 'viewpoint' in tag_values :
 | 
			
		||||
                    # viewpoints must count more
 | 
			
		||||
                    score = score * self.viewpoint_bonus
 | 
			
		||||
 | 
			
		||||
                elif "museum" in tag_values or "aquarium" in tag_values or "planetarium" in tag_values:
 | 
			
		||||
                    duration = 60
 | 
			
		||||
 | 
			
		||||
                # finally create our own landmark object
 | 
			
		||||
                landmark = Landmark(
 | 
			
		||||
                    name = name,
 | 
			
		||||
                    type = elem_type,
 | 
			
		||||
                    location = location,
 | 
			
		||||
                    osm_type = osm_type,
 | 
			
		||||
                    osm_id = osm_id,
 | 
			
		||||
                    attractiveness = int(score),
 | 
			
		||||
                    must_do = False,
 | 
			
		||||
                    n_tags = int(n_tags),
 | 
			
		||||
                    duration = int(duration),
 | 
			
		||||
                    name_en = name_en,
 | 
			
		||||
                    image_url = image_url,
 | 
			
		||||
                    website_url = website_url
 | 
			
		||||
                )
 | 
			
		||||
                return_list.append(landmark)
 | 
			
		||||
 | 
			
		||||
        self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
 | 
			
		||||
 | 
			
		||||
        return return_list
 | 
			
		||||
    '''
 | 
			
		||||
 | 
			
		||||
    def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
 | 
			
		||||
        """
 | 
			
		||||
        Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
 | 
			
		||||
            amenity_selector (dict): The Overpass API query selector for the desired landmark type. 
 | 
			
		||||
            landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
 | 
			
		||||
            score_function (callable): The function to compute the score of the landmark based on its attributes.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
 | 
			
		||||
 | 
			
		||||
        Notes:
 | 
			
		||||
            - Landmarks are fetched using Overpass API queries.
 | 
			
		||||
            - Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
 | 
			
		||||
            - Landmarks are filtered based on various conditions including tags and type.
 | 
			
		||||
            - Scores are assigned to landmarks based on their attributes and surrounding elements.
 | 
			
		||||
        """
 | 
			
		||||
        return_list = []
 | 
			
		||||
 | 
			
		||||
        if landmarktype == 'nature' : query_conditions = []
 | 
			
		||||
        else : query_conditions = ['count_tags()>5']
 | 
			
		||||
 | 
			
		||||
        # caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
 | 
			
		||||
        # we need to split the selectors into separate queries and merge the results
 | 
			
		||||
        for sel in dict_to_selector_list(amenity_selector):
 | 
			
		||||
            # self.logger.debug(f"Current selector: {sel}")
 | 
			
		||||
 | 
			
		||||
            element_types = ['way', 'relation']
 | 
			
		||||
 | 
			
		||||
            if 'viewpoint' in sel :
 | 
			
		||||
                query_conditions = []
 | 
			
		||||
                element_types.append('node')
 | 
			
		||||
 | 
			
		||||
            query = OverpassQueryBuilder(
 | 
			
		||||
            query = build_query(
 | 
			
		||||
                area = bbox,
 | 
			
		||||
                element_types = element_types,
 | 
			
		||||
                selector = sel,
 | 
			
		||||
@@ -356,12 +210,110 @@ class LandmarkManager:
 | 
			
		||||
                self.logger.error(f"Error fetching landmarks: {e}")
 | 
			
		||||
                continue
 | 
			
		||||
                
 | 
			
		||||
            return_list = parse_result(result, landmarktype)
 | 
			
		||||
            return_list += self.parse_overpass_result(result, landmarktype, preference_level)
 | 
			
		||||
 | 
			
		||||
        self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
 | 
			
		||||
 | 
			
		||||
        return return_list
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def parse_overpass_result(self, root: ET.Element, landmarktype, preference_level) -> list[Landmark]:
 | 
			
		||||
        """
 | 
			
		||||
        Parse the Overpass API result and extract landmarks.
 | 
			
		||||
 | 
			
		||||
        This method processes the XML root element returned by the Overpass API and 
 | 
			
		||||
        extracts landmarks of types 'node', 'way', and 'relation'. It retrieves 
 | 
			
		||||
        relevant information such as name, coordinates, and tags, and converts them 
 | 
			
		||||
        into Landmark objects.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
        root (ET.Element): The root element of the XML response from Overpass API.
 | 
			
		||||
        elem_type (str): The type of landmark (e.g., node, way, relation).
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
        list[Landmark]: A list of Landmark objects extracted from the XML data.
 | 
			
		||||
        """
 | 
			
		||||
        if root is None :
 | 
			
		||||
            return []
 | 
			
		||||
 | 
			
		||||
        landmarks = []
 | 
			
		||||
        for osm_type in ['node', 'way', 'relation'] :
 | 
			
		||||
            for elem in root.findall(osm_type):
 | 
			
		||||
                # self.logger.debug('new landmark')
 | 
			
		||||
 | 
			
		||||
                # Extract basic info from the landmark.
 | 
			
		||||
                name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
 | 
			
		||||
                center = elem.find('center')
 | 
			
		||||
                tags = elem.findall('tag')
 | 
			
		||||
 | 
			
		||||
                # Extract the center latitude and longitude if available.
 | 
			
		||||
                if name is not None and center is not None:
 | 
			
		||||
                    lat = float(center.get('lat'))
 | 
			
		||||
                    lon = float(center.get('lon'))
 | 
			
		||||
                    coords = tuple((lat, lon))
 | 
			
		||||
                else :
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                # Convert this to Landmark object
 | 
			
		||||
                landmark = Landmark(name=name,
 | 
			
		||||
                                    type=landmarktype,
 | 
			
		||||
                                    location=coords,
 | 
			
		||||
                                    osm_id=elem.get('id'), 
 | 
			
		||||
                                    osm_type=osm_type,
 | 
			
		||||
                                    attractiveness=0,
 | 
			
		||||
                                    n_tags=len(tags))
 | 
			
		||||
 | 
			
		||||
                # Browse through tags to add information to landmark.
 | 
			
		||||
                for tag in tags:
 | 
			
		||||
                    key = tag.get('k')
 | 
			
		||||
                    value = tag.get('v')
 | 
			
		||||
 | 
			
		||||
                    # Skip this landmark if not suitable.
 | 
			
		||||
                    if key == 'building:part' and value == 'yes' :
 | 
			
		||||
                        break
 | 
			
		||||
                    if 'disused:' in key :
 | 
			
		||||
                        break
 | 
			
		||||
                    if 'boundary:' in key :
 | 
			
		||||
                        break
 | 
			
		||||
                    if 'shop' in key and landmarktype != 'shopping' :
 | 
			
		||||
                        break
 | 
			
		||||
                    # if value == 'apartments' :
 | 
			
		||||
                    #     break
 | 
			
		||||
                    
 | 
			
		||||
                    # Fill in the other attributes.
 | 
			
		||||
                    if key == 'image' :
 | 
			
		||||
                        landmark.image_url = value
 | 
			
		||||
                    if key == 'website' :
 | 
			
		||||
                        landmark.website_url = value
 | 
			
		||||
                    if key == 'place_of_worship' :
 | 
			
		||||
                        landmark.is_place_of_worship = True
 | 
			
		||||
                    if key == 'wikipedia' :
 | 
			
		||||
                        landmark.wiki_url = value
 | 
			
		||||
                    if key == 'name:en' :
 | 
			
		||||
                        landmark.name_en = value
 | 
			
		||||
                    if 'building:' in key or 'pay' in key :
 | 
			
		||||
                        landmark.n_tags -= 1
 | 
			
		||||
                    
 | 
			
		||||
                    # Set the duration.
 | 
			
		||||
                    if value in ['museum', 'aquarium', 'planetarium'] :
 | 
			
		||||
                        landmark.duration = 60
 | 
			
		||||
                    elif value == 'viewpoint' :
 | 
			
		||||
                        landmark.is_viewpoint = True
 | 
			
		||||
                        landmark.duration = 10
 | 
			
		||||
                    elif value == 'cathedral' :
 | 
			
		||||
                        landmark.is_place_of_worship = False
 | 
			
		||||
                        landmark.duration = 10
 | 
			
		||||
                    else :
 | 
			
		||||
                        landmark.duration = 5
 | 
			
		||||
 | 
			
		||||
                else: 
 | 
			
		||||
                    self.set_landmark_score(landmark, landmarktype, preference_level)
 | 
			
		||||
                    landmarks.append(landmark)
 | 
			
		||||
                    # self.logger.debug('new landmark added')
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
        return landmarks
 | 
			
		||||
 | 
			
		||||
def dict_to_selector_list(d: dict) -> list:
 | 
			
		||||
    """
 | 
			
		||||
    Convert a dictionary of key-value pairs to a list of Overpass query strings.
 | 
			
		||||
 
 | 
			
		||||
@@ -1,199 +0,0 @@
 | 
			
		||||
from typing import Literal, List
 | 
			
		||||
import urllib
 | 
			
		||||
import json
 | 
			
		||||
import xml.etree.ElementTree as ET
 | 
			
		||||
 | 
			
		||||
from ..structs.landmark import Landmark
 | 
			
		||||
 | 
			
		||||
ElementTypes = List[Literal['way', 'node', 'relation']]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def OverpassQueryBuilder(area: tuple, element_types: ElementTypes, selector: str, 
 | 
			
		||||
                         conditions=[], out='center'):
 | 
			
		||||
    """
 | 
			
		||||
    Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        area (tuple): A tuple representing the geographical search area, typically in the format 
 | 
			
		||||
                      (radius, latitude, longitude). The first element is a string like "around:2000" 
 | 
			
		||||
                      specifying the search radius, and the second and third elements represent 
 | 
			
		||||
                      the latitude and longitude as floats or strings.
 | 
			
		||||
        element_types (list[str]): A list of OSM element types to search for. Must be one or more of 
 | 
			
		||||
                                   'Way', 'Node', or 'Relation'.
 | 
			
		||||
        selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
 | 
			
		||||
        conditions (list, optional): A list of conditions to apply as additional filters for the 
 | 
			
		||||
                                     selected OSM elements. The conditions should be written in 
 | 
			
		||||
                                     the Overpass QL format, and they are combined with '&&' if 
 | 
			
		||||
                                     multiple are provided. Defaults to an empty list.
 | 
			
		||||
        out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'. 
 | 
			
		||||
                             Defaults to 'center'.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        str: The constructed Overpass QL query string.
 | 
			
		||||
 | 
			
		||||
    Notes:
 | 
			
		||||
        - If no conditions are provided, the query will just use the `selector` to filter the OSM 
 | 
			
		||||
          elements without additional constraints.
 | 
			
		||||
        - The search area must always formatted as "(radius, lat, lon)".
 | 
			
		||||
    """
 | 
			
		||||
    if not isinstance(conditions, list) :
 | 
			
		||||
        conditions = [conditions]
 | 
			
		||||
 | 
			
		||||
    query = '('
 | 
			
		||||
    search_area = f"({', '.join(map(str, area))})"
 | 
			
		||||
 | 
			
		||||
    if conditions :
 | 
			
		||||
        conditions = '(if: ' + ' && '.join(conditions) + ')'
 | 
			
		||||
    else :
 | 
			
		||||
        conditions = ''
 | 
			
		||||
 | 
			
		||||
    for elem in element_types :
 | 
			
		||||
        query += elem + '[' + selector + ']' + conditions + search_area + ';'
 | 
			
		||||
 | 
			
		||||
    query += ');' + f'out {out};'
 | 
			
		||||
 | 
			
		||||
    return query
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def send_overpass_query(query: str) -> dict:
 | 
			
		||||
    """
 | 
			
		||||
    Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        query (str): The Overpass QL query to be sent to the Overpass API.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        dict: The parsed JSON response from the Overpass API, or None if the request fails.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Define the Overpass API endpoint
 | 
			
		||||
    overpass_url = "https://overpass-api.de/api/interpreter"
 | 
			
		||||
 | 
			
		||||
    # Prepare the data to be sent as POST request, encoded as bytes
 | 
			
		||||
    data = urllib.parse.urlencode({'data': query}).encode('utf-8')
 | 
			
		||||
 | 
			
		||||
    # Create a custom header with a User-Agent
 | 
			
		||||
    headers = {
 | 
			
		||||
        'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        # Create a Request object with the specified URL, data, and headers
 | 
			
		||||
        request = urllib.request.Request(overpass_url, data=data, headers=headers)
 | 
			
		||||
        
 | 
			
		||||
        # Send the request and read the response
 | 
			
		||||
        with urllib.request.urlopen(request) as response:
 | 
			
		||||
            # Read and decode the response
 | 
			
		||||
            response_data = response.read().decode('utf-8')
 | 
			
		||||
            return ET.fromstring(response_data)
 | 
			
		||||
 | 
			
		||||
    except urllib.error.URLError as e:
 | 
			
		||||
        print(f"Error connecting to Overpass API: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    except json.JSONDecodeError:
 | 
			
		||||
        print("Error decoding the JSON response from Overpass API.")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_result(root: ET.Element, elem_type) -> List[Landmark]:
 | 
			
		||||
 | 
			
		||||
    landmarks = []
 | 
			
		||||
    if root is None :
 | 
			
		||||
        return landmarks
 | 
			
		||||
 | 
			
		||||
    for osm_type in ['node', 'way', 'relation'] :
 | 
			
		||||
        for elem in root.findall(osm_type):
 | 
			
		||||
 | 
			
		||||
            # Extract basic info from the landmark.
 | 
			
		||||
            name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
 | 
			
		||||
            center = elem.find('center')
 | 
			
		||||
            tags = elem.findall('tag')
 | 
			
		||||
 | 
			
		||||
            # Extract the center latitude and longitude if available.
 | 
			
		||||
            if name is not None and center is not None:
 | 
			
		||||
                lat = float(center.get('lat'))
 | 
			
		||||
                lon = float(center.get('lon'))
 | 
			
		||||
                coords = tuple((lat, lon))
 | 
			
		||||
            else :
 | 
			
		||||
                continue
 | 
			
		||||
            
 | 
			
		||||
            # Convert this to Landmark object
 | 
			
		||||
            landmark = Landmark(name=name,
 | 
			
		||||
                                type=elem_type,
 | 
			
		||||
                                location=coords,
 | 
			
		||||
                                osm_id=elem.get('id'), 
 | 
			
		||||
                                osm_type=osm_type,
 | 
			
		||||
                                attractiveness=0,
 | 
			
		||||
                                n_tags=len(tags))
 | 
			
		||||
 | 
			
		||||
            # Browse through tags to add information to landmark.
 | 
			
		||||
            for tag in tags:
 | 
			
		||||
                key = tag.get('k')
 | 
			
		||||
                value = tag.get('v')
 | 
			
		||||
 | 
			
		||||
                # Skip this landmark if not suitable.
 | 
			
		||||
                if key == 'building:part' and value == 'yes' :
 | 
			
		||||
                    break
 | 
			
		||||
                if 'disused:' in key :
 | 
			
		||||
                    break
 | 
			
		||||
                if 'boundary:' in key :
 | 
			
		||||
                    break
 | 
			
		||||
                if 'shop' in key and elem_type != 'shopping' :
 | 
			
		||||
                    break
 | 
			
		||||
                # if value == 'apartments' :
 | 
			
		||||
                #     break
 | 
			
		||||
                
 | 
			
		||||
                # Fill in the other attributes.
 | 
			
		||||
                if key == 'image' :
 | 
			
		||||
                    landmark.image_url = value
 | 
			
		||||
                if key == 'website' :
 | 
			
		||||
                    landmark.website_url = value
 | 
			
		||||
                if key == 'place_of_worship' :
 | 
			
		||||
                    landmark.is_place_of_worship = True
 | 
			
		||||
                if key == 'wikipedia' :
 | 
			
		||||
                    landmark.wiki_url = value
 | 
			
		||||
                if key == 'name:en' :
 | 
			
		||||
                    landmark.name_en = value
 | 
			
		||||
                if 'building:' in key or 'pay' in key :
 | 
			
		||||
                    landmark.n_tags -= 1
 | 
			
		||||
                
 | 
			
		||||
                # Set the duration.
 | 
			
		||||
                if value in ['museum', 'aquarium', 'planetarium'] :
 | 
			
		||||
                    landmark.duration = 60
 | 
			
		||||
                elif value == 'viewpoint' :
 | 
			
		||||
                    landmark.is_viewpoint = True
 | 
			
		||||
                    landmark.duration = 10
 | 
			
		||||
                elif value == 'cathedral' :
 | 
			
		||||
                    landmark.is_place_of_worship = False
 | 
			
		||||
                    landmark.duration = 10
 | 
			
		||||
                else :
 | 
			
		||||
                    landmark.duration = 5
 | 
			
		||||
 | 
			
		||||
            else: 
 | 
			
		||||
                set_score(landmark, elem_type)
 | 
			
		||||
                landmarks.append(landmark)
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
    return landmarks
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def set_score(landmark: Landmark, landmarktype: str) :
 | 
			
		||||
 | 
			
		||||
        score = landmark.n_tags**1.15
 | 
			
		||||
        if landmark.wiki_url :
 | 
			
		||||
            score *= 1.1
 | 
			
		||||
        if landmark.image_url :
 | 
			
		||||
            score *= 1.1
 | 
			
		||||
        if landmark.website_url :
 | 
			
		||||
            score *= 1.1
 | 
			
		||||
        if landmark.is_place_of_worship :
 | 
			
		||||
            score *= 0.65
 | 
			
		||||
        if landmark.is_viewpoint :
 | 
			
		||||
            # print(f"{landmark.name}:  n_tags={landmark.n_tags} and score={score*3*1.35*10}")
 | 
			
		||||
            score *= 3
 | 
			
		||||
        if landmarktype == 'nature' :
 | 
			
		||||
            score *= 1.35
 | 
			
		||||
 | 
			
		||||
        landmark.attractiveness = int(score * 10)
 | 
			
		||||
		Reference in New Issue
	
	Block a user