Compare commits
1 Commits
v0.0.35
...
renovate/c
Author | SHA1 | Date | |
---|---|---|---|
ac99ef3930 |
@@ -1,24 +0,0 @@
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- v*
|
||||
|
||||
name: Build and deploy the backend to production
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
name: Build and push image
|
||||
uses: ./.gitea/workflows/workflow_build-image.yaml
|
||||
with:
|
||||
tag: stable
|
||||
secrets:
|
||||
PACKAGE_REGISTRY_ACCESS: ${{ secrets.PACKAGE_REGISTRY_ACCESS }}
|
||||
|
||||
deploy-prod:
|
||||
name: Deploy to production
|
||||
uses: ./.gitea/workflows/workflow_deploy-container.yaml
|
||||
with:
|
||||
overlay: prod
|
||||
secrets:
|
||||
KUBE_CONFIG: ${{ secrets.KUBE_CONFIG }}
|
||||
needs: build-and-push
|
@@ -1,26 +0,0 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- backend/**
|
||||
|
||||
name: Build and deploy the backend to staging
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
name: Build and push image
|
||||
uses: ./.gitea/workflows/workflow_build-image.yaml
|
||||
with:
|
||||
tag: unstable
|
||||
secrets:
|
||||
PACKAGE_REGISTRY_ACCESS: ${{ secrets.PACKAGE_REGISTRY_ACCESS }}
|
||||
|
||||
deploy-prod:
|
||||
name: Deploy to staging
|
||||
uses: ./.gitea/workflows/workflow_deploy-container.yaml
|
||||
with:
|
||||
overlay: stg
|
||||
secrets:
|
||||
KUBE_CONFIG: ${{ secrets.KUBE_CONFIG }}
|
||||
needs: build-and-push
|
@@ -1,17 +1,12 @@
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
tag:
|
||||
required: true
|
||||
type: string
|
||||
secrets:
|
||||
PACKAGE_REGISTRY_ACCESS:
|
||||
required: true
|
||||
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- backend/**
|
||||
|
||||
name: Build and push docker image
|
||||
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build
|
||||
@@ -34,5 +29,5 @@ jobs:
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: backend
|
||||
tags: git.kluster.moll.re/anydev/anyway-backend:${{ inputs.tag }}
|
||||
tags: git.kluster.moll.re/anydev/anyway-backend:latest
|
||||
push: true
|
@@ -1,34 +0,0 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- backend/**
|
||||
|
||||
name: Run linting on the backend code
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
||||
- uses: https://gitea.com/actions/checkout@v4
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt-get update && apt-get install -y python3 python3-pip
|
||||
pip install pipenv
|
||||
|
||||
- name: Install packages
|
||||
run: |
|
||||
ls -la
|
||||
# only install dev-packages
|
||||
pipenv install --categories=dev-packages
|
||||
pipenv run pip freeze
|
||||
|
||||
working-directory: backend
|
||||
|
||||
- name: Run linter
|
||||
run: pipenv run pylint src --fail-under=9
|
||||
working-directory: backend
|
@@ -1,40 +0,0 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- backend/**
|
||||
|
||||
name: Run testing on the backend code
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
||||
- uses: https://gitea.com/actions/checkout@v4
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt-get update && apt-get install -y python3 python3-pip
|
||||
pip install pipenv
|
||||
|
||||
- name: Install packages
|
||||
run: |
|
||||
ls -la
|
||||
# install all packages, including dev-packages
|
||||
pipenv install --dev
|
||||
pipenv run pip freeze
|
||||
working-directory: backend
|
||||
|
||||
- name: Run Tests
|
||||
run: pipenv run pytest src --html=report.html --self-contained-html
|
||||
working-directory: backend
|
||||
|
||||
- name: Upload HTML report
|
||||
if: always()
|
||||
uses: https://gitea.com/actions/upload-artifact@v3
|
||||
with:
|
||||
name: pytest-html-report
|
||||
path: backend/report.html
|
@@ -6,7 +6,7 @@ on:
|
||||
- frontend/**
|
||||
|
||||
|
||||
name: Build and release debug APK
|
||||
name: Build and release APK
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -43,10 +43,8 @@ jobs:
|
||||
working-directory: ./frontend
|
||||
|
||||
- name: Add required secrets
|
||||
env:
|
||||
ANDROID_SECRETS_PROPERTIES: ${{ secrets.ANDROID_SECRETS_PROPERTIES }}
|
||||
run: |
|
||||
echo "$ANDROID_SECRETS_PROPERTIES" >> ./android/secrets.properties
|
||||
echo ${{ secrets.ANDROID_SECRETS_PROPERTIES }} > ./android/secrets.properties
|
||||
working-directory: ./frontend
|
||||
|
||||
- name: Sanity check
|
||||
@@ -55,7 +53,7 @@ jobs:
|
||||
ls -lah android
|
||||
working-directory: ./frontend
|
||||
|
||||
- run: flutter build apk --debug --split-per-abi --build-number=${{ gitea.run_number }}
|
||||
- run: flutter build apk --release --split-per-abi --build-number=${{ gitea.run_number }}
|
||||
working-directory: ./frontend
|
||||
|
||||
- name: Upload APKs to artifacts
|
||||
|
@@ -1,39 +0,0 @@
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- v*
|
||||
|
||||
jobs:
|
||||
push-to-remote:
|
||||
# We want to use the macos runner provided by github actions. This requires to push to a remote first.
|
||||
# After the push we can use the action under frontend/.github/actions/ to deploy properly using fastlane on macos.
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
path: 'src'
|
||||
|
||||
- name: Checkout remote repository
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
path: 'dest'
|
||||
ref: 'main'
|
||||
github-server-url: 'https://github.com'
|
||||
repository: 'moll-re/anyway-frontend-builder'
|
||||
token: ${{ secrets.PUSH_GITHUB_API_TOKEN }}
|
||||
fetch-depth: 0
|
||||
persist-credentials: true
|
||||
|
||||
- name: Copy files to remote repository
|
||||
run: cp -r src/frontend/. dest/
|
||||
|
||||
- name: Commit and push changes
|
||||
run: |
|
||||
cd dest
|
||||
git config --global user.email "me@moll.re"
|
||||
git config --global user.name "[bot]"
|
||||
git add .
|
||||
git commit -m "Automatic code update for tag"
|
||||
git tag -a ${{ github.ref_name }} -m "mirrored tag"
|
||||
git push origin main --tags
|
@@ -1,35 +0,0 @@
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
overlay:
|
||||
required: true
|
||||
type: string
|
||||
secrets:
|
||||
KUBE_CONFIG:
|
||||
required: true
|
||||
|
||||
|
||||
name: Deploy the newly built container
|
||||
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
name: Deploy
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
||||
- uses: https://gitea.com/actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
|
||||
- name: setup kubectl
|
||||
uses: https://github.com/azure/setup-kubectl@v4
|
||||
|
||||
- name: Set kubeconfig
|
||||
run: |
|
||||
echo "${{ secrets.KUBE_CONFIG }}" > kubeconfig
|
||||
|
||||
- name: Deploy to k8s
|
||||
run: |
|
||||
kubectl apply -k backend/deployment/overlays/${{ inputs.overlay }} --kubeconfig=kubeconfig
|
||||
kubectl -n anyway-backend rollout restart deployment/anyway-backend-${{ inputs.overlay }} --kubeconfig=kubeconfig
|
3
.gitmodules
vendored
@@ -1,3 +0,0 @@
|
||||
[submodule "backend/deployment"]
|
||||
path = backend/deployment
|
||||
url = https://git.kluster.moll.re/anydev/anyway-backend-deployment
|
6
.vscode/launch.json
vendored
@@ -14,9 +14,9 @@
|
||||
"DEBUG": "true"
|
||||
},
|
||||
"args": [
|
||||
// "--app-dir",
|
||||
// "src",
|
||||
"src.main:app",
|
||||
"--app-dir",
|
||||
"src",
|
||||
"main:app",
|
||||
"--reload",
|
||||
],
|
||||
"jinja": true,
|
||||
|
3
.vscode/settings.json
vendored
@@ -1,3 +0,0 @@
|
||||
{
|
||||
"cmake.ignoreCMakeListsMissing": true
|
||||
}
|
6
backend/.gitignore
vendored
@@ -1,10 +1,6 @@
|
||||
# osm-cache and wikidata cache
|
||||
# osm-cache
|
||||
cache/
|
||||
apicache/
|
||||
|
||||
# wikidata throttle
|
||||
*.ctrl
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
@@ -1,649 +0,0 @@
|
||||
[MAIN]
|
||||
|
||||
# Analyse import fallback blocks. This can be used to support both Python 2 and
|
||||
# 3 compatible code, which means that the block might have code that exists
|
||||
# only in one or another interpreter, leading to false positives when analysed.
|
||||
analyse-fallback-blocks=no
|
||||
|
||||
# Clear in-memory caches upon conclusion of linting. Useful if running pylint
|
||||
# in a server-like mode.
|
||||
clear-cache-post-run=no
|
||||
|
||||
# Load and enable all available extensions. Use --list-extensions to see a list
|
||||
# all available extensions.
|
||||
#enable-all-extensions=
|
||||
|
||||
# In error mode, messages with a category besides ERROR or FATAL are
|
||||
# suppressed, and no reports are done by default. Error mode is compatible with
|
||||
# disabling specific errors.
|
||||
#errors-only=
|
||||
|
||||
# Always return a 0 (non-error) status code, even if lint errors are found.
|
||||
# This is primarily useful in continuous integration scripts.
|
||||
#exit-zero=
|
||||
|
||||
# A comma-separated list of package or module names from where C extensions may
|
||||
# be loaded. Extensions are loading into the active Python interpreter and may
|
||||
# run arbitrary code.
|
||||
extension-pkg-allow-list=
|
||||
|
||||
# A comma-separated list of package or module names from where C extensions may
|
||||
# be loaded. Extensions are loading into the active Python interpreter and may
|
||||
# run arbitrary code. (This is an alternative name to extension-pkg-allow-list
|
||||
# for backward compatibility.)
|
||||
extension-pkg-whitelist=
|
||||
|
||||
# Return non-zero exit code if any of these messages/categories are detected,
|
||||
# even if score is above --fail-under value. Syntax same as enable. Messages
|
||||
# specified are enabled, while categories only check already-enabled messages.
|
||||
fail-on=
|
||||
|
||||
# Specify a score threshold under which the program will exit with error.
|
||||
fail-under=10
|
||||
|
||||
# Interpret the stdin as a python script, whose filename needs to be passed as
|
||||
# the module_or_package argument.
|
||||
#from-stdin=
|
||||
|
||||
# Files or directories to be skipped. They should be base names, not paths.
|
||||
ignore=CVS
|
||||
|
||||
# Add files or directories matching the regular expressions patterns to the
|
||||
# ignore-list. The regex matches against paths and can be in Posix or Windows
|
||||
# format. Because '\\' represents the directory delimiter on Windows systems,
|
||||
# it can't be used as an escape character.
|
||||
ignore-paths=
|
||||
|
||||
# Files or directories matching the regular expression patterns are skipped.
|
||||
# The regex matches against base names, not paths. The default value ignores
|
||||
# Emacs file locks
|
||||
ignore-patterns=^\.#
|
||||
|
||||
# List of module names for which member attributes should not be checked and
|
||||
# will not be imported (useful for modules/projects where namespaces are
|
||||
# manipulated during runtime and thus existing member attributes cannot be
|
||||
# deduced by static analysis). It supports qualified module names, as well as
|
||||
# Unix pattern matching.
|
||||
ignored-modules=
|
||||
|
||||
# Python code to execute, usually for sys.path manipulation such as
|
||||
# pygtk.require().
|
||||
#init-hook=
|
||||
|
||||
# Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
|
||||
# number of processors available to use, and will cap the count on Windows to
|
||||
# avoid hangs.
|
||||
jobs=1
|
||||
|
||||
# Control the amount of potential inferred values when inferring a single
|
||||
# object. This can help the performance when dealing with large functions or
|
||||
# complex, nested conditions.
|
||||
limit-inference-results=100
|
||||
|
||||
# List of plugins (as comma separated values of python module names) to load,
|
||||
# usually to register additional checkers.
|
||||
load-plugins=
|
||||
|
||||
# Pickle collected data for later comparisons.
|
||||
persistent=yes
|
||||
|
||||
# Resolve imports to .pyi stubs if available. May reduce no-member messages and
|
||||
# increase not-an-iterable messages.
|
||||
prefer-stubs=no
|
||||
|
||||
# Minimum Python version to use for version dependent checks. Will default to
|
||||
# the version used to run pylint.
|
||||
py-version=3.12
|
||||
|
||||
# Discover python modules and packages in the file system subtree.
|
||||
recursive=no
|
||||
|
||||
# Add paths to the list of the source roots. Supports globbing patterns. The
|
||||
# source root is an absolute path or a path relative to the current working
|
||||
# directory used to determine a package namespace for modules located under the
|
||||
# source root.
|
||||
source-roots=
|
||||
|
||||
# When enabled, pylint would attempt to guess common misconfiguration and emit
|
||||
# user-friendly hints instead of false-positive error messages.
|
||||
suggestion-mode=yes
|
||||
|
||||
# Allow loading of arbitrary C extensions. Extensions are imported into the
|
||||
# active Python interpreter and may run arbitrary code.
|
||||
unsafe-load-any-extension=no
|
||||
|
||||
# In verbose mode, extra non-checker-related info will be displayed.
|
||||
#verbose=
|
||||
|
||||
|
||||
[BASIC]
|
||||
|
||||
# Naming style matching correct argument names.
|
||||
argument-naming-style=snake_case
|
||||
|
||||
# Regular expression matching correct argument names. Overrides argument-
|
||||
# naming-style. If left empty, argument names will be checked with the set
|
||||
# naming style.
|
||||
#argument-rgx=
|
||||
|
||||
# Naming style matching correct attribute names.
|
||||
attr-naming-style=snake_case
|
||||
|
||||
# Regular expression matching correct attribute names. Overrides attr-naming-
|
||||
# style. If left empty, attribute names will be checked with the set naming
|
||||
# style.
|
||||
#attr-rgx=
|
||||
|
||||
# Bad variable names which should always be refused, separated by a comma.
|
||||
bad-names=foo,
|
||||
bar,
|
||||
baz,
|
||||
toto,
|
||||
tutu,
|
||||
tata
|
||||
|
||||
# Bad variable names regexes, separated by a comma. If names match any regex,
|
||||
# they will always be refused
|
||||
bad-names-rgxs=
|
||||
|
||||
# Naming style matching correct class attribute names.
|
||||
class-attribute-naming-style=any
|
||||
|
||||
# Regular expression matching correct class attribute names. Overrides class-
|
||||
# attribute-naming-style. If left empty, class attribute names will be checked
|
||||
# with the set naming style.
|
||||
#class-attribute-rgx=
|
||||
|
||||
# Naming style matching correct class constant names.
|
||||
class-const-naming-style=UPPER_CASE
|
||||
|
||||
# Regular expression matching correct class constant names. Overrides class-
|
||||
# const-naming-style. If left empty, class constant names will be checked with
|
||||
# the set naming style.
|
||||
#class-const-rgx=
|
||||
|
||||
# Naming style matching correct class names.
|
||||
class-naming-style=PascalCase
|
||||
|
||||
# Regular expression matching correct class names. Overrides class-naming-
|
||||
# style. If left empty, class names will be checked with the set naming style.
|
||||
#class-rgx=
|
||||
|
||||
# Naming style matching correct constant names.
|
||||
const-naming-style=UPPER_CASE
|
||||
|
||||
# Regular expression matching correct constant names. Overrides const-naming-
|
||||
# style. If left empty, constant names will be checked with the set naming
|
||||
# style.
|
||||
#const-rgx=
|
||||
|
||||
# Minimum line length for functions/classes that require docstrings, shorter
|
||||
# ones are exempt.
|
||||
docstring-min-length=-1
|
||||
|
||||
# Naming style matching correct function names.
|
||||
function-naming-style=snake_case
|
||||
|
||||
# Regular expression matching correct function names. Overrides function-
|
||||
# naming-style. If left empty, function names will be checked with the set
|
||||
# naming style.
|
||||
#function-rgx=
|
||||
|
||||
# Good variable names which should always be accepted, separated by a comma.
|
||||
good-names=i,
|
||||
j,
|
||||
k,
|
||||
ex,
|
||||
Run,
|
||||
_
|
||||
|
||||
# Good variable names regexes, separated by a comma. If names match any regex,
|
||||
# they will always be accepted
|
||||
good-names-rgxs=
|
||||
|
||||
# Include a hint for the correct naming format with invalid-name.
|
||||
include-naming-hint=no
|
||||
|
||||
# Naming style matching correct inline iteration names.
|
||||
inlinevar-naming-style=any
|
||||
|
||||
# Regular expression matching correct inline iteration names. Overrides
|
||||
# inlinevar-naming-style. If left empty, inline iteration names will be checked
|
||||
# with the set naming style.
|
||||
#inlinevar-rgx=
|
||||
|
||||
# Naming style matching correct method names.
|
||||
method-naming-style=snake_case
|
||||
|
||||
# Regular expression matching correct method names. Overrides method-naming-
|
||||
# style. If left empty, method names will be checked with the set naming style.
|
||||
#method-rgx=
|
||||
|
||||
# Naming style matching correct module names.
|
||||
module-naming-style=snake_case
|
||||
|
||||
# Regular expression matching correct module names. Overrides module-naming-
|
||||
# style. If left empty, module names will be checked with the set naming style.
|
||||
#module-rgx=
|
||||
|
||||
# Colon-delimited sets of names that determine each other's naming style when
|
||||
# the name regexes allow several styles.
|
||||
name-group=
|
||||
|
||||
# Regular expression which should only match function or class names that do
|
||||
# not require a docstring.
|
||||
no-docstring-rgx=^_
|
||||
|
||||
# List of decorators that produce properties, such as abc.abstractproperty. Add
|
||||
# to this list to register other decorators that produce valid properties.
|
||||
# These decorators are taken in consideration only for invalid-name.
|
||||
property-classes=abc.abstractproperty
|
||||
|
||||
# Regular expression matching correct type alias names. If left empty, type
|
||||
# alias names will be checked with the set naming style.
|
||||
#typealias-rgx=
|
||||
|
||||
# Regular expression matching correct type variable names. If left empty, type
|
||||
# variable names will be checked with the set naming style.
|
||||
#typevar-rgx=
|
||||
|
||||
# Naming style matching correct variable names.
|
||||
variable-naming-style=snake_case
|
||||
|
||||
# Regular expression matching correct variable names. Overrides variable-
|
||||
# naming-style. If left empty, variable names will be checked with the set
|
||||
# naming style.
|
||||
#variable-rgx=
|
||||
|
||||
|
||||
[CLASSES]
|
||||
|
||||
# Warn about protected attribute access inside special methods
|
||||
check-protected-access-in-special-methods=no
|
||||
|
||||
# List of method names used to declare (i.e. assign) instance attributes.
|
||||
defining-attr-methods=__init__,
|
||||
__new__,
|
||||
setUp,
|
||||
asyncSetUp,
|
||||
__post_init__
|
||||
|
||||
# List of member names, which should be excluded from the protected access
|
||||
# warning.
|
||||
exclude-protected=_asdict,_fields,_replace,_source,_make,os._exit
|
||||
|
||||
# List of valid names for the first argument in a class method.
|
||||
valid-classmethod-first-arg=cls
|
||||
|
||||
# List of valid names for the first argument in a metaclass class method.
|
||||
valid-metaclass-classmethod-first-arg=mcs
|
||||
|
||||
|
||||
[DESIGN]
|
||||
|
||||
# List of regular expressions of class ancestor names to ignore when counting
|
||||
# public methods (see R0903)
|
||||
exclude-too-few-public-methods=
|
||||
|
||||
# List of qualified class names to ignore when counting class parents (see
|
||||
# R0901)
|
||||
ignored-parents=
|
||||
|
||||
# Maximum number of arguments for function / method.
|
||||
max-args=5
|
||||
|
||||
# Maximum number of attributes for a class (see R0902).
|
||||
max-attributes=7
|
||||
|
||||
# Maximum number of boolean expressions in an if statement (see R0916).
|
||||
max-bool-expr=5
|
||||
|
||||
# Maximum number of branch for function / method body.
|
||||
max-branches=12
|
||||
|
||||
# Maximum number of locals for function / method body.
|
||||
max-locals=15
|
||||
|
||||
# Maximum number of parents for a class (see R0901).
|
||||
max-parents=7
|
||||
|
||||
# Maximum number of positional arguments for function / method.
|
||||
max-positional-arguments=5
|
||||
|
||||
# Maximum number of public methods for a class (see R0904).
|
||||
max-public-methods=20
|
||||
|
||||
# Maximum number of return / yield for function / method body.
|
||||
max-returns=6
|
||||
|
||||
# Maximum number of statements in function / method body.
|
||||
max-statements=50
|
||||
|
||||
# Minimum number of public methods for a class (see R0903).
|
||||
min-public-methods=2
|
||||
|
||||
|
||||
[EXCEPTIONS]
|
||||
|
||||
# Exceptions that will emit a warning when caught.
|
||||
overgeneral-exceptions=builtins.BaseException,builtins.Exception
|
||||
|
||||
|
||||
[FORMAT]
|
||||
|
||||
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
|
||||
expected-line-ending-format=
|
||||
|
||||
# Regexp for a line that is allowed to be longer than the limit.
|
||||
ignore-long-lines=^\s*(# )?<?https?://\S+>?$
|
||||
|
||||
# Number of spaces of indent required inside a hanging or continued line.
|
||||
indent-after-paren=4
|
||||
|
||||
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
|
||||
# tab).
|
||||
indent-string=' '
|
||||
|
||||
# Maximum number of characters on a single line.
|
||||
max-line-length=105
|
||||
|
||||
# Maximum number of lines in a module.
|
||||
max-module-lines=1000
|
||||
|
||||
# Allow the body of a class to be on the same line as the declaration if body
|
||||
# contains single statement.
|
||||
single-line-class-stmt=no
|
||||
|
||||
# Allow the body of an if to be on the same line as the test if there is no
|
||||
# else.
|
||||
single-line-if-stmt=no
|
||||
|
||||
|
||||
[IMPORTS]
|
||||
|
||||
# List of modules that can be imported at any level, not just the top level
|
||||
# one.
|
||||
allow-any-import-level=
|
||||
|
||||
# Allow explicit reexports by alias from a package __init__.
|
||||
allow-reexport-from-package=no
|
||||
|
||||
# Allow wildcard imports from modules that define __all__.
|
||||
allow-wildcard-with-all=no
|
||||
|
||||
# Deprecated modules which should not be used, separated by a comma.
|
||||
deprecated-modules=
|
||||
|
||||
# Output a graph (.gv or any supported image format) of external dependencies
|
||||
# to the given file (report RP0402 must not be disabled).
|
||||
ext-import-graph=
|
||||
|
||||
# Output a graph (.gv or any supported image format) of all (i.e. internal and
|
||||
# external) dependencies to the given file (report RP0402 must not be
|
||||
# disabled).
|
||||
import-graph=
|
||||
|
||||
# Output a graph (.gv or any supported image format) of internal dependencies
|
||||
# to the given file (report RP0402 must not be disabled).
|
||||
int-import-graph=
|
||||
|
||||
# Force import order to recognize a module as part of the standard
|
||||
# compatibility libraries.
|
||||
known-standard-library=
|
||||
|
||||
# Force import order to recognize a module as part of a third party library.
|
||||
known-third-party=enchant
|
||||
|
||||
# Couples of modules and preferred modules, separated by a comma.
|
||||
preferred-modules=
|
||||
|
||||
|
||||
[LOGGING]
|
||||
|
||||
# The type of string formatting that logging methods do. `old` means using %
|
||||
# formatting, `new` is for `{}` formatting.
|
||||
logging-format-style=old
|
||||
|
||||
# Logging modules to check that the string format arguments are in logging
|
||||
# function parameter format.
|
||||
logging-modules=logging
|
||||
|
||||
|
||||
[MESSAGES CONTROL]
|
||||
|
||||
# Only show warnings with the listed confidence levels. Leave empty to show
|
||||
# all. Valid levels: HIGH, CONTROL_FLOW, INFERENCE, INFERENCE_FAILURE,
|
||||
# UNDEFINED.
|
||||
confidence=HIGH,
|
||||
CONTROL_FLOW,
|
||||
INFERENCE,
|
||||
INFERENCE_FAILURE,
|
||||
UNDEFINED
|
||||
|
||||
# Disable the message, report, category or checker with the given id(s). You
|
||||
# can either give multiple identifiers separated by comma (,) or put this
|
||||
# option multiple times (only on the command line, not in the configuration
|
||||
# file where it should appear only once). You can also use "--disable=all" to
|
||||
# disable everything first and then re-enable specific checks. For example, if
|
||||
# you want to run only the similarities checker, you can use "--disable=all
|
||||
# --enable=similarities". If you want to run only the classes checker, but have
|
||||
# no Warning level messages displayed, use "--disable=all --enable=classes
|
||||
# --disable=W".
|
||||
disable=raw-checker-failed,
|
||||
bad-inline-option,
|
||||
locally-disabled,
|
||||
file-ignored,
|
||||
suppressed-message,
|
||||
useless-suppression,
|
||||
deprecated-pragma,
|
||||
use-symbolic-message-instead,
|
||||
use-implicit-booleaness-not-comparison-to-string,
|
||||
use-implicit-booleaness-not-comparison-to-zero,
|
||||
import-error,
|
||||
line-too-long
|
||||
|
||||
# Enable the message, report, category or checker with the given id(s). You can
|
||||
# either give multiple identifier separated by comma (,) or put this option
|
||||
# multiple time (only on the command line, not in the configuration file where
|
||||
# it should appear only once). See also the "--disable" option for examples.
|
||||
enable=
|
||||
|
||||
|
||||
[METHOD_ARGS]
|
||||
|
||||
# List of qualified names (i.e., library.method) which require a timeout
|
||||
# parameter e.g. 'requests.api.get,requests.api.post'
|
||||
timeout-methods=requests.api.delete,requests.api.get,requests.api.head,requests.api.options,requests.api.patch,requests.api.post,requests.api.put,requests.api.request
|
||||
|
||||
|
||||
[MISCELLANEOUS]
|
||||
|
||||
# List of note tags to take in consideration, separated by a comma.
|
||||
notes=FIXME,
|
||||
XXX,
|
||||
TODO
|
||||
|
||||
# Regular expression of note tags to take in consideration.
|
||||
notes-rgx=
|
||||
|
||||
|
||||
[REFACTORING]
|
||||
|
||||
# Maximum number of nested blocks for function / method body
|
||||
max-nested-blocks=5
|
||||
|
||||
# Complete name of functions that never returns. When checking for
|
||||
# inconsistent-return-statements if a never returning function is called then
|
||||
# it will be considered as an explicit return statement and no message will be
|
||||
# printed.
|
||||
never-returning-functions=sys.exit,argparse.parse_error
|
||||
|
||||
# Let 'consider-using-join' be raised when the separator to join on would be
|
||||
# non-empty (resulting in expected fixes of the type: ``"- " + " -
|
||||
# ".join(items)``)
|
||||
suggest-join-with-non-empty-separator=yes
|
||||
|
||||
|
||||
[REPORTS]
|
||||
|
||||
# Python expression which should return a score less than or equal to 10. You
|
||||
# have access to the variables 'fatal', 'error', 'warning', 'refactor',
|
||||
# 'convention', and 'info' which contain the number of messages in each
|
||||
# category, as well as 'statement' which is the total number of statements
|
||||
# analyzed. This score is used by the global evaluation report (RP0004).
|
||||
evaluation=max(0, 0 if fatal else 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10))
|
||||
|
||||
# Template used to display messages. This is a python new-style format string
|
||||
# used to format the message information. See doc for all details.
|
||||
msg-template=
|
||||
|
||||
# Set the output format. Available formats are: text, parseable, colorized,
|
||||
# json2 (improved json format), json (old json format) and msvs (visual
|
||||
# studio). You can also give a reporter class, e.g.
|
||||
# mypackage.mymodule.MyReporterClass.
|
||||
#output-format=
|
||||
|
||||
# Tells whether to display a full report or only the messages.
|
||||
reports=no
|
||||
|
||||
# Activate the evaluation score.
|
||||
score=yes
|
||||
|
||||
|
||||
[SIMILARITIES]
|
||||
|
||||
# Comments are removed from the similarity computation
|
||||
ignore-comments=yes
|
||||
|
||||
# Docstrings are removed from the similarity computation
|
||||
ignore-docstrings=yes
|
||||
|
||||
# Imports are removed from the similarity computation
|
||||
ignore-imports=yes
|
||||
|
||||
# Signatures are removed from the similarity computation
|
||||
ignore-signatures=yes
|
||||
|
||||
# Minimum lines number of a similarity.
|
||||
min-similarity-lines=4
|
||||
|
||||
|
||||
[SPELLING]
|
||||
|
||||
# Limits count of emitted suggestions for spelling mistakes.
|
||||
max-spelling-suggestions=4
|
||||
|
||||
# Spelling dictionary name. No available dictionaries : You need to install
|
||||
# both the python package and the system dependency for enchant to work.
|
||||
spelling-dict=
|
||||
|
||||
# List of comma separated words that should be considered directives if they
|
||||
# appear at the beginning of a comment and should not be checked.
|
||||
spelling-ignore-comment-directives=fmt: on,fmt: off,noqa:,noqa,nosec,isort:skip,mypy:
|
||||
|
||||
# List of comma separated words that should not be checked.
|
||||
spelling-ignore-words=
|
||||
|
||||
# A path to a file that contains the private dictionary; one word per line.
|
||||
spelling-private-dict-file=
|
||||
|
||||
# Tells whether to store unknown words to the private dictionary (see the
|
||||
# --spelling-private-dict-file option) instead of raising a message.
|
||||
spelling-store-unknown-words=no
|
||||
|
||||
|
||||
[STRING]
|
||||
|
||||
# This flag controls whether inconsistent-quotes generates a warning when the
|
||||
# character used as a quote delimiter is used inconsistently within a module.
|
||||
check-quote-consistency=no
|
||||
|
||||
# This flag controls whether the implicit-str-concat should generate a warning
|
||||
# on implicit string concatenation in sequences defined over several lines.
|
||||
check-str-concat-over-line-jumps=no
|
||||
|
||||
|
||||
[TYPECHECK]
|
||||
|
||||
# List of decorators that produce context managers, such as
|
||||
# contextlib.contextmanager. Add to this list to register other decorators that
|
||||
# produce valid context managers.
|
||||
contextmanager-decorators=contextlib.contextmanager
|
||||
|
||||
# List of members which are set dynamically and missed by pylint inference
|
||||
# system, and so shouldn't trigger E1101 when accessed. Python regular
|
||||
# expressions are accepted.
|
||||
generated-members=
|
||||
|
||||
# Tells whether to warn about missing members when the owner of the attribute
|
||||
# is inferred to be None.
|
||||
ignore-none=yes
|
||||
|
||||
# This flag controls whether pylint should warn about no-member and similar
|
||||
# checks whenever an opaque object is returned when inferring. The inference
|
||||
# can return multiple potential results while evaluating a Python object, but
|
||||
# some branches might not be evaluated, which results in partial inference. In
|
||||
# that case, it might be useful to still emit no-member and other checks for
|
||||
# the rest of the inferred objects.
|
||||
ignore-on-opaque-inference=yes
|
||||
|
||||
# List of symbolic message names to ignore for Mixin members.
|
||||
ignored-checks-for-mixins=no-member,
|
||||
not-async-context-manager,
|
||||
not-context-manager,
|
||||
attribute-defined-outside-init
|
||||
|
||||
# List of class names for which member attributes should not be checked (useful
|
||||
# for classes with dynamically set attributes). This supports the use of
|
||||
# qualified names.
|
||||
ignored-classes=optparse.Values,thread._local,_thread._local,argparse.Namespace
|
||||
|
||||
# Show a hint with possible names when a member name was not found. The aspect
|
||||
# of finding the hint is based on edit distance.
|
||||
missing-member-hint=yes
|
||||
|
||||
# The minimum edit distance a name should have in order to be considered a
|
||||
# similar match for a missing member name.
|
||||
missing-member-hint-distance=1
|
||||
|
||||
# The total number of similar names that should be taken in consideration when
|
||||
# showing a hint for a missing member.
|
||||
missing-member-max-choices=1
|
||||
|
||||
# Regex pattern to define which classes are considered mixins.
|
||||
mixin-class-rgx=.*[Mm]ixin
|
||||
|
||||
# List of decorators that change the signature of a decorated function.
|
||||
signature-mutators=
|
||||
|
||||
|
||||
[VARIABLES]
|
||||
|
||||
# List of additional names supposed to be defined in builtins. Remember that
|
||||
# you should avoid defining new builtins when possible.
|
||||
additional-builtins=
|
||||
|
||||
# Tells whether unused global variables should be treated as a violation.
|
||||
allow-global-unused-variables=yes
|
||||
|
||||
# List of names allowed to shadow builtins
|
||||
allowed-redefined-builtins=
|
||||
|
||||
# List of strings which can identify a callback function by name. A callback
|
||||
# name must start or end with one of those strings.
|
||||
callbacks=cb_,
|
||||
_cb
|
||||
|
||||
# A regular expression matching the name of dummy variables (i.e. expected to
|
||||
# not be used).
|
||||
dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_
|
||||
|
||||
# Argument names that match this expression will be ignored.
|
||||
ignored-argument-names=_.*|^ignored_|^unused_
|
||||
|
||||
# Tells whether we should check for unused import in __init__ files.
|
||||
init-import=no
|
||||
|
||||
# List of qualified module names which can have objects that can redefine
|
||||
# builtins.
|
||||
redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io
|
@@ -13,6 +13,5 @@ EXPOSE 8000
|
||||
# Set environment variables used by the deployment. These can be overridden by the user using this image.
|
||||
ENV NUM_WORKERS=1
|
||||
ENV OSM_CACHE_DIR=/cache
|
||||
ENV MEMCACHED_HOST_PATH=none
|
||||
|
||||
CMD fastapi run src/main.py --port 8000 --workers $NUM_WORKERS
|
||||
|
@@ -4,24 +4,13 @@ verify_ssl = true
|
||||
name = "pypi"
|
||||
|
||||
[dev-packages]
|
||||
pylint = "*"
|
||||
pytest = "*"
|
||||
tomli = "*"
|
||||
httpx = "*"
|
||||
exceptiongroup = "*"
|
||||
pytest-html = "*"
|
||||
typing-extensions = "*"
|
||||
dill = "*"
|
||||
|
||||
[packages]
|
||||
numpy = "*"
|
||||
fastapi = "*"
|
||||
pydantic = "*"
|
||||
geopy = "*"
|
||||
shapely = "*"
|
||||
scipy = "*"
|
||||
osmpythontools = "*"
|
||||
pywikibot = "*"
|
||||
pymemcache = "*"
|
||||
fastapi-cli = "*"
|
||||
scikit-learn = "*"
|
||||
pyqt6 = "*"
|
||||
|
3716
backend/Pipfile.lock
generated
@@ -1,44 +1,16 @@
|
||||
# Backend
|
||||
|
||||
This repository contains the backend code for the application. It utilizes **FastAPI** to quickly create a RESTful API that exposes the endpoints of the route optimizer.
|
||||
This repository contains the backend code for the application. It utilizes FastAPI that allows to quickly create a RESTful API that exposes the endpoints of the route optimizer.
|
||||
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Directory Structure
|
||||
- The code for the Python application is located in the `src` directory.
|
||||
- Package management is handled with **pipenv**, and the dependencies are listed in the `Pipfile`.
|
||||
- Since the application is designed to be deployed in a container, the `Dockerfile` is provided to build the image.
|
||||
|
||||
### Setting Up the Development Environment
|
||||
|
||||
To set up your development environment using **pipenv**, follow these steps:
|
||||
|
||||
1. Install `pipenv` by running:
|
||||
```bash
|
||||
sudo apt install pipenv
|
||||
```
|
||||
|
||||
2. Create and activate a virtual environment:
|
||||
```bash
|
||||
pipenv shell
|
||||
```
|
||||
|
||||
3. Install the dependencies listed in the `Pipfile`:
|
||||
```bash
|
||||
pipenv install
|
||||
```
|
||||
|
||||
4. The virtual environment will be created under:
|
||||
```bash
|
||||
~/.local/share/virtualenvs/...
|
||||
```
|
||||
- The code of the python application is located in the `src` directory.
|
||||
- Package management is handled with `pipenv` and the dependencies are listed in the `Pipfile`.
|
||||
- Since the application is aimed to be deployed in a container, the `Dockerfile` is provided to build the image.
|
||||
|
||||
### Deployment
|
||||
To deploy the backend docker container, we use kubernetes. Modifications to the backend are automatically pushed to a two-stage environment through the CI pipeline. See [deployment/README](deployment/README.md] for further information.
|
||||
|
||||
The deployment configuration is included as a submodule in the `deployment` directory. The standalone repository is under [https://git.kluster.moll.re/anydev/anyway-backend-deployment/](https://git.kluster.moll.re/anydev/anyway-backend-deployment/).
|
||||
To deploy the backend docker container, we use kubernetes. The deployment configuration is located under [https://git.kluster.moll.re/anydev/deployment-backend/](https://git.kluster.moll.re/anydev/deployment-backend/).
|
||||
|
||||
|
||||
## Development
|
||||
TBD
|
||||
|
||||
TBD
|
@@ -1,47 +0,0 @@
|
||||
import pytest
|
||||
|
||||
pytest_plugins = ["pytest_html"]
|
||||
|
||||
def pytest_html_report_title(report):
|
||||
"""modifying the title of html report"""
|
||||
report.title = "Backend Testing Report"
|
||||
|
||||
def pytest_html_results_table_header(cells):
|
||||
cells.insert(2, "<th>Detailed trip</th>")
|
||||
cells.insert(3, "<th>Trip Duration</th>")
|
||||
cells.insert(4, "<th>Target Duration</th>")
|
||||
cells[5] = "<th>Execution time</th>" # rename the column containing execution times to avoid confusion
|
||||
|
||||
|
||||
def pytest_html_results_table_row(report, cells):
|
||||
trip_details = getattr(report, "trip_details", "N/A") # Default to "N/A" if no trip data
|
||||
trip_duration = getattr(report, "trip_duration", "N/A") # Default to "N/A" if no trip data
|
||||
target_duration = getattr(report, "target_duration", "N/A") # Default to "N/A" if no trip data
|
||||
cells.insert(2, f"<td>{trip_details}</td>")
|
||||
cells.insert(3, f"<td>{trip_duration}</td>")
|
||||
cells.insert(4, f"<td>{target_duration}</td>")
|
||||
|
||||
|
||||
@pytest.hookimpl(hookwrapper=True)
|
||||
def pytest_runtest_makereport(item, call):
|
||||
outcome = yield
|
||||
report = outcome.get_result()
|
||||
report.description = str(item.function.__doc__)
|
||||
|
||||
# Attach trip_details if it exists
|
||||
if hasattr(item, "trip_details"):
|
||||
report.trip_details = " - ".join(item.trip_details) # Convert list to string
|
||||
else:
|
||||
report.trip_details = "N/A" # Default if trip_string is not set
|
||||
|
||||
# Attach trip_duration if it exists
|
||||
if hasattr(item, "trip_duration"):
|
||||
report.trip_duration = item.trip_duration + " min"
|
||||
else:
|
||||
report.trip_duration = "N/A" # Default if duration is not set
|
||||
|
||||
# Attach target_duration if it exists
|
||||
if hasattr(item, "target_duration"):
|
||||
report.target_duration = item.target_duration + " min"
|
||||
else:
|
||||
report.target_duration = "N/A" # Default if duration is not set
|
1094
backend/report.html
@@ -1,9 +1,6 @@
|
||||
"""Module allowing to access the parameters of route generation"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import logging.config
|
||||
from pathlib import Path
|
||||
|
||||
import os
|
||||
|
||||
LOCATION_PREFIX = Path('src')
|
||||
PARAMETERS_DIR = LOCATION_PREFIX / 'parameters'
|
||||
@@ -12,25 +9,19 @@ LANDMARK_PARAMETERS_PATH = PARAMETERS_DIR / 'landmark_parameters.yaml'
|
||||
OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
|
||||
|
||||
|
||||
|
||||
cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
|
||||
OSM_CACHE_DIR = Path(cache_dir_string)
|
||||
|
||||
|
||||
# if we are in a debug session, set verbose and rich logging
|
||||
if os.getenv('DEBUG', "false") == "true":
|
||||
from rich.logging import RichHandler
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=[RichHandler()]
|
||||
)
|
||||
else:
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
)
|
||||
import logging
|
||||
import yaml
|
||||
|
||||
LOGGING_CONFIG = LOCATION_PREFIX / 'log_config.yaml'
|
||||
config = yaml.safe_load(LOGGING_CONFIG.read_text())
|
||||
|
||||
MEMCACHED_HOST_PATH = os.getenv('MEMCACHED_HOST_PATH', None)
|
||||
if MEMCACHED_HOST_PATH == "none":
|
||||
MEMCACHED_HOST_PATH = None
|
||||
logging.config.dictConfig(config)
|
||||
|
||||
# if we are in a debug session, set the log level to debug
|
||||
if os.getenv('DEBUG', False):
|
||||
logging.getLogger().setLevel(logging.DEBUG)
|
||||
|
34
backend/src/log_config.yaml
Normal file
@@ -0,0 +1,34 @@
|
||||
version: 1
|
||||
disable_existing_loggers: False
|
||||
formatters:
|
||||
simple:
|
||||
format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
handlers:
|
||||
console:
|
||||
class: rich.logging.RichHandler
|
||||
formatter: simple
|
||||
# access:
|
||||
# class: logging.FileHandler
|
||||
# filename: logs/access.log
|
||||
# level: INFO
|
||||
# formatter: simple
|
||||
|
||||
|
||||
|
||||
|
||||
loggers:
|
||||
uvicorn.error:
|
||||
level: INFO
|
||||
handlers:
|
||||
- console
|
||||
propagate: no
|
||||
# uvicorn.access:
|
||||
# level: INFO
|
||||
# handlers:
|
||||
# - access
|
||||
# propagate: no
|
||||
root:
|
||||
level: INFO
|
||||
handlers:
|
||||
- console
|
||||
propagate: yes
|
@@ -1,17 +1,12 @@
|
||||
"""Main app for backend api"""
|
||||
|
||||
import logging
|
||||
from fastapi import FastAPI, HTTPException, Query
|
||||
from fastapi import FastAPI, Query, Body
|
||||
|
||||
from .structs.landmark import Landmark, Toilets
|
||||
from .structs.preferences import Preferences
|
||||
from .structs.linked_landmarks import LinkedLandmarks
|
||||
from .structs.trip import Trip
|
||||
from .utils.landmarks_manager import LandmarkManager
|
||||
from .utils.toilets_manager import ToiletsManager
|
||||
from .utils.optimizer import Optimizer
|
||||
from .utils.refiner import Refiner
|
||||
from .persistence import client as cache_client
|
||||
from structs.landmark import Landmark
|
||||
from structs.preferences import Preferences
|
||||
from structs.linked_landmarks import LinkedLandmarks
|
||||
from utils.landmarks_manager import LandmarkManager
|
||||
from utils.optimizer import Optimizer
|
||||
from utils.refiner import Refiner
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -22,51 +17,25 @@ optimizer = Optimizer()
|
||||
refiner = Refiner(optimizer=optimizer)
|
||||
|
||||
|
||||
@app.post("/trip/new")
|
||||
def new_trip(preferences: Preferences,
|
||||
start: tuple[float, float],
|
||||
end: tuple[float, float] | None = None) -> Trip:
|
||||
"""
|
||||
@app.post("/route/new")
|
||||
def get_route(preferences: Preferences, start: tuple[float, float], end: tuple[float, float] | None = None) -> str:
|
||||
'''
|
||||
Main function to call the optimizer.
|
||||
|
||||
Args:
|
||||
preferences : the preferences specified by the user as the post body
|
||||
start : the coordinates of the starting point
|
||||
end : the coordinates of the finishing point
|
||||
Returns:
|
||||
(uuid) : The uuid of the first landmark in the optimized route
|
||||
"""
|
||||
:param preferences: the preferences specified by the user as the post body
|
||||
:param start: the coordinates of the starting point as a tuple of floats (as url query parameters)
|
||||
:param end: the coordinates of the finishing point as a tuple of floats (as url query parameters)
|
||||
:return: the uuid of the first landmark in the optimized route
|
||||
'''
|
||||
if preferences is None:
|
||||
raise HTTPException(status_code=406, detail="Preferences not provided or incomplete.")
|
||||
if (preferences.shopping.score == 0 and
|
||||
preferences.sightseeing.score == 0 and
|
||||
preferences.nature.score == 0) :
|
||||
raise HTTPException(status_code=406, detail="All preferences are 0.")
|
||||
raise ValueError("Please provide preferences in the form of a 'Preference' BaseModel class.")
|
||||
if start is None:
|
||||
raise HTTPException(status_code=406, detail="Start coordinates not provided")
|
||||
if not (-90 <= start[0] <= 90 or -180 <= start[1] <= 180):
|
||||
raise HTTPException(status_code=422, detail="Start coordinates not in range")
|
||||
raise ValueError("Please provide the starting coordinates as a tuple of floats.")
|
||||
if end is None:
|
||||
end = start
|
||||
logger.info("No end coordinates provided. Using start=end.")
|
||||
|
||||
start_landmark = Landmark(name='start',
|
||||
type='start',
|
||||
location=(start[0], start[1]),
|
||||
osm_type='start',
|
||||
osm_id=0,
|
||||
attractiveness=0,
|
||||
must_do=True,
|
||||
n_tags = 0)
|
||||
|
||||
end_landmark = Landmark(name='finish',
|
||||
type='finish',
|
||||
location=(end[0], end[1]),
|
||||
osm_type='end',
|
||||
osm_id=0,
|
||||
attractiveness=0,
|
||||
must_do=True,
|
||||
n_tags=0)
|
||||
start_landmark = Landmark(name='start', type='start', location=(start[0], start[1]), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
end_landmark = Landmark(name='end', type='finish', location=(end[0], end[1]), osm_type='end', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
|
||||
# Generate the landmarks from the start location
|
||||
landmarks, landmarks_short = manager.generate_landmarks_list(
|
||||
@@ -77,86 +46,23 @@ def new_trip(preferences: Preferences,
|
||||
# insert start and finish to the landmarks list
|
||||
landmarks_short.insert(0, start_landmark)
|
||||
landmarks_short.append(end_landmark)
|
||||
|
||||
# TODO infer these parameters from the preferences
|
||||
max_walking_time = 4 # hours
|
||||
detour = 30 # minutes
|
||||
|
||||
# First stage optimization
|
||||
try:
|
||||
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
|
||||
except ArithmeticError as exc:
|
||||
raise HTTPException(status_code=500, detail="No solution found") from exc
|
||||
except TimeoutError as exc:
|
||||
raise HTTPException(status_code=500, detail="Optimzation took too long") from exc
|
||||
|
||||
base_tour = optimizer.solve_optimization(max_walking_time*60, landmarks_short)
|
||||
|
||||
# Second stage optimization
|
||||
refined_tour = refiner.refine_optimization(landmarks, base_tour,
|
||||
preferences.max_time_minute,
|
||||
preferences.detour_tolerance_minute)
|
||||
refined_tour = refiner.refine_optimization(landmarks, base_tour, max_walking_time*60, detour)
|
||||
|
||||
linked_tour = LinkedLandmarks(refined_tour)
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
return trip
|
||||
return linked_tour[0].uuid
|
||||
|
||||
|
||||
#### For already existing trips/landmarks
|
||||
@app.get("/trip/{trip_uuid}")
|
||||
def get_trip(trip_uuid: str) -> Trip:
|
||||
"""
|
||||
Look-up the cache for a trip that has been previously generated using its identifier.
|
||||
|
||||
Args:
|
||||
trip_uuid (str) : unique identifier for a trip.
|
||||
|
||||
Returns:
|
||||
(Trip) : the corresponding trip.
|
||||
"""
|
||||
try:
|
||||
trip = cache_client.get(f"trip_{trip_uuid}")
|
||||
return trip
|
||||
except KeyError as exc:
|
||||
raise HTTPException(status_code=404, detail="Trip not found") from exc
|
||||
|
||||
|
||||
@app.get("/landmark/{landmark_uuid}")
|
||||
def get_landmark(landmark_uuid: str) -> Landmark:
|
||||
"""
|
||||
Returns a Landmark from its unique identifier.
|
||||
|
||||
Args:
|
||||
landmark_uuid (str) : unique identifier for a Landmark.
|
||||
|
||||
Returns:
|
||||
(Landmark) : the corresponding Landmark.
|
||||
"""
|
||||
try:
|
||||
landmark = cache_client.get(f"landmark_{landmark_uuid}")
|
||||
return landmark
|
||||
except KeyError as exc:
|
||||
raise HTTPException(status_code=404, detail="Landmark not found") from exc
|
||||
|
||||
|
||||
@app.post("/toilets/new")
|
||||
def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -> list[Toilets] :
|
||||
"""
|
||||
Endpoint to find toilets within a specified radius from a given location.
|
||||
|
||||
This endpoint expects the `location` and `radius` as **query parameters**, not in the request body.
|
||||
|
||||
Args:
|
||||
location (tuple[float, float]): The latitude and longitude of the location to search from.
|
||||
radius (int, optional): The radius (in meters) within which to search for toilets. Defaults to 500 meters.
|
||||
|
||||
Returns:
|
||||
list[Toilets]: A list of Toilets objects that meet the criteria.
|
||||
"""
|
||||
if location is None:
|
||||
raise HTTPException(status_code=406, detail="Coordinates not provided or invalid")
|
||||
if not (-90 <= location[0] <= 90 or -180 <= location[1] <= 180):
|
||||
raise HTTPException(status_code=422, detail="Start coordinates not in range")
|
||||
|
||||
toilets_manager = ToiletsManager(location, radius)
|
||||
|
||||
try :
|
||||
toilets_list = toilets_manager.generate_toilet_list()
|
||||
return toilets_list
|
||||
except KeyError as exc:
|
||||
raise HTTPException(status_code=404, detail="No toilets found") from exc
|
||||
#cherche dans linked_tour et retourne le landmark correspondant
|
||||
pass
|
||||
|
@@ -1,6 +1,3 @@
|
||||
# Tags were picked mostly arbitrarily, based on the OSM wiki and the OSM tags page.
|
||||
# See https://taginfo.openstreetmap.org for more inspiration.
|
||||
|
||||
nature:
|
||||
leisure: park
|
||||
geological: ''
|
||||
@@ -14,24 +11,7 @@ nature:
|
||||
- alpine_hut
|
||||
- viewpoint
|
||||
- zoo
|
||||
- resort
|
||||
- picnic_site
|
||||
water:
|
||||
- pond
|
||||
- lake
|
||||
- river
|
||||
- basin
|
||||
- stream
|
||||
- lagoon
|
||||
- rapids
|
||||
waterway:
|
||||
- waterfall
|
||||
- river
|
||||
- canal
|
||||
- dam
|
||||
- dock
|
||||
- boatyard
|
||||
|
||||
waterway: waterfall
|
||||
|
||||
shopping:
|
||||
shop:
|
||||
@@ -43,49 +23,10 @@ sightseeing:
|
||||
- museum
|
||||
- attraction
|
||||
- gallery
|
||||
- artwork
|
||||
- aquarium
|
||||
historic: ''
|
||||
amenity:
|
||||
- planetarium
|
||||
- place_of_worship
|
||||
- fountain
|
||||
- townhall
|
||||
water:
|
||||
- reflecting_pool
|
||||
bridge:
|
||||
- aqueduct
|
||||
- viaduct
|
||||
- boardwalk
|
||||
- cantilever
|
||||
- abandoned
|
||||
building:
|
||||
- church
|
||||
- chapel
|
||||
- mosque
|
||||
- synagogue
|
||||
- ruins
|
||||
- temple
|
||||
- government
|
||||
- cathedral
|
||||
- castle
|
||||
- museum
|
||||
|
||||
museums:
|
||||
tourism:
|
||||
- museum
|
||||
- aquarium
|
||||
|
||||
# to be used later on
|
||||
restauration:
|
||||
shop:
|
||||
- coffee
|
||||
- bakery
|
||||
- restaurant
|
||||
- pastry
|
||||
amenity:
|
||||
- restaurant
|
||||
- cafe
|
||||
- ice_cream
|
||||
- food_court
|
||||
- biergarten
|
||||
|
@@ -1,12 +1,6 @@
|
||||
city_bbox_side: 7500 #m
|
||||
city_bbox_side: 5000 #m
|
||||
radius_close_to: 50
|
||||
church_coeff: 0.9
|
||||
nature_coeff: 1.25
|
||||
overall_coeff: 10
|
||||
tag_exponent: 1.15
|
||||
image_bonus: 10
|
||||
viewpoint_bonus: 15
|
||||
wikipedia_bonus: 4
|
||||
name_bonus: 3
|
||||
church_coeff: 0.8
|
||||
park_coeff: 1.2
|
||||
tag_coeff: 10
|
||||
N_important: 40
|
||||
pay_bonus: -1
|
||||
|
@@ -1,6 +1,4 @@
|
||||
detour_factor: 1.4
|
||||
detour_corridor_width: 300
|
||||
detour_corridor_width: 200
|
||||
average_walking_speed: 4.8
|
||||
max_landmarks: 10
|
||||
max_landmarks_refiner: 30
|
||||
overshoot: 1.1
|
||||
max_landmarks: 7
|
||||
|
@@ -1,75 +0,0 @@
|
||||
"""Module used for handling cache"""
|
||||
from pymemcache import serde
|
||||
from pymemcache.client.base import Client
|
||||
|
||||
from .constants import MEMCACHED_HOST_PATH
|
||||
|
||||
|
||||
class DummyClient:
|
||||
"""
|
||||
A dummy in-memory client that mimics the behavior of a memcached client.
|
||||
|
||||
This class is designed to simulate the behavior of the `pymemcache.Client`
|
||||
for testing or development purposes. It stores data in a Python dictionary
|
||||
and provides methods to set, get, and update key-value pairs.
|
||||
|
||||
Attributes:
|
||||
_data (dict): A dictionary that holds the key-value pairs.
|
||||
|
||||
Methods:
|
||||
set(key, value, **kwargs):
|
||||
Stores the given key-value pair in the internal dictionary.
|
||||
|
||||
set_many(data, **kwargs):
|
||||
Updates the internal dictionary with multiple key-value pairs.
|
||||
|
||||
get(key, **kwargs):
|
||||
Retrieves the value associated with the given key from the internal
|
||||
dictionary.
|
||||
"""
|
||||
_data = {}
|
||||
def set(self, key, value, **kwargs): # pylint: disable=unused-argument
|
||||
"""
|
||||
Store a key-value pair in the internal dictionary.
|
||||
|
||||
Args:
|
||||
key: The key for the item to be stored.
|
||||
value: The value to be stored under the given key.
|
||||
**kwargs: Additional keyword arguments (unused).
|
||||
"""
|
||||
self._data[key] = value
|
||||
|
||||
def set_many(self, data, **kwargs): # pylint: disable=unused-argument
|
||||
"""
|
||||
Update the internal dictionary with multiple key-value pairs.
|
||||
|
||||
Args:
|
||||
data: A dictionary containing key-value pairs to be added.
|
||||
**kwargs: Additional keyword arguments (unused).
|
||||
"""
|
||||
self._data.update(data)
|
||||
|
||||
def get(self, key, **kwargs): # pylint: disable=unused-argument
|
||||
"""
|
||||
Retrieve the value associated with the given key.
|
||||
|
||||
Args:
|
||||
key: The key for the item to be retrieved.
|
||||
**kwargs: Additional keyword arguments (unused).
|
||||
|
||||
Returns:
|
||||
The value associated with the given key if it exists.
|
||||
"""
|
||||
return self._data[key]
|
||||
|
||||
|
||||
if MEMCACHED_HOST_PATH is None:
|
||||
client = DummyClient()
|
||||
else:
|
||||
client = Client(
|
||||
MEMCACHED_HOST_PATH,
|
||||
timeout=1,
|
||||
allow_unicode_keys=True,
|
||||
encoding='utf-8',
|
||||
serde=serde.pickle_serde
|
||||
)
|
@@ -1,698 +0,0 @@
|
||||
{
|
||||
"type": "FeatureCollection",
|
||||
"generator": "overpass-turbo",
|
||||
"copyright": "The data included in this document is from www.openstreetmap.org. The data is made available under ODbL.",
|
||||
"timestamp": "2024-12-02T21:14:59Z",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/1345741798",
|
||||
"name": "Cordonnerie Saint-Joseph",
|
||||
"shop": "shoes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3481705,
|
||||
48.0816462
|
||||
]
|
||||
},
|
||||
"id": "node/1345741798"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/2659184738",
|
||||
"brand": "Armand Thiery",
|
||||
"brand:wikidata": "Q2861975",
|
||||
"brand:wikipedia": "fr:Armand Thiery",
|
||||
"name": "Armand Thiery",
|
||||
"opening_hours": "Mo-Sa 09:30-19:00",
|
||||
"shop": "clothes",
|
||||
"wheelchair": "limited"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3594454,
|
||||
48.0785574
|
||||
]
|
||||
},
|
||||
"id": "node/2659184738"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3618136290",
|
||||
"name": "Chez Dominique",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3362362,
|
||||
48.0712174
|
||||
]
|
||||
},
|
||||
"id": "node/3618136290"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3618136605",
|
||||
"name": "Divamod",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3304253,
|
||||
48.0782989
|
||||
]
|
||||
},
|
||||
"id": "node/3618136605"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3618284507",
|
||||
"name": "Star tendances et voyages",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3474029,
|
||||
48.0830993
|
||||
]
|
||||
},
|
||||
"id": "node/3618284507"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3619696125",
|
||||
"brand": "Zeeman",
|
||||
"brand:wikidata": "Q184399",
|
||||
"name": "Zeeman",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3413834,
|
||||
48.0638444
|
||||
]
|
||||
},
|
||||
"id": "node/3619696125"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4594398129",
|
||||
"name": "Miss et Mister",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3308309,
|
||||
48.0779118
|
||||
]
|
||||
},
|
||||
"id": "node/4594398129"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4907320441",
|
||||
"brand": "Sergent Major",
|
||||
"brand:wikidata": "Q62521738",
|
||||
"clothes": "babies;children",
|
||||
"name": "Sergent Major",
|
||||
"opening_hours": "Mo-Sa 09:30-19:00",
|
||||
"shop": "clothes",
|
||||
"wheelchair": "no"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.359116,
|
||||
48.0787229
|
||||
]
|
||||
},
|
||||
"id": "node/4907320441"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4907364791",
|
||||
"brand": "Armand Thiery",
|
||||
"brand:wikidata": "Q2861975",
|
||||
"brand:wikipedia": "fr:Armand Thiery",
|
||||
"clothes": "women",
|
||||
"name": "Armand Thiery",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3601857,
|
||||
48.0783373
|
||||
]
|
||||
},
|
||||
"id": "node/4907364791"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4907385675",
|
||||
"check_date": "2024-05-19",
|
||||
"clothes": "children",
|
||||
"name": "Du Pareil...au même",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3604521,
|
||||
48.0779726
|
||||
]
|
||||
},
|
||||
"id": "node/4907385675"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922191645",
|
||||
"name": "Abilos",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3566167,
|
||||
48.0794136
|
||||
]
|
||||
},
|
||||
"id": "node/4922191645"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922191648",
|
||||
"brand": "Esprit",
|
||||
"brand:wikidata": "Q532746",
|
||||
"brand:wikipedia": "en:Esprit Holdings",
|
||||
"name": "Esprit",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3554004,
|
||||
48.0787549
|
||||
]
|
||||
},
|
||||
"id": "node/4922191648"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922191972",
|
||||
"brand": "Guess",
|
||||
"brand:wikidata": "Q2470307",
|
||||
"brand:wikipedia": "en:Guess (clothing)",
|
||||
"name": "Guess",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.355273,
|
||||
48.0788003
|
||||
]
|
||||
},
|
||||
"id": "node/4922191972"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922192001",
|
||||
"name": "Lingerie",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3575453,
|
||||
48.0779317
|
||||
]
|
||||
},
|
||||
"id": "node/4922192001"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/5359915869",
|
||||
"name": "Al Assil",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3305665,
|
||||
48.0780902
|
||||
]
|
||||
},
|
||||
"id": "node/5359915869"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9089360040",
|
||||
"brand": "Grain de Malice",
|
||||
"brand:wikidata": "Q66757157",
|
||||
"clothes": "women",
|
||||
"name": "Grain de Malice",
|
||||
"shop": "clothes",
|
||||
"short_name": "GDM"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3593125,
|
||||
48.0786234
|
||||
]
|
||||
},
|
||||
"id": "node/9089360040"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095193153",
|
||||
"brand": "Undiz",
|
||||
"brand:wikidata": "Q105306275",
|
||||
"clothes": "underwear",
|
||||
"name": "Undiz",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3599579,
|
||||
48.0782846
|
||||
]
|
||||
},
|
||||
"id": "node/9095193153"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095193154",
|
||||
"branch": "Lingerie",
|
||||
"brand": "RougeGorge",
|
||||
"brand:wikidata": "Q104600739",
|
||||
"clothes": "underwear",
|
||||
"name": "RougeGorge",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3604883,
|
||||
48.0781607
|
||||
]
|
||||
},
|
||||
"id": "node/9095193154"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095212690",
|
||||
"alt_name": "North Face",
|
||||
"brand": "The North Face",
|
||||
"brand:wikidata": "Q152784",
|
||||
"brand:wikipedia": "en:The North Face",
|
||||
"check_date": "2024-05-19",
|
||||
"name": "The North Face",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3603923,
|
||||
48.0773727
|
||||
]
|
||||
},
|
||||
"id": "node/9095212690"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095270059",
|
||||
"air_conditioning": "no",
|
||||
"clothes": "men",
|
||||
"level": "0",
|
||||
"name": "Maison Aume",
|
||||
"second_hand": "no",
|
||||
"shop": "clothes",
|
||||
"wheelchair": "no"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.361364,
|
||||
48.0799999
|
||||
]
|
||||
},
|
||||
"id": "node/9095270059"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9098624272",
|
||||
"name": "Destock Place",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3575161,
|
||||
48.0793009
|
||||
]
|
||||
},
|
||||
"id": "node/9098624272"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9123861652",
|
||||
"name": "Weackers",
|
||||
"shop": "shoes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.361329,
|
||||
48.0785972
|
||||
]
|
||||
},
|
||||
"id": "node/9123861652"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162179887",
|
||||
"brand": "Calzedonia",
|
||||
"brand:wikidata": "Q1027874",
|
||||
"brand:wikipedia": "en:Calzedonia",
|
||||
"name": "Calzedonia",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3606374,
|
||||
48.0780809
|
||||
]
|
||||
},
|
||||
"id": "node/9162179887"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162206449",
|
||||
"clothes": "women",
|
||||
"name": "Cop. Copine",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3600947,
|
||||
48.078399
|
||||
]
|
||||
},
|
||||
"id": "node/9162206449"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162226360",
|
||||
"brand": "Okaïdi",
|
||||
"brand:wikidata": "Q3350027",
|
||||
"brand:wikipedia": "fr:Okaïdi",
|
||||
"name": "Okaïdi",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3596986,
|
||||
48.078428
|
||||
]
|
||||
},
|
||||
"id": "node/9162226360"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162227010",
|
||||
"brand": "Jules",
|
||||
"brand:wikidata": "Q3188386",
|
||||
"brand:wikipedia": "fr:Jules (enseigne)",
|
||||
"clothes": "men",
|
||||
"name": "Jules",
|
||||
"opening_hours": "Mo-Sa 09:30-19:00",
|
||||
"phone": "+33 3 89 41 03 62",
|
||||
"shop": "clothes",
|
||||
"website": "https://www.jules.com/fr-fr/magasins/1600133/"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3600323,
|
||||
48.0782229
|
||||
]
|
||||
},
|
||||
"id": "node/9162227010"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/10151865029",
|
||||
"name": "Atelier Cinq",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3571756,
|
||||
48.0772657
|
||||
]
|
||||
},
|
||||
"id": "node/10151865029"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/10862176110",
|
||||
"name": "L'hexagone",
|
||||
"shop": "bag"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3808571,
|
||||
48.0814138
|
||||
]
|
||||
},
|
||||
"id": "node/10862176110"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11150877331",
|
||||
"brand": "Punt Roma",
|
||||
"brand:wikidata": "Q101423290",
|
||||
"clothes": "women",
|
||||
"name": "Punt Roma",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3571859,
|
||||
48.0779406
|
||||
]
|
||||
},
|
||||
"id": "node/11150877331"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11150959880",
|
||||
"name": "Caroll",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3579354,
|
||||
48.0779291
|
||||
]
|
||||
},
|
||||
"id": "node/11150959880"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11302242094",
|
||||
"branch": "Wintzenheim",
|
||||
"name": "Label Fripe",
|
||||
"opening_hours": "Mo-Sa 09:00-18:45",
|
||||
"phone": "+33 3 89 27 39 25",
|
||||
"second_hand": "only",
|
||||
"shop": "clothes",
|
||||
"website": "https://labelfripe.fr/label-fripe-wintzenheim/"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3109899,
|
||||
48.0850362
|
||||
]
|
||||
},
|
||||
"id": "node/11302242094"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11392247003",
|
||||
"name": "Lingerie Sipp",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3111507,
|
||||
48.0841835
|
||||
]
|
||||
},
|
||||
"id": "node/11392247003"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11778819781",
|
||||
"addr:city": "Colmar",
|
||||
"addr:housenumber": "10",
|
||||
"addr:postcode": "68000",
|
||||
"addr:street": "Rue des Têtes",
|
||||
"clothes": "suits;hats;men",
|
||||
"name": "Phillipe",
|
||||
"phone": "0389411983",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3559389,
|
||||
48.0789064
|
||||
]
|
||||
},
|
||||
"id": "node/11778819781"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11799215969",
|
||||
"brand": "Petit Bateau",
|
||||
"brand:wikidata": "Q3377090",
|
||||
"name": "Petit Bateau",
|
||||
"opening_hours": "Mo-Sa 10:00-19:00; Su 10:00-18:00",
|
||||
"phone": "+33 3 89 24 97 85",
|
||||
"shop": "clothes",
|
||||
"website": "https://stores.petit-bateau.com/france/colmar/9-rue-des-boulangers"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.355149,
|
||||
48.0780213
|
||||
]
|
||||
},
|
||||
"id": "node/11799215969"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11816704669",
|
||||
"addr:housenumber": "10",
|
||||
"addr:street": "Rue des Boulangers",
|
||||
"name": "des petits hauts",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3555001,
|
||||
48.0780768
|
||||
]
|
||||
},
|
||||
"id": "node/11816704669"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/12320343534",
|
||||
"addr:city": "Colmar",
|
||||
"addr:housenumber": "44",
|
||||
"addr:postcode": "68000",
|
||||
"addr:street": "Rue des Clefs",
|
||||
"brand": "Un Jour Ailleurs",
|
||||
"brand:wikidata": "Q105106211",
|
||||
"clothes": "women",
|
||||
"name": "Un Jour Ailleurs",
|
||||
"opening_hours": "Mo-Fr 10:00-19:00; Sa 10:00-18:30",
|
||||
"phone": "+33368318572",
|
||||
"shop": "clothes",
|
||||
"website": "https://boutique.unjourailleurs.com/fr/mode-femme/boutique-colmar-76"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.35897,
|
||||
48.0789807
|
||||
]
|
||||
},
|
||||
"id": "node/12320343534"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/12320343536",
|
||||
"addr:city": "Colmar",
|
||||
"addr:housenumber": "38",
|
||||
"addr:postcode": "68000",
|
||||
"addr:street": "Rue des Clefs",
|
||||
"brand": "Timberland",
|
||||
"brand:wikidata": "Q1539185",
|
||||
"name": "Timberland",
|
||||
"opening_hours": "Mo-Sa 10:00-19:00",
|
||||
"phone": "+33389298650",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3592409,
|
||||
48.0788785
|
||||
]
|
||||
},
|
||||
"id": "node/12320343536"
|
||||
}
|
||||
]
|
||||
}
|
@@ -1,350 +0,0 @@
|
||||
# pylint: skip-file
|
||||
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
from typing import Optional, Literal
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.decomposition import PCA
|
||||
import matplotlib.pyplot as plt
|
||||
from pydantic import BaseModel
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
from math import sin, cos, sqrt, atan2, radians
|
||||
|
||||
|
||||
EARTH_RADIUS_KM = 6373
|
||||
|
||||
|
||||
class ShoppingLocation(BaseModel):
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: tuple
|
||||
start: Optional[list] = None
|
||||
end: Optional[list] = None
|
||||
|
||||
|
||||
# Output to frontend
|
||||
class Landmark(BaseModel) :
|
||||
# Properties of the landmark
|
||||
name : str
|
||||
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
|
||||
location : tuple
|
||||
osm_type : str
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0
|
||||
name_en : Optional[str] = None
|
||||
|
||||
# Additional properties depending on specific tour
|
||||
must_do : Optional[bool] = False
|
||||
must_avoid : Optional[bool] = False
|
||||
is_secondary : Optional[bool] = False
|
||||
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
next_uuid : Optional[str] = None
|
||||
|
||||
|
||||
def extract_points(filestr: str) :
|
||||
"""
|
||||
Extract points from geojson file.
|
||||
|
||||
Returns :
|
||||
np.array containing the points
|
||||
"""
|
||||
points = []
|
||||
|
||||
with open(os.path.dirname(__file__) + '/' + filestr, 'r') as f:
|
||||
geojson = json.load(f)
|
||||
|
||||
for feature in geojson['features']:
|
||||
if feature['geometry']['type'] == 'Point':
|
||||
centroid = feature['geometry']['coordinates']
|
||||
points.append(centroid)
|
||||
|
||||
elif feature['geometry']['type'] == 'Polygon':
|
||||
centroid = np.array(feature['geometry']['coordinates'][0][0])
|
||||
points.append(centroid)
|
||||
|
||||
# Convert the list of points to a NumPy array
|
||||
return np.array(points)
|
||||
|
||||
|
||||
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
"""
|
||||
Calculate the time in minutes to travel from one location to another.
|
||||
|
||||
Args:
|
||||
p1 (tuple[float, float]): Coordinates of the starting location.
|
||||
p2 (tuple[float, float]): Coordinates of the destination.
|
||||
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
|
||||
|
||||
if p1 == p2:
|
||||
return 0
|
||||
else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
return EARTH_RADIUS_KM * c
|
||||
|
||||
def filter_clusters(cluster_points, cluster_labels):
|
||||
"""
|
||||
Remove clusters of less importance.
|
||||
"""
|
||||
label_counts = np.bincount(cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(cluster_points[cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# Concatenate filtered clusters into a single array
|
||||
return np.vstack(filtered_cluster_points), np.concatenate(filtered_cluster_labels)
|
||||
|
||||
|
||||
def fit_lines(points, labels):
|
||||
"""
|
||||
Fit lines to identified clusters.
|
||||
"""
|
||||
all_x = []
|
||||
all_y = []
|
||||
lines = []
|
||||
locations = []
|
||||
|
||||
for label in set(labels):
|
||||
cluster_points = points[labels == label]
|
||||
|
||||
# If there's not enough points, skip
|
||||
if len(cluster_points) < 2:
|
||||
continue
|
||||
|
||||
# Apply PCA to find the principal component (i.e., the line of best fit)
|
||||
pca = PCA(n_components=1)
|
||||
pca.fit(cluster_points)
|
||||
|
||||
direction = pca.components_[0]
|
||||
centroid = pca.mean_
|
||||
|
||||
# Project the cluster points onto the principal direction (line direction)
|
||||
projections = np.dot(cluster_points - centroid, direction)
|
||||
|
||||
# Get the range of the projections to find the approximate length of the cluster
|
||||
cluster_length = projections.max() - projections.min()
|
||||
|
||||
# Now adjust `t` so that it scales with the cluster length
|
||||
t = np.linspace(-cluster_length / 2.75, cluster_length / 2.75, 10)
|
||||
|
||||
# Calculate the start and end of the line based on min/max projections
|
||||
start_point = centroid[0] + t*direction[0]
|
||||
end_point = centroid[1] + t*direction[1]
|
||||
|
||||
# Store the line
|
||||
lines.append((start_point, end_point))
|
||||
|
||||
# For visualization, store the points
|
||||
all_x.append(min(start_point))
|
||||
all_x.append(max(start_point))
|
||||
all_y.append(min(end_point))
|
||||
all_y.append(max(end_point))
|
||||
|
||||
if np.linalg.norm(t) <= 0.0045 :
|
||||
loc = ShoppingLocation(
|
||||
type='area',
|
||||
centroid=tuple((centroid[1], centroid[0])),
|
||||
importance = len(cluster_points),
|
||||
)
|
||||
else :
|
||||
loc = ShoppingLocation(
|
||||
type='street',
|
||||
centroid=tuple((centroid[1], centroid[0])),
|
||||
importance = len(cluster_points),
|
||||
start=start_point,
|
||||
end=end_point
|
||||
)
|
||||
|
||||
locations.append(loc)
|
||||
|
||||
xmin = min(all_x)
|
||||
xmax = max(all_x)
|
||||
ymin = min(all_y)
|
||||
ymax = max(all_y)
|
||||
corners = (xmin, xmax, ymin, ymax)
|
||||
|
||||
return corners, locations
|
||||
|
||||
|
||||
|
||||
def create_landmark(shopping_location: ShoppingLocation):
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
lat, lon = shopping_location.centroid
|
||||
bbox = ("around:1000", str(lat), str(lon))
|
||||
|
||||
overpass = Overpass()
|
||||
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
|
||||
|
||||
min_dist = float('inf')
|
||||
new_name = 'Shopping Area'
|
||||
new_name_en = None
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
|
||||
for sel in selectors :
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
selector = sel,
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
|
||||
try:
|
||||
result = overpass.query(query)
|
||||
except Exception as e:
|
||||
raise Exception("query unsuccessful")
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
if location[0] is None :
|
||||
location = (elem.lat(), elem.lon())
|
||||
if location[0] is None :
|
||||
# print(f"Fetching coordinates failed with {elem.type()}/{elem.id()}")
|
||||
continue
|
||||
|
||||
# print(f"Distance : {get_distance(shopping_location.centroid, location)}")
|
||||
d = get_distance(shopping_location.centroid, location)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = elem.tag('name')
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# add english name if it exists
|
||||
try :
|
||||
new_name_en = elem.tag('name:en')
|
||||
except:
|
||||
pass
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type='shopping',
|
||||
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
|
||||
attractiveness=shopping_location.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
name_en=new_name_en
|
||||
)
|
||||
|
||||
|
||||
# Extract points
|
||||
points = extract_points('vienna_data.json')
|
||||
|
||||
# print(len(points))
|
||||
|
||||
######## Create a figure with 1 row and 3 columns for side-by-side plots
|
||||
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
||||
# Plot Raw data points
|
||||
axes[0].set_title('Raw Data')
|
||||
axes[0].scatter(points[:, 0], points[:, 1], color='blue', s=20)
|
||||
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if len(points) > 400 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(points)
|
||||
|
||||
# Separate clustered points and noise points
|
||||
clustered_points = points[labels != -1]
|
||||
clustered_labels = labels[labels != -1]
|
||||
noise_points = points[labels == -1]
|
||||
|
||||
######## Plot n°1: DBSCAN Clustering Results
|
||||
axes[1].set_title('DBSCAN Clusters')
|
||||
axes[1].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=20)
|
||||
axes[1].scatter(noise_points[:, 0], noise_points[:, 1], c='blue', s=7, label='Noise')
|
||||
|
||||
# Keep the 5 biggest clusters
|
||||
clustered_points, clustered_labels = filter_clusters(clustered_points, clustered_labels)
|
||||
|
||||
# Fit lines
|
||||
corners, locations = fit_lines(clustered_points, clustered_labels)
|
||||
(xmin, xmax, ymin, ymax) = corners
|
||||
|
||||
|
||||
######## Plot clustered points in normal size and noise points separately
|
||||
axes[2].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=30)
|
||||
axes[2].set_title('PCA Fitted Lines on Clusters')
|
||||
|
||||
# Create a list of Landmarks for the shopping things
|
||||
shopping_landmarks = []
|
||||
for loc in locations :
|
||||
axes[2].scatter(loc.centroid[1], loc.centroid[0], color='red', marker='x', s=200, linewidth=3)
|
||||
landmark = create_landmark(loc)
|
||||
shopping_landmarks.append(landmark)
|
||||
axes[2].text(loc.centroid[1], loc.centroid[0], landmark.name,
|
||||
ha='center', va='top', fontsize=6,
|
||||
bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.2'),
|
||||
zorder=3)
|
||||
|
||||
|
||||
|
||||
####### Plot the detected lines in the final plot #######
|
||||
# for loc in locations:
|
||||
# if loc.type == 'street' :
|
||||
# line_x = loc.start
|
||||
# line_y = loc.end
|
||||
# axes[2].plot(line_x, line_y, color='lime', linewidth=3)
|
||||
# else :
|
||||
|
||||
|
||||
|
||||
axes[0].set_xlim(xmin-0.01, xmax+0.01)
|
||||
axes[0].set_ylim(ymin-0.01, ymax+0.01)
|
||||
|
||||
axes[1].set_xlim(xmin-0.01, xmax+0.01)
|
||||
axes[1].set_ylim(ymin-0.01, ymax+0.01)
|
||||
|
||||
axes[2].set_xlim(xmin-0.01, xmax+0.01)
|
||||
axes[2].set_ylim(ymin-0.01, ymax+0.01)
|
||||
|
||||
|
||||
print("\n\n\n")
|
||||
for landmark in shopping_landmarks :
|
||||
print(f"{landmark.name} is a shopping area with a score of {landmark.attractiveness}")
|
||||
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
@@ -1,42 +1,11 @@
|
||||
"""Definition of the Landmark class to handle visitable objects across the world."""
|
||||
|
||||
from typing import Optional, Literal
|
||||
from uuid import uuid4
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from uuid import uuid4
|
||||
|
||||
# Output to frontend
|
||||
class Landmark(BaseModel) :
|
||||
"""
|
||||
A class representing a landmark or point of interest (POI) in the context of a trip.
|
||||
|
||||
The Landmark class is used to model visitable locations, such as tourist attractions,
|
||||
natural sites, shopping locations, and start/end points in travel itineraries. It
|
||||
holds information about the landmark's attributes and supports comparisons and
|
||||
calculations, such as distance between landmarks.
|
||||
|
||||
Attributes:
|
||||
name (str): The name of the landmark.
|
||||
type (Literal): The type of the landmark, which can be one of ['sightseeing', 'nature',
|
||||
'shopping', 'start', 'finish'].
|
||||
location (tuple): A tuple representing the (latitude, longitude) of the landmark.
|
||||
osm_type (str): The OpenStreetMap (OSM) type of the landmark.
|
||||
osm_id (int): The OpenStreetMap (OSM) ID of the landmark.
|
||||
attractiveness (int): A score representing the attractiveness of the landmark.
|
||||
n_tags (int): The number of tags associated with the landmark.
|
||||
image_url (Optional[str]): A URL to an image of the landmark.
|
||||
website_url (Optional[str]): A URL to the landmark's official website.
|
||||
description (Optional[str]): A text description of the landmark.
|
||||
duration (Optional[int]): The estimated time to visit the landmark (in minutes).
|
||||
name_en (Optional[str]): The English name of the landmark.
|
||||
uuid (str): A unique identifier for the landmark, generated by default using uuid4.
|
||||
must_do (Optional[bool]): Whether the landmark is a "must-do" attraction.
|
||||
must_avoid (Optional[bool]): Whether the landmark should be avoided.
|
||||
is_secondary (Optional[bool]): Whether the landmark is secondary or less important.
|
||||
time_to_reach_next (Optional[int]): Estimated time (in minutes) to reach the next landmark.
|
||||
next_uuid (Optional[str]): UUID of the next landmark in sequence (if applicable).
|
||||
"""
|
||||
|
||||
|
||||
# Properties of the landmark
|
||||
name : str
|
||||
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
|
||||
@@ -45,98 +14,25 @@ class Landmark(BaseModel) :
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
image_url : Optional[str] = None # TODO future
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0
|
||||
name_en : Optional[str] = None
|
||||
duration : Optional[int] = 0 # TODO future
|
||||
|
||||
# Unique ID of a given landmark
|
||||
uuid: str = Field(default_factory=uuid4)
|
||||
|
||||
uuid: str = Field(default_factory=uuid4) # TODO implement this ASAP
|
||||
|
||||
# Additional properties depending on specific tour
|
||||
must_do : Optional[bool] = False
|
||||
must_avoid : Optional[bool] = False
|
||||
is_secondary : Optional[bool] = False
|
||||
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
next_uuid : Optional[str] = None
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
String representation of the Landmark object.
|
||||
|
||||
Returns:
|
||||
str: A formatted string with the landmark's type, name, location, attractiveness score,
|
||||
time to the next landmark (if available), and whether the landmark is secondary.
|
||||
"""
|
||||
t_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else ""
|
||||
is_secondary_str = ", secondary" if self.is_secondary else ""
|
||||
type_str = '(' + self.type + ')'
|
||||
|
||||
return (f'Landmark{type_str}: [{self.name} @{self.location}, '
|
||||
f'score={self.attractiveness}{t_to_next_str}{is_secondary_str}]')
|
||||
|
||||
def distance(self, value: 'Landmark') -> float:
|
||||
"""
|
||||
Calculates the squared distance between this landmark and another.
|
||||
|
||||
Args:
|
||||
value (Landmark): Another Landmark object to calculate the distance to.
|
||||
|
||||
Returns:
|
||||
float: The squared Euclidean distance between the two landmarks.
|
||||
"""
|
||||
return (self.location[0] - value.location[0])**2 + (self.location[1] - value.location[1])**2
|
||||
is_secondary : Optional[bool] = False # TODO future
|
||||
|
||||
time_to_reach_next : Optional[int] = 0 # TODO fix this in existing code
|
||||
next_uuid : Optional[str] = None # TODO implement this ASAP
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""
|
||||
Generates a hash for the Landmark based on its name.
|
||||
|
||||
Returns:
|
||||
int: The hash of the landmark.
|
||||
"""
|
||||
return hash(self.name)
|
||||
|
||||
def __eq__(self, value: 'Landmark') -> bool:
|
||||
"""
|
||||
Checks equality between two Landmark objects based on UUID, OSM ID, and name.
|
||||
|
||||
Args:
|
||||
value (Landmark): Another Landmark object to compare.
|
||||
|
||||
Returns:
|
||||
bool: True if the landmarks are equal, False otherwise.
|
||||
"""
|
||||
# eq and hash must be consistent
|
||||
# in particular, if two objects are equal, their hash must be equal
|
||||
# uuid and osm_id are just shortcuts to avoid comparing all the properties
|
||||
# if they are equal, we know that the name is also equal and in turn the hash is equal
|
||||
return (self.uuid == value.uuid or
|
||||
self.osm_id == value.osm_id or
|
||||
(self.name == value.name and self.distance(value) < 0.001))
|
||||
|
||||
|
||||
class Toilets(BaseModel) :
|
||||
"""
|
||||
Model for toilets. When false/empty the information is either false either not known.
|
||||
"""
|
||||
location : tuple
|
||||
wheelchair : Optional[bool] = False
|
||||
changing_table : Optional[bool] = False
|
||||
fee : Optional[bool] = False
|
||||
opening_hours : Optional[str] = ""
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
String representation of the Toilets object.
|
||||
|
||||
Returns:
|
||||
str: A formatted string with the toilets location.
|
||||
"""
|
||||
return f'Toilets @{self.location}'
|
||||
return self.uuid.int
|
||||
|
||||
def __str__(self) -> str:
|
||||
time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else ""
|
||||
return f'Landmark({self.type}): [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}]'
|
||||
|
||||
class Config:
|
||||
# This allows us to easily convert the model to and from dictionaries
|
||||
orm_mode = True
|
@@ -1,78 +1,61 @@
|
||||
"""Linked and ordered list of Landmarks that represents the visiting order."""
|
||||
|
||||
import uuid
|
||||
from .landmark import Landmark
|
||||
from ..utils.get_time_separation import get_time
|
||||
from utils.get_time_separation import get_time
|
||||
|
||||
class LinkedLandmarks:
|
||||
"""
|
||||
A list of landmarks that are linked together, e.g. in a route.
|
||||
Each landmark serves as a node in the linked list, but since we expect
|
||||
these to be consumed through the rest API, a pythonic reference to the next
|
||||
landmark is not well suited. Instead we use the uuid of the next landmark
|
||||
to reference the next landmark in the list. This is not very efficient,
|
||||
but appropriate for the expected use case
|
||||
("short" trips with onyl few landmarks).
|
||||
Each landmark serves as a node in the linked list, but since we expect these to be consumed through the rest API, a pythonic reference to the next landmark is not well suited. Instead we use the uuid of the next landmark to reference the next landmark in the list. This is not very efficient, but appropriate for the expected use case ("short" trips with onyl few landmarks).
|
||||
"""
|
||||
|
||||
|
||||
_landmarks = list[Landmark]
|
||||
total_time: int = 0
|
||||
total_time = int
|
||||
uuid = str
|
||||
|
||||
def __init__(self, data: list[Landmark] = None) -> None:
|
||||
"""
|
||||
Initialize a new LinkedLandmarks object. This expects an ORDERED list of landmarks,
|
||||
where the first landmark is the starting point and the last landmark is the end point.
|
||||
|
||||
Initialize a new LinkedLandmarks object. This expects an ORDERED list of landmarks, where the first landmark is the starting point and the last landmark is the end point.
|
||||
|
||||
Args:
|
||||
data (list[Landmark], optional): The list of landmarks that are linked together.
|
||||
Defaults to None.
|
||||
data (list[Landmark], optional): The list of landmarks that are linked together. Defaults to None.
|
||||
"""
|
||||
self.uuid = uuid.uuid4()
|
||||
self._landmarks = data if data else []
|
||||
self._link_landmarks()
|
||||
|
||||
|
||||
def _link_landmarks(self) -> None:
|
||||
"""
|
||||
Create the links between the landmarks in the list by setting their
|
||||
.next_uuid and the .time_to_next attributes.
|
||||
Create the links between the landmarks in the list by setting their .next_uuid and the .time_to_next attributes.
|
||||
"""
|
||||
|
||||
# Mark secondary landmarks as such
|
||||
self.update_secondary_landmarks()
|
||||
|
||||
|
||||
self.total_time = 0
|
||||
for i, landmark in enumerate(self._landmarks[:-1]):
|
||||
landmark.next_uuid = self._landmarks[i + 1].uuid
|
||||
time_to_next = get_time(landmark.location, self._landmarks[i + 1].location)
|
||||
landmark.time_to_reach_next = time_to_next
|
||||
self.total_time += time_to_next
|
||||
self.total_time += landmark.duration
|
||||
|
||||
self._landmarks[-1].next_uuid = None
|
||||
self._landmarks[-1].time_to_reach_next = 0
|
||||
|
||||
def update_secondary_landmarks(self) -> None:
|
||||
"""
|
||||
Mark landmarks with lower importance as secondary.
|
||||
"""
|
||||
# Extract the attractiveness scores and sort them in descending order
|
||||
scores = sorted([landmark.attractiveness for landmark in self._landmarks], reverse=True)
|
||||
|
||||
# Determine the 10th highest score
|
||||
if len(scores) >= 10:
|
||||
threshold_score = scores[9]
|
||||
else:
|
||||
# If there are fewer than 10 landmarks, use the lowest score as the threshold
|
||||
threshold_score = min(scores) if scores else 0
|
||||
|
||||
# Update 'is_secondary' for landmarks with attractiveness below the threshold score
|
||||
for landmark in self._landmarks:
|
||||
if (landmark.attractiveness < threshold_score and landmark.type not in ["start", "finish"]):
|
||||
landmark.is_secondary = True
|
||||
|
||||
|
||||
def __getitem__(self, index: int) -> Landmark:
|
||||
return self._landmarks[index]
|
||||
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"LinkedLandmarks [{' ->'.join([str(landmark) for landmark in self._landmarks])}]"
|
||||
return f"LinkedLandmarks, total time: {self.total_time} minutes, {len(self._landmarks)} stops: [{','.join([str(landmark) for landmark in self._landmarks])}]"
|
||||
|
||||
|
||||
def asdict(self) -> dict:
|
||||
"""
|
||||
Convert the linked landmarks to a json serializable dictionary.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary representation of the linked landmarks.
|
||||
"""
|
||||
return {
|
||||
'uuid': self.uuid,
|
||||
'total_time': self.total_time,
|
||||
'landmarks': [landmark.dict() for landmark in self._landmarks]
|
||||
}
|
||||
|
@@ -1,26 +1,13 @@
|
||||
"""Defines the Preferences used as input for trip generation."""
|
||||
|
||||
from typing import Optional, Literal
|
||||
from pydantic import BaseModel
|
||||
|
||||
from typing import Optional, Literal
|
||||
|
||||
class Preference(BaseModel) :
|
||||
"""
|
||||
Type of preference.
|
||||
|
||||
Attributes:
|
||||
type: what kind of landmark type.
|
||||
score: how important that type is.
|
||||
"""
|
||||
name: str
|
||||
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
|
||||
score: int # score could be from 1 to 5
|
||||
|
||||
|
||||
# Input for optimization
|
||||
class Preferences(BaseModel) :
|
||||
""""
|
||||
Full collection of preferences needed to generate a personalized trip.
|
||||
"""
|
||||
# Sightseeing / History & Culture (Musées, bâtiments historiques, opéras, églises)
|
||||
sightseeing : Preference
|
||||
|
||||
@@ -30,5 +17,5 @@ class Preferences(BaseModel) :
|
||||
# Shopping (diriger plutôt vers des zones / rues commerçantes)
|
||||
shopping : Preference
|
||||
|
||||
max_time_minute: Optional[int] = 3*60
|
||||
max_time_minute: Optional[int] = 6*60
|
||||
detour_tolerance_minute: Optional[int] = 0
|
||||
|
@@ -1,48 +0,0 @@
|
||||
"""Definition of the Trip class."""
|
||||
|
||||
import uuid
|
||||
from pydantic import BaseModel, Field
|
||||
from pymemcache.client.base import Client
|
||||
|
||||
from .linked_landmarks import LinkedLandmarks
|
||||
|
||||
|
||||
class Trip(BaseModel):
|
||||
""""
|
||||
A Trip represents the final guided tour that can be passed to frontend.
|
||||
|
||||
Attributes:
|
||||
uuid: unique identifier for this particular trip.
|
||||
total_time: duration of the trip (in minutes).
|
||||
first_landmark_uuid: unique identifier of the first Landmark to visit.
|
||||
|
||||
Methods:
|
||||
from_linked_landmarks: create a Trip from LinkedLandmarks object.
|
||||
"""
|
||||
uuid: str = Field(default_factory=uuid.uuid4)
|
||||
total_time: int
|
||||
first_landmark_uuid: str
|
||||
|
||||
|
||||
@classmethod
|
||||
def from_linked_landmarks(cls, landmarks: LinkedLandmarks, cache_client: Client) -> "Trip":
|
||||
"""
|
||||
Initialize a new Trip object and ensure it is stored in the cache.
|
||||
"""
|
||||
trip = Trip(
|
||||
total_time = landmarks.total_time,
|
||||
first_landmark_uuid = str(landmarks[0].uuid)
|
||||
)
|
||||
|
||||
# Store the trip in the cache
|
||||
cache_client.set(f"trip_{trip.uuid}", trip)
|
||||
|
||||
# Make sure to await the result (noreply=False).
|
||||
# Otherwise the cache might not be inplace when the trip is actually requested.
|
||||
cache_client.set_many({f"landmark_{landmark.uuid}": landmark for landmark in landmarks},
|
||||
expire=3600, noreply=False)
|
||||
# is equivalent to:
|
||||
# for landmark in landmarks:
|
||||
# cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600)
|
||||
|
||||
return trip
|
85
backend/src/tester.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import logging
|
||||
import yaml
|
||||
|
||||
from utils.landmarks_manager import LandmarkManager
|
||||
from utils.optimizer import Optimizer
|
||||
from utils.refiner import Refiner
|
||||
from structs.landmark import Landmark
|
||||
from structs.linked_landmarks import LinkedLandmarks
|
||||
from structs.preferences import Preferences, Preference
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
||||
def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] = None) -> list[Landmark]:
|
||||
manager = LandmarkManager()
|
||||
optimizer = Optimizer()
|
||||
refiner = Refiner(optimizer=optimizer)
|
||||
|
||||
|
||||
preferences = Preferences(
|
||||
sightseeing=Preference(
|
||||
name='sightseeing',
|
||||
type='sightseeing',
|
||||
score = 5),
|
||||
nature=Preference(
|
||||
name='nature',
|
||||
type='nature',
|
||||
score = 5),
|
||||
shopping=Preference(
|
||||
name='shopping',
|
||||
type='shopping',
|
||||
score = 5),
|
||||
|
||||
max_time_minute=180,
|
||||
detour_tolerance_minute=30
|
||||
)
|
||||
|
||||
# Create start and finish
|
||||
if finish_coords is None :
|
||||
finish_coords = start_coords
|
||||
start = Landmark(name='start', type='start', location=start_coords, osm_type='', osm_id=0, attractiveness=0, n_tags = 0)
|
||||
finish = Landmark(name='finish', type='finish', location=finish_coords, osm_type='', osm_id=0, attractiveness=0, n_tags = 0)
|
||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.8777055, 2.3640967), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.847132, 2.312359), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.843185, 2.344533), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.847132, 2.312359), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
|
||||
|
||||
|
||||
# Generate the landmarks from the start location
|
||||
landmarks, landmarks_short = manager.generate_landmarks_list(
|
||||
center_coordinates = start_coords,
|
||||
preferences = preferences
|
||||
)
|
||||
|
||||
# Store data to file for debug purposes
|
||||
# write_data(landmarks, "landmarks_Strasbourg.txt")
|
||||
|
||||
# Insert start and finish to the landmarks list
|
||||
landmarks_short.insert(0, start)
|
||||
landmarks_short.append(finish)
|
||||
|
||||
# First stage optimization
|
||||
base_tour = optimizer.solve_optimization(max_time=preferences.max_time_minute, landmarks=landmarks_short)
|
||||
|
||||
# Second stage using linear optimization
|
||||
refined_tour = refiner.refine_optimization(all_landmarks=landmarks, base_tour=base_tour, max_time = preferences.max_time_minute, detour = preferences.detour_tolerance_minute)
|
||||
|
||||
linked_tour = LinkedLandmarks(refined_tour)
|
||||
logger.info(f"Optimized route: {linked_tour}")
|
||||
|
||||
# with open('linked_tour.yaml', 'w') as f:
|
||||
# yaml.dump(linked_tour.asdict(), f)
|
||||
|
||||
return linked_tour
|
||||
|
||||
|
||||
#test(tuple((48.8344400, 2.3220540))) # Café Chez César
|
||||
#test(tuple((48.8375946, 2.2949904))) # Point random
|
||||
#test(tuple((47.377859, 8.540585))) # Zurich HB
|
||||
#test(tuple((45.7576485, 4.8330241))) # Lyon Bellecour
|
||||
test(tuple((48.5848435, 7.7332974))) # Strasbourg Gare
|
||||
#test(tuple((48.2067858, 16.3692340))) # Vienne
|
@@ -1,42 +0,0 @@
|
||||
"""Collection of tests to ensure correct handling of invalid input."""
|
||||
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from .test_utils import load_trip_landmarks
|
||||
from ..main import app
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
def test_cache(client, request): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 15
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.084588, 7.280405]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
landmarks_cached = load_trip_landmarks(client, result['first_landmark_uuid'], True)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert landmarks_cached == landmarks
|
@@ -1,62 +0,0 @@
|
||||
"""Collection of tests to ensure correct handling of invalid input."""
|
||||
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from ..main import app
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def invalid_client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"start,preferences,status_code",
|
||||
[
|
||||
# Invalid case: no preferences at all.
|
||||
([48.8566, 2.3522], {}, 422),
|
||||
|
||||
# Invalid cases: incomplete preferences.
|
||||
([48.084588, 7.280405], {"sightseeing": {"type": "nature", "score": 5}, # no shopping
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
}, 422),
|
||||
([48.084588, 7.280405], {"sightseeing": {"type": "nature", "score": 5}, # no nature
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
}, 422),
|
||||
([48.084588, 7.280405], {"nature": {"type": "nature", "score": 5}, # no sightseeing
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
}, 422),
|
||||
|
||||
# Invalid cases: unexisting coords
|
||||
([91, 181], {"sightseeing": {"type": "nature", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
}, 422),
|
||||
([-91, 181], {"sightseeing": {"type": "nature", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
}, 422),
|
||||
([91, -181], {"sightseeing": {"type": "nature", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
}, 422),
|
||||
([-91, -181], {"sightseeing": {"type": "nature", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
}, 422),
|
||||
]
|
||||
)
|
||||
def test_input(invalid_client, start, preferences, status_code): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test new trip creation with different sets of preferences and locations.
|
||||
"""
|
||||
response = invalid_client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": preferences,
|
||||
"start": start
|
||||
}
|
||||
)
|
||||
assert response.status_code == status_code
|
@@ -1,128 +0,0 @@
|
||||
"""Collection of tests to ensure correct implementation and track progress. """
|
||||
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from .test_utils import landmarks_to_osmid, load_trip_landmarks, log_trip_details
|
||||
from ..main import app
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 15
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.084588, 7.280405]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert isinstance(landmarks, list) # check that the return type is a list
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
assert len(landmarks) > 2 # check that there is something to visit
|
||||
|
||||
|
||||
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 30
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [45.7576485, 4.8330241]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
osm_ids = landmarks_to_osmid(landmarks)
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
assert 136200148 in osm_ids # check for Cathédrale St. Jean in trip
|
||||
|
||||
|
||||
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°3 : Custom test in Lyon centre to ensure shopping clusters are found.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 600
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 0},
|
||||
"nature": {"type": "nature", "score": 0},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [45.7576485, 4.8330241]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
# osm_ids = landmarks_to_osmid(landmarks)
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
|
||||
# def test_new_trip_single_prefs(client):
|
||||
# response = client.post(
|
||||
# "/trip/new",
|
||||
# json={
|
||||
# "preferences": {"sightseeing": {"type": "sightseeing", "score": 1},
|
||||
# "nature": {"type": "nature", "score": 1},
|
||||
# "shopping": {"type": "shopping", "score": 1},
|
||||
# "max_time_minute": 360,
|
||||
# "detour_tolerance_minute": 0},
|
||||
# "start": [48.8566, 2.3522]
|
||||
# }
|
||||
# )
|
||||
# assert response.status_code == 200
|
||||
|
||||
|
||||
# def test_new_trip_matches_prefs(client):
|
||||
# pass
|
@@ -1,102 +0,0 @@
|
||||
"""Collection of tests to ensure correct implementation and track progress. """
|
||||
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from ..structs.landmark import Toilets
|
||||
from ..main import app
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,radius,status_code",
|
||||
[
|
||||
({}, None, 422), # Invalid case: no location at all.
|
||||
([443], None, 422), # Invalid cases: invalid location.
|
||||
([443, 433], None, 422), # Invalid cases: invalid location.
|
||||
]
|
||||
)
|
||||
def test_invalid_input(client, location, radius, status_code): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Verify handling of invalid input.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
response = client.post(
|
||||
"/toilets/new",
|
||||
params={
|
||||
"location": location,
|
||||
"radius": radius
|
||||
}
|
||||
)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == status_code
|
||||
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,status_code",
|
||||
[
|
||||
([48.2270, 7.4370], 200), # Orschwiller.
|
||||
([10.2012, 10.123], 200), # Nigerian desert.
|
||||
([63.989, -19.677], 200), # Hekla volcano, Iceland
|
||||
]
|
||||
)
|
||||
def test_no_toilets(client, location, status_code): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°3 : Verify the code finds some toilets in big cities.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
response = client.post(
|
||||
"/toilets/new",
|
||||
params={
|
||||
"location": location
|
||||
}
|
||||
)
|
||||
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert isinstance(toilets_list, list) # check that the return type is a list
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,status_code",
|
||||
[
|
||||
([45.7576485, 4.8330241], 200), # Lyon, Bellecour.
|
||||
([-6.913795, 107.60278], 200), # Bandung, train station
|
||||
([-22.970140, -43.18181], 200), # Rio de Janeiro, Copacabana
|
||||
]
|
||||
)
|
||||
def test_toilets(client, location, status_code): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°3 : Verify the code finds some toilets in big cities.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
response = client.post(
|
||||
"/toilets/new",
|
||||
params={
|
||||
"location": location,
|
||||
"radius" : 600
|
||||
}
|
||||
)
|
||||
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert isinstance(toilets_list, list) # check that the return type is a list
|
||||
assert len(toilets_list) > 0
|
@@ -1,137 +0,0 @@
|
||||
"""Helper methods for testing."""
|
||||
import logging
|
||||
from fastapi import HTTPException
|
||||
from pydantic import ValidationError
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..persistence import client as cache_client
|
||||
|
||||
|
||||
def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
|
||||
"""
|
||||
Convert the list of landmarks into a list containing their osm ids for quick landmark checking.
|
||||
|
||||
Args :
|
||||
landmarks (list): the list of landmarks
|
||||
|
||||
Returns :
|
||||
ids (list) : the list of corresponding OSM ids
|
||||
"""
|
||||
ids = []
|
||||
for landmark in landmarks :
|
||||
ids.append(landmark.osm_id)
|
||||
|
||||
return ids
|
||||
|
||||
def fetch_landmark(client, landmark_uuid: str):
|
||||
"""
|
||||
Fetch landmark data from the API based on the landmark UUID.
|
||||
|
||||
Args:
|
||||
landmark_uuid (str): The UUID of the landmark.
|
||||
|
||||
Returns:
|
||||
dict: Landmark data fetched from the API.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
response = client.get(f"/landmark/{landmark_uuid}")
|
||||
|
||||
if response.status_code != 200:
|
||||
raise HTTPException(status_code=500,
|
||||
detail=f"Failed to fetch landmark with UUID {landmark_uuid}: {response.status_code}")
|
||||
|
||||
try:
|
||||
json_data = response.json()
|
||||
logger.info(f"API Response: {json_data}")
|
||||
except ValueError as e:
|
||||
logger.error(f"Failed to parse response as JSON: {response.text}")
|
||||
raise HTTPException(status_code=500, detail="Invalid response format from API")
|
||||
|
||||
# Try validating against the Landmark model here to ensure consistency
|
||||
try:
|
||||
landmark = Landmark(**json_data)
|
||||
except ValidationError as ve:
|
||||
logging.error(f"Validation error: {ve}")
|
||||
raise HTTPException(status_code=500, detail="Invalid data format received from API")
|
||||
|
||||
|
||||
if "detail" in json_data:
|
||||
raise HTTPException(status_code=500, detail=json_data["detail"])
|
||||
|
||||
return Landmark(**json_data)
|
||||
|
||||
|
||||
def fetch_landmark_cache(landmark_uuid: str):
|
||||
"""
|
||||
Fetch landmark data from the cache based on the landmark UUID.
|
||||
|
||||
Args:
|
||||
landmark_uuid (str): The UUID of the landmark.
|
||||
|
||||
Returns:
|
||||
dict: Landmark data fetched from the cache or raises an HTTP exception.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Try to fetch the landmark data from the cache
|
||||
try:
|
||||
landmark = cache_client.get(f"landmark_{landmark_uuid}")
|
||||
if not landmark :
|
||||
logger.warning(f"Cache miss for landmark UUID: {landmark_uuid}")
|
||||
raise HTTPException(status_code=404, detail=f"Landmark with UUID {landmark_uuid} not found in cache.")
|
||||
|
||||
# Validate that the fetched data is a dictionary
|
||||
if not isinstance(landmark, Landmark):
|
||||
logger.error(f"Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.")
|
||||
raise HTTPException(status_code=500, detail="Invalid cache data format.")
|
||||
|
||||
return landmark
|
||||
|
||||
except Exception as exc:
|
||||
logger.error(f"Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}")
|
||||
raise HTTPException(status_code=500, detail="An unexpected error occurred while fetching the landmark from the cache") from exc
|
||||
|
||||
|
||||
|
||||
|
||||
def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landmark]:
|
||||
"""
|
||||
Load all landmarks for a trip using the response from the API.
|
||||
|
||||
Args:
|
||||
first_uuid (str) : The first UUID of the landmark.
|
||||
|
||||
Returns:
|
||||
landmarks (list) : An list containing all landmarks for the trip.
|
||||
"""
|
||||
landmarks = []
|
||||
next_uuid = first_uuid
|
||||
|
||||
while next_uuid is not None:
|
||||
if from_cache :
|
||||
landmark = fetch_landmark_cache(next_uuid)
|
||||
else :
|
||||
landmark = fetch_landmark(client, next_uuid)
|
||||
|
||||
landmarks.append(landmark)
|
||||
next_uuid = landmark.next_uuid # Prepare for the next iteration
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
def log_trip_details(request, landmarks: list[Landmark], duration: int, target_duration: int) :
|
||||
"""
|
||||
Allows to show the detailed trip in the html test report.
|
||||
|
||||
Args:
|
||||
request:
|
||||
landmarks (list): the ordered list of visited landmarks
|
||||
duration (int): the total duration of this trip
|
||||
target_duration(int): the target duration of this trip
|
||||
"""
|
||||
trip_string = [f"{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}" for landmark in landmarks]
|
||||
|
||||
# Pass additional info to pytest for reporting
|
||||
request.node.trip_details = trip_string
|
||||
request.node.trip_duration = str(duration) # result['total_time']
|
||||
request.node.target_duration = str(target_duration)
|
@@ -1,283 +0,0 @@
|
||||
import logging
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from pydantic import BaseModel
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_separation import get_distance
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
|
||||
class ShoppingLocation(BaseModel):
|
||||
""""
|
||||
A classe representing an interesting area for shopping.
|
||||
|
||||
It can represent either a general area or a specifc route with start and end point.
|
||||
The importance represents the number of shops found in this cluster.
|
||||
|
||||
Attributes:
|
||||
type : either a 'street' or 'area' (representing a denser field of shops).
|
||||
importance : size of the cluster (number of points).
|
||||
centroid : center of the cluster.
|
||||
start : if the type is a street it goes from here...
|
||||
end : ...to here
|
||||
"""
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: tuple
|
||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||
# end: Optional[list] = None
|
||||
|
||||
|
||||
class ShoppingManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# NOTE: all points are in (lat, lon) format
|
||||
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
|
||||
all_points: list
|
||||
cluster_points: list
|
||||
cluster_labels: list
|
||||
shopping_locations: list[ShoppingLocation]
|
||||
|
||||
def __init__(self, bbox: tuple) -> None:
|
||||
"""
|
||||
Upon intialization, generate the point cloud used for cluster detection.
|
||||
The points represent bag/clothes shops and general boutiques.
|
||||
|
||||
Args:
|
||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
"""
|
||||
|
||||
# Initialize overpass and cache
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
# Initialize the points for cluster detection
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node'],
|
||||
selector = ['"shop"~"^(bag|boutique|clothes)$"'],
|
||||
includeCenter = True,
|
||||
out = 'skel'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
|
||||
if len(result.elements()) == 0 :
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
points = []
|
||||
for elem in result.elements() :
|
||||
points.append(tuple((elem.lat(), elem.lon())))
|
||||
|
||||
self.all_points = np.array(points)
|
||||
self.valid = True
|
||||
|
||||
|
||||
def generate_shopping_landmarks(self) -> list[Landmark]:
|
||||
"""
|
||||
Generate shopping landmarks based on clustered locations.
|
||||
|
||||
This method first generates clusters of locations and then extracts shopping-related
|
||||
locations from these clusters. It transforms each shopping location into a `Landmark` object.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of `Landmark` objects representing shopping locations.
|
||||
Returns an empty list if no clusters are found.
|
||||
"""
|
||||
|
||||
self.generate_clusters()
|
||||
|
||||
if len(set(self.cluster_labels)) == 0 :
|
||||
return [] # Return empty list if no clusters were found
|
||||
|
||||
# Then generate the shopping locations
|
||||
self.generate_shopping_locations()
|
||||
|
||||
# Transform the locations in landmarks and return the list
|
||||
shopping_landmarks = []
|
||||
for location in self.shopping_locations :
|
||||
shopping_landmarks.append(self.create_landmark(location))
|
||||
|
||||
return shopping_landmarks
|
||||
|
||||
|
||||
|
||||
def generate_clusters(self) :
|
||||
"""
|
||||
Generate clusters of points using DBSCAN.
|
||||
|
||||
This method applies the DBSCAN clustering algorithm with different
|
||||
parameters depending on the size of the city (number of points).
|
||||
It filters out noise points and keeps only the largest clusters.
|
||||
|
||||
The method updates:
|
||||
- `self.cluster_points`: The points belonging to clusters.
|
||||
- `self.cluster_labels`: The labels for the points in clusters.
|
||||
|
||||
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||
"""
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if len(self.all_points) > 200 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(self.all_points)
|
||||
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
|
||||
# filter the clusters to keep only the largest ones
|
||||
self.filter_clusters()
|
||||
|
||||
|
||||
def generate_shopping_locations(self) :
|
||||
"""
|
||||
Generate shopping locations based on clustered points.
|
||||
|
||||
This method iterates over the different clusters, calculates the centroid
|
||||
(as the mean of the points within each cluster), and assigns an importance
|
||||
based on the size of the cluster.
|
||||
|
||||
The generated shopping locations are stored in `self.shopping_locations`
|
||||
as a list of `ShoppingLocation` objects, each with:
|
||||
- `type`: Set to 'area'.
|
||||
- `centroid`: The calculated centroid of the cluster.
|
||||
- `importance`: The number of points in the cluster.
|
||||
"""
|
||||
|
||||
locations = []
|
||||
|
||||
# loop through the different clusters
|
||||
for label in set(self.cluster_labels):
|
||||
|
||||
# Extract points belonging to the current cluster
|
||||
current_cluster = self.cluster_points[self.cluster_labels == label]
|
||||
|
||||
# Calculate the centroid as the mean of the points
|
||||
centroid = np.mean(current_cluster, axis=0)
|
||||
|
||||
locations.append(ShoppingLocation(
|
||||
type='area',
|
||||
centroid=centroid,
|
||||
importance = len(current_cluster)
|
||||
))
|
||||
|
||||
self.shopping_locations = locations
|
||||
|
||||
|
||||
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
|
||||
"""
|
||||
Create a Landmark object based on the given shopping location.
|
||||
|
||||
This method queries the Overpass API for nearby neighborhoods and shopping malls
|
||||
within a 1000m radius around the shopping location centroid. It selects the closest
|
||||
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||
|
||||
Parameters:
|
||||
shopping_location (ShoppingLocation): A ShoppingLocation object containing
|
||||
the centroid and importance of the area.
|
||||
|
||||
Returns:
|
||||
Landmark: A Landmark object containing details such as the name, type,
|
||||
location, attractiveness, and OSM details.
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
lat, lon = shopping_location.centroid
|
||||
bbox = ("around:1000", str(lat), str(lon))
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
|
||||
|
||||
min_dist = float('inf')
|
||||
new_name = 'Shopping Area'
|
||||
new_name_en = None
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
|
||||
for sel in selectors :
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
selector = sel,
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
for elem in result.elements():
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
if location[0] is None :
|
||||
location = (elem.lat(), elem.lon())
|
||||
if location[0] is None :
|
||||
continue
|
||||
|
||||
d = get_distance(shopping_location.centroid, location)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = elem.tag('name')
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# Add english name if it exists
|
||||
try :
|
||||
new_name_en = elem.tag('name:en')
|
||||
except:
|
||||
pass
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type='shopping',
|
||||
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
|
||||
attractiveness=shopping_location.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
name_en=new_name_en
|
||||
)
|
||||
|
||||
|
||||
def filter_clusters(self):
|
||||
"""
|
||||
Filter clusters to retain only the 5 largest clusters by point count.
|
||||
|
||||
This method calculates the size of each cluster and filters out all but the
|
||||
5 largest clusters. It then updates the cluster points and labels to reflect
|
||||
only those from the top 5 clusters.
|
||||
"""
|
||||
label_counts = np.bincount(self.cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# update the cluster points and labels with the filtered data
|
||||
self.cluster_points = np.vstack(filtered_cluster_points)
|
||||
self.cluster_labels = np.concatenate(filtered_cluster_labels)
|
||||
|
@@ -1,82 +1,39 @@
|
||||
import yaml
|
||||
from math import sin, cos, sqrt, atan2, radians
|
||||
from geopy.distance import geodesic
|
||||
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
import constants
|
||||
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
DETOUR_FACTOR = parameters['detour_factor']
|
||||
AVERAGE_WALKING_SPEED = parameters['average_walking_speed']
|
||||
|
||||
EARTH_RADIUS_KM = 6373
|
||||
|
||||
def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
"""
|
||||
Calculate the time in minutes to travel from one location to another.
|
||||
|
||||
Args:
|
||||
p1 (tuple[float, float]): Coordinates of the starting location.
|
||||
p2 (tuple[float, float]): Coordinates of the destination.
|
||||
p1 (Tuple[float, float]): Coordinates of the starting location.
|
||||
p2 (Tuple[float, float]): Coordinates of the destination.
|
||||
detour (float): Detour factor affecting the distance.
|
||||
speed (float): Walking speed in kilometers per hour.
|
||||
|
||||
Returns:
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
|
||||
|
||||
if p1 == p2:
|
||||
# Compute the straight-line distance in km
|
||||
if p1 == p2 :
|
||||
return 0
|
||||
else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
else:
|
||||
dist = geodesic(p1, p2).kilometers
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
distance = EARTH_RADIUS_KM * c
|
||||
|
||||
# Consider the detour factor for average an average city
|
||||
walk_distance = distance * DETOUR_FACTOR
|
||||
# Consider the detour factor for average cityto deterline walking distance (in km)
|
||||
walk_dist = dist*DETOUR_FACTOR
|
||||
|
||||
# Time to walk this distance (in minutes)
|
||||
walk_time = walk_distance / AVERAGE_WALKING_SPEED * 60
|
||||
walk_time = walk_dist/AVERAGE_WALKING_SPEED*60
|
||||
|
||||
return round(walk_time)
|
||||
|
||||
|
||||
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
"""
|
||||
Calculate the time in minutes to travel from one location to another.
|
||||
|
||||
Args:
|
||||
p1 (tuple[float, float]): Coordinates of the starting location.
|
||||
p2 (tuple[float, float]): Coordinates of the destination.
|
||||
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
|
||||
|
||||
if p1 == p2:
|
||||
return 0
|
||||
else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
return EARTH_RADIUS_KM * c
|
@@ -1,56 +1,54 @@
|
||||
import math, yaml, logging
|
||||
import math as m
|
||||
import yaml
|
||||
import logging
|
||||
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
from pywikibot import ItemPage, Site
|
||||
from pywikibot import config
|
||||
config.put_throttle = 0
|
||||
config.maxlag = 0
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from structs.preferences import Preferences, Preference
|
||||
from structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_processing import ShoppingManager
|
||||
import constants
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
|
||||
SIGHTSEEING = 'sightseeing'
|
||||
NATURE = 'nature'
|
||||
SHOPPING = 'shopping'
|
||||
|
||||
|
||||
|
||||
class LandmarkManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
city_bbox_side: int # bbox side in meters
|
||||
radius_close_to: int # radius in meters
|
||||
church_coeff: float # coeff to adjsut score of churches
|
||||
nature_coeff: float # coeff to adjust score of parks
|
||||
overall_coeff: float # coeff to adjust weight of tags
|
||||
park_coeff: float # coeff to adjust score of parks
|
||||
tag_coeff: float # coeff to adjust weight of tags
|
||||
N_important: int # number of important landmarks to consider
|
||||
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
||||
with AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
with constants.AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
self.amenity_selectors = yaml.safe_load(f)
|
||||
|
||||
with LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.max_bbox_side = parameters['city_bbox_side']
|
||||
self.city_bbox_side = parameters['city_bbox_side']
|
||||
self.radius_close_to = parameters['radius_close_to']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.nature_coeff = parameters['nature_coeff']
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
self.tag_exponent = parameters['tag_exponent']
|
||||
self.image_bonus = parameters['image_bonus']
|
||||
self.name_bonus = parameters['name_bonus']
|
||||
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
self.park_coeff = parameters['park_coeff']
|
||||
self.tag_coeff = parameters['tag_coeff']
|
||||
self.N_important = parameters['N_important']
|
||||
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
CachingStrategy.use(JSON, cacheDir=constants.OSM_CACHE_DIR)
|
||||
|
||||
|
||||
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
||||
@@ -61,60 +59,93 @@ class LandmarkManager:
|
||||
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
||||
landmarks based on a predefined criterion.
|
||||
|
||||
Args:
|
||||
Parameters:
|
||||
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
|
||||
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
|
||||
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique
|
||||
bbox = tuple((f"around:{reachable_bbox_side/2}", str(center_coordinates[0]), str(center_coordinates[1])))
|
||||
|
||||
L = []
|
||||
bbox = self.create_bbox(center_coordinates)
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
score_function = lambda loc, n_tags: int((self.count_elements_close_to(loc) + ((n_tags**1.2)*self.tag_coeff) )*self.church_coeff)
|
||||
L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], SIGHTSEEING, score_function)
|
||||
self.correct_score(L1, preferences.sightseeing)
|
||||
L += L1
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
score_function = lambda loc, n_tags: int((self.count_elements_close_to(loc) + ((n_tags**1.2)*self.tag_coeff) )*self.park_coeff)
|
||||
L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], NATURE, score_function)
|
||||
self.correct_score(L2, preferences.nature)
|
||||
L += L2
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks : landmark.duration = 30
|
||||
all_landmarks.update(current_landmarks)
|
||||
score_function = lambda loc, n_tags: int(self.count_elements_close_to(loc) + ((n_tags**1.2)*self.tag_coeff))
|
||||
L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], SHOPPING, score_function)
|
||||
self.correct_score(L3, preferences.shopping)
|
||||
L += L3
|
||||
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ShoppingManager(bbox)
|
||||
if shopping_manager.valid :
|
||||
shopping_clusters = shopping_manager.generate_shopping_landmarks()
|
||||
for landmark in shopping_clusters : landmark.duration = 45
|
||||
all_landmarks.update(shopping_clusters)
|
||||
|
||||
L = self.remove_duplicates(L)
|
||||
L_constrained = take_most_important(L, self.N_important)
|
||||
self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.')
|
||||
|
||||
return L, L_constrained
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
|
||||
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
def remove_duplicates(self, landmarks: list[Landmark]) -> list[Landmark]:
|
||||
"""
|
||||
Removes duplicate landmarks based on their names from the given list. Only retains the landmark with highest score
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
Parameters:
|
||||
landmarks (list[Landmark]): A list of Landmark objects.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of unique Landmark objects based on their names.
|
||||
"""
|
||||
|
||||
L_clean = []
|
||||
names = []
|
||||
|
||||
for landmark in landmarks:
|
||||
if landmark.name in names:
|
||||
continue
|
||||
else:
|
||||
names.append(landmark.name)
|
||||
L_clean.append(landmark)
|
||||
|
||||
return L_clean
|
||||
|
||||
|
||||
def correct_score(self, landmarks: list[Landmark], preference: Preference):
|
||||
"""
|
||||
Adjust the attractiveness score of each landmark in the list based on user preferences.
|
||||
|
||||
This method updates the attractiveness of each landmark by scaling it according to the user's preference score.
|
||||
The score adjustment is computed using a simple linear transformation based on the preference score.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): A list of landmarks whose scores need to be corrected.
|
||||
preference (Preference): The user's preference settings that influence the attractiveness score adjustment.
|
||||
|
||||
Raises:
|
||||
TypeError: If the type of any landmark in the list does not match the expected type in the preference.
|
||||
"""
|
||||
|
||||
if len(landmarks) == 0:
|
||||
return
|
||||
|
||||
if landmarks[0].type != preference.type:
|
||||
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {landmarks[0].name}")
|
||||
|
||||
for elem in landmarks:
|
||||
elem.attractiveness = int(elem.attractiveness*preference.score/5) # arbitrary computation
|
||||
|
||||
|
||||
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
|
||||
@@ -137,7 +168,7 @@ class LandmarkManager:
|
||||
|
||||
radius = self.radius_close_to
|
||||
|
||||
alpha = (180 * radius) / (6371000 * math.pi)
|
||||
alpha = (180*radius) / (6371000*m.pi)
|
||||
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
||||
|
||||
# Build the query to find elements within the radius
|
||||
@@ -160,24 +191,35 @@ class LandmarkManager:
|
||||
return 0
|
||||
|
||||
|
||||
# def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
|
||||
# """
|
||||
# Create a bounding box around the given coordinates.
|
||||
def create_bbox(self, coordinates: tuple[float, float]) -> tuple[float, float, float, float]:
|
||||
"""
|
||||
Create a bounding box around the given coordinates.
|
||||
|
||||
# Args:
|
||||
# coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
||||
# reachable_bbox_side (int): The side length of the bounding box in meters.
|
||||
Args:
|
||||
coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
||||
|
||||
# Returns:
|
||||
# tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
||||
# defining the bounding box.
|
||||
# """
|
||||
Returns:
|
||||
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
||||
defining the bounding box.
|
||||
"""
|
||||
|
||||
lat = coordinates[0]
|
||||
lon = coordinates[1]
|
||||
|
||||
# # Half the side length in m (since it's a square bbox)
|
||||
# half_side_length_m = reachable_bbox_side / 2
|
||||
# Half the side length in km (since it's a square bbox)
|
||||
half_side_length_km = self.city_bbox_side / 2 / 1000
|
||||
|
||||
# return tuple((f"around:{half_side_length_m}", str(coordinates[0]), str(coordinates[1])))
|
||||
# Convert distance to degrees
|
||||
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
|
||||
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
|
||||
|
||||
# Calculate bbox
|
||||
min_lat = lat - lat_diff
|
||||
max_lat = lat + lat_diff
|
||||
min_lon = lon - lon_diff
|
||||
max_lon = lon + lon_diff
|
||||
|
||||
return min_lat, min_lon, max_lat, max_lon
|
||||
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
@@ -185,7 +227,7 @@ class LandmarkManager:
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||
@@ -201,169 +243,106 @@ class LandmarkManager:
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = []
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
# query_conditions = ['count_tags()>5']
|
||||
# if landmarktype == 'shopping' : # use this later for shopping clusters
|
||||
# element_types = ['node']
|
||||
element_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = element_types,
|
||||
# selector can in principle be a list already,
|
||||
# but it generates the intersection of the queries
|
||||
# we want the union
|
||||
elementType = ['way', 'relation'],
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
# conditions = [],
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
out = 'body'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
return
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name')
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
name = elem.tag('name') # Add name
|
||||
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
||||
|
||||
# TODO: exclude these from the get go
|
||||
# handle unprecise and no-name locations
|
||||
# skip if unprecise location
|
||||
if name is None or location[0] is None:
|
||||
if osm_type == 'node' and 'viewpoint' in elem.tags().values():
|
||||
name = 'Viewpoint'
|
||||
name_en = 'Viewpoint'
|
||||
location = (elem.lat(), elem.lon())
|
||||
else :
|
||||
continue
|
||||
continue
|
||||
|
||||
# skip if unused
|
||||
if 'disused:leisure' in elem.tags().keys():
|
||||
continue
|
||||
|
||||
# skip if part of another building
|
||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||
continue
|
||||
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
elem_type = landmarktype # Add the landmark type as 'sightseeing,
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
score = n_tags**self.tag_exponent # Add score
|
||||
website_url = None
|
||||
image_url = None
|
||||
name_en = None
|
||||
|
||||
# Adjust scoring, browse through tag keys
|
||||
# remove specific tags
|
||||
skip = False
|
||||
for tag_key in elem.tags().keys():
|
||||
if "pay" in tag_key:
|
||||
# payment options are misleading and should not count for the scoring.
|
||||
score += self.pay_bonus
|
||||
for tag in elem.tags().keys():
|
||||
if "pay" in tag:
|
||||
n_tags -= 1 # discard payment options for tags
|
||||
|
||||
if "disused" in tag_key:
|
||||
# skip disused amenities
|
||||
skip = True
|
||||
if "disused" in tag:
|
||||
skip = True # skip disused amenities
|
||||
break
|
||||
|
||||
if "boundary" in tag_key:
|
||||
# skip "areas" like administrative boundaries and stuff
|
||||
skip = True
|
||||
break
|
||||
if "wikipedia" in tag:
|
||||
n_tags += 3 # wikipedia entries count more
|
||||
|
||||
if "historic" in tag_key and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']:
|
||||
# skip useless amenities
|
||||
skip = True
|
||||
break
|
||||
|
||||
if "name" in tag_key :
|
||||
score += self.name_bonus
|
||||
|
||||
if "wiki" in tag_key:
|
||||
# wikipedia entries count more
|
||||
score += self.wikipedia_bonus
|
||||
|
||||
if "image" in tag_key:
|
||||
# images must count more
|
||||
score += self.image_bonus
|
||||
if tag == "wikidata":
|
||||
Q = elem.tag('wikidata')
|
||||
site = Site("wikidata", "wikidata")
|
||||
item = ItemPage(site, Q)
|
||||
item.get()
|
||||
n_languages = len(item.labels)
|
||||
n_tags += n_languages/10
|
||||
|
||||
if elem_type != "nature":
|
||||
if "leisure" in tag_key and elem.tag('leisure') == "park":
|
||||
if "leisure" in tag and elem.tag('leisure') == "park":
|
||||
elem_type = "nature"
|
||||
|
||||
if landmarktype != "shopping":
|
||||
if "shop" in tag_key:
|
||||
if landmarktype != SHOPPING:
|
||||
if "shop" in tag:
|
||||
skip = True
|
||||
break
|
||||
|
||||
if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
||||
if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
||||
skip = True
|
||||
break
|
||||
|
||||
# Extract image, website and english name
|
||||
if tag_key in ['website', 'contact:website']:
|
||||
website_url = elem.tag(tag_key)
|
||||
if tag_key == 'image':
|
||||
image_url = elem.tag('image')
|
||||
if tag_key =='name:en':
|
||||
name_en = elem.tag('name:en')
|
||||
|
||||
if skip:
|
||||
continue
|
||||
|
||||
# Don't visit random apartments
|
||||
if 'apartments' in elem.tags().values():
|
||||
continue
|
||||
|
||||
score = score_function(score)
|
||||
if "place_of_worship" in elem.tags().values():
|
||||
score = score * self.church_coeff
|
||||
duration = 10
|
||||
|
||||
if 'viewpoint' in elem.tags().values() :
|
||||
# viewpoints must count more
|
||||
score += self.viewpoint_bonus
|
||||
duration = 10
|
||||
|
||||
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
|
||||
duration = 60
|
||||
|
||||
else:
|
||||
duration = 5
|
||||
|
||||
# finally create our own landmark object
|
||||
landmark = Landmark(
|
||||
name = name,
|
||||
type = elem_type,
|
||||
location = location,
|
||||
osm_type = osm_type,
|
||||
osm_id = osm_id,
|
||||
attractiveness = int(score),
|
||||
must_do = False,
|
||||
n_tags = int(n_tags),
|
||||
duration = int(duration),
|
||||
name_en = name_en,
|
||||
image_url = image_url,
|
||||
website_url = website_url
|
||||
)
|
||||
return_list.append(landmark)
|
||||
score = score_function(location, n_tags)
|
||||
if score != 0:
|
||||
# Generate the landmark and append it to the list
|
||||
landmark = Landmark(
|
||||
name=name,
|
||||
type=elem_type,
|
||||
location=location,
|
||||
osm_type=osm_type,
|
||||
osm_id=osm_id,
|
||||
attractiveness=score,
|
||||
must_do=False,
|
||||
n_tags=int(n_tags)
|
||||
)
|
||||
return_list.append(landmark)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
@@ -378,7 +357,7 @@ def dict_to_selector_list(d: dict) -> list:
|
||||
for key, value in d.items():
|
||||
if type(value) == list:
|
||||
val = '|'.join(value)
|
||||
return_list.append(f'{key}~"^({val})$"')
|
||||
return_list.append(f'{key}~"{val}"')
|
||||
elif type(value) == str and len(value) == 0:
|
||||
return_list.append(f'{key}')
|
||||
else:
|
||||
|
@@ -3,10 +3,11 @@ import numpy as np
|
||||
|
||||
from scipy.optimize import linprog
|
||||
from collections import defaultdict, deque
|
||||
from geopy.distance import geodesic
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from structs.landmark import Landmark
|
||||
from .get_time_separation import get_time
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
import constants
|
||||
|
||||
|
||||
|
||||
@@ -16,22 +17,20 @@ class Optimizer:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
detour: int = None # accepted max detour time (in minutes)
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks: int # max number of landmarks to visit
|
||||
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
|
||||
detour: int = None # accepted max detour time (in minutes)
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks: int # max number of landmarks to visit
|
||||
|
||||
|
||||
def __init__(self) :
|
||||
|
||||
# load parameters from file
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
self.average_walking_speed = parameters['average_walking_speed']
|
||||
self.max_landmarks = parameters['max_landmarks']
|
||||
self.overshoot = parameters['overshoot']
|
||||
|
||||
|
||||
|
||||
@@ -44,7 +43,7 @@ class Optimizer:
|
||||
resx (list[float]): List of edge weights.
|
||||
|
||||
Returns:
|
||||
tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
|
||||
Tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
|
||||
"""
|
||||
|
||||
for i, elem in enumerate(resx):
|
||||
@@ -79,7 +78,7 @@ class Optimizer:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
|
||||
Tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
|
||||
"""
|
||||
|
||||
l1 = [0]*L*L
|
||||
@@ -107,7 +106,7 @@ class Optimizer:
|
||||
resx (list): List of edge weights.
|
||||
|
||||
Returns:
|
||||
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
|
||||
Tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
|
||||
"""
|
||||
|
||||
# first round the results to have only 0-1 values
|
||||
@@ -168,7 +167,7 @@ class Optimizer:
|
||||
|
||||
|
||||
|
||||
def init_ub_dist(self, landmarks: list[Landmark], max_time: int):
|
||||
def init_ub_dist(self, landmarks: list[Landmark], max_steps: int):
|
||||
"""
|
||||
Initialize the objective function coefficients and inequality constraints for the optimization problem.
|
||||
|
||||
@@ -177,10 +176,10 @@ class Optimizer:
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): List of landmarks.
|
||||
max_time (int): Maximum time of visit allowed.
|
||||
max_steps (int): Maximum number of steps allowed.
|
||||
|
||||
Returns:
|
||||
tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
|
||||
Tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
|
||||
"""
|
||||
|
||||
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
|
||||
@@ -192,19 +191,19 @@ class Optimizer:
|
||||
dist_table = [0]*len(landmarks)
|
||||
c.append(-spot1.attractiveness)
|
||||
for j, spot2 in enumerate(landmarks) :
|
||||
t = get_time(spot1.location, spot2.location) + spot1.duration
|
||||
t = get_time(spot1.location, spot2.location)
|
||||
dist_table[j] = t
|
||||
closest = sorted(dist_table)[:25]
|
||||
closest = sorted(dist_table)[:22]
|
||||
for i, dist in enumerate(dist_table) :
|
||||
if dist not in closest :
|
||||
dist_table[i] = 32700
|
||||
A_ub += dist_table
|
||||
c = c*len(landmarks)
|
||||
|
||||
return c, A_ub, [max_time*self.overshoot]
|
||||
return c, A_ub, [max_steps]
|
||||
|
||||
|
||||
def respect_number(self, L, max_landmarks: int):
|
||||
def respect_number(self, L: int):
|
||||
"""
|
||||
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
|
||||
|
||||
@@ -212,7 +211,7 @@ class Optimizer:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
ones = [1]*L
|
||||
@@ -225,7 +224,7 @@ class Optimizer:
|
||||
b.append(1)
|
||||
|
||||
A = np.vstack((A, ones*L))
|
||||
b.append(max_landmarks+1)
|
||||
b.append(self.max_landmarks+1)
|
||||
|
||||
return A, b
|
||||
|
||||
@@ -239,7 +238,7 @@ class Optimizer:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
upper_ind = np.triu_indices(L,0,L)
|
||||
@@ -270,7 +269,7 @@ class Optimizer:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
|
||||
Tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
|
||||
"""
|
||||
|
||||
l = [0]*L*L
|
||||
@@ -293,7 +292,7 @@ class Optimizer:
|
||||
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
L = len(landmarks)
|
||||
@@ -319,7 +318,7 @@ class Optimizer:
|
||||
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
L = len(landmarks)
|
||||
@@ -346,7 +345,7 @@ class Optimizer:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
|
||||
@@ -374,7 +373,7 @@ class Optimizer:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
A = [0]*L*L
|
||||
@@ -434,7 +433,6 @@ class Optimizer:
|
||||
self,
|
||||
max_time: int,
|
||||
landmarks: list[Landmark],
|
||||
max_landmarks: int = None
|
||||
) -> list[Landmark]:
|
||||
"""
|
||||
Main optimization pipeline to solve the landmark visiting problem.
|
||||
@@ -445,18 +443,15 @@ class Optimizer:
|
||||
Args:
|
||||
max_time (int): Maximum time allowed for the tour in minutes.
|
||||
landmarks (list[Landmark]): List of landmarks to visit.
|
||||
max_landmarks (int): Maximum number of landmarks visited
|
||||
Returns:
|
||||
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
|
||||
"""
|
||||
if max_landmarks is None :
|
||||
max_landmarks = self.max_landmarks
|
||||
|
||||
L = len(landmarks)
|
||||
|
||||
# SET CONSTRAINTS FOR INEQUALITY
|
||||
c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time) # Add the distances from each landmark to the other
|
||||
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
|
||||
A, b = self.respect_number(L) # Respect max number of visits (no more possible stops than landmarks).
|
||||
A_ub = np.vstack((A_ub, A), dtype=np.int16)
|
||||
b_ub += b
|
||||
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
|
||||
@@ -475,7 +470,7 @@ class Optimizer:
|
||||
A, b = self.respect_start_finish(L) # Force start and finish positions
|
||||
A_eq = np.vstack((A_eq, A), dtype=np.int8)
|
||||
b_eq += b
|
||||
A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
|
||||
A, b = self.respect_order(L) # Respect order of visit (only works when max_steps is limiting factor)
|
||||
A_eq = np.vstack((A_eq, A), dtype=np.int8)
|
||||
b_eq += b
|
||||
|
||||
@@ -487,7 +482,7 @@ class Optimizer:
|
||||
|
||||
# Raise error if no solution is found
|
||||
if not res.success :
|
||||
raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).")
|
||||
raise ArithmeticError("No solution could be found, the problem is overconstrained. Please adapt your must_dos")
|
||||
|
||||
# If there is a solution, we're good to go, just check for connectiveness
|
||||
order, circles = self.is_connected(res.x)
|
||||
|
@@ -3,10 +3,10 @@ import yaml, logging
|
||||
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
|
||||
from math import pi
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from structs.landmark import Landmark
|
||||
from . import take_most_important, get_time_separation
|
||||
from .optimizer import Optimizer
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
import constants
|
||||
|
||||
|
||||
|
||||
@@ -17,19 +17,19 @@ class Refiner :
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
detour_corridor_width: float # width of the corridor around the path
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks_refiner: int # max number of landmarks to visit
|
||||
max_landmarks: int # max number of landmarks to visit
|
||||
optimizer: Optimizer # optimizer object
|
||||
|
||||
def __init__(self, optimizer: Optimizer) :
|
||||
self.optimizer = optimizer
|
||||
|
||||
# load parameters from file
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
self.detour_corridor_width = parameters['detour_corridor_width']
|
||||
self.average_walking_speed = parameters['average_walking_speed']
|
||||
self.max_landmarks_refiner = parameters['max_landmarks_refiner']
|
||||
self.max_landmarks = parameters['max_landmarks'] + 4
|
||||
|
||||
|
||||
def create_corridor(self, landmarks: list[Landmark], width: float) :
|
||||
@@ -37,11 +37,11 @@ class Refiner :
|
||||
Create a corridor around the path connecting the landmarks.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]) : the landmark path around which to create the corridor
|
||||
width (float) : width of the corridor in meters.
|
||||
landmarks (list[Landmark]): the landmark path around which to create the corridor
|
||||
width (float): Width of the corridor in meters.
|
||||
|
||||
Returns:
|
||||
Geometry: a buffered geometry object representing the corridor around the path.
|
||||
Geometry: A buffered geometry object representing the corridor around the path.
|
||||
"""
|
||||
|
||||
corrected_width = (180*width)/(6371000*pi)
|
||||
@@ -133,21 +133,6 @@ class Refiner :
|
||||
i += 1
|
||||
|
||||
return tour
|
||||
|
||||
def integrate_landmarks(self, sub_list: list[Landmark], main_list: list[Landmark]) :
|
||||
"""
|
||||
Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched.
|
||||
|
||||
Args:
|
||||
sub_list : the list of Landmarks to be inserted inside of the 'main_list'.
|
||||
main_list : the original list with start and finish.
|
||||
|
||||
Returns:
|
||||
the full list.
|
||||
"""
|
||||
sub_list.append(main_list[-1]) # add finish back
|
||||
return main_list[:-1] + sub_list # create full set of possible landmarks
|
||||
|
||||
|
||||
|
||||
def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]:
|
||||
@@ -229,7 +214,7 @@ class Refiner :
|
||||
if self.is_in_area(area, landmark.location) and landmark.name not in visited_names:
|
||||
second_order_landmarks.append(landmark)
|
||||
|
||||
return take_most_important.take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
|
||||
return take_most_important.take_most_important(second_order_landmarks, len(visited_landmarks))
|
||||
|
||||
|
||||
# Try fix the shortest path using shapely
|
||||
@@ -268,11 +253,6 @@ class Refiner :
|
||||
except :
|
||||
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
|
||||
xs, ys = better_tour_poly.exterior.xy
|
||||
"""
|
||||
ERROR HERE :
|
||||
Exception has occurred: AttributeError
|
||||
'LineString' object has no attribute 'exterior'
|
||||
"""
|
||||
|
||||
|
||||
# reverse the xs and ys
|
||||
@@ -328,37 +308,32 @@ class Refiner :
|
||||
"""
|
||||
|
||||
# No need to refine if no detour is taken
|
||||
# if detour == 0:
|
||||
# return base_tour
|
||||
if detour == 0:
|
||||
return base_tour
|
||||
|
||||
minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width)
|
||||
|
||||
self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
|
||||
|
||||
# Full set of visitable landmarks.
|
||||
full_set = self.integrate_landmarks(minor_landmarks, base_tour) # could probably be optimized with less overhead
|
||||
# full set of visitable landmarks
|
||||
full_set = base_tour[:-1] + minor_landmarks # create full set of possible landmarks (without finish)
|
||||
full_set.append(base_tour[-1]) # add finish back
|
||||
|
||||
# Generate a new tour with the optimizer.
|
||||
# get a new tour
|
||||
new_tour = self.optimizer.solve_optimization(
|
||||
max_time = max_time + detour,
|
||||
landmarks = full_set,
|
||||
max_landmarks = self.max_landmarks_refiner
|
||||
landmarks = full_set
|
||||
)
|
||||
|
||||
# If unsuccessful optimization, use the base_tour.
|
||||
if new_tour is None:
|
||||
self.logger.warning("No solution found for the refined tour. Returning the initial tour.")
|
||||
new_tour = base_tour
|
||||
|
||||
# If only one landmark, return it.
|
||||
if len(new_tour) < 4 :
|
||||
return new_tour
|
||||
|
||||
# Find shortest path using the nearest neighbor heuristic.
|
||||
# Find shortest path using the nearest neighbor heuristic
|
||||
better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour)
|
||||
|
||||
# Fix the tour using Polygons if the path looks weird.
|
||||
# Conditions : circular trip and invalid polygon.
|
||||
# Fix the tour using Polygons if the path looks weird
|
||||
if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid :
|
||||
better_tour = self.fix_using_polygon(better_tour)
|
||||
|
||||
|
@@ -1,16 +1,38 @@
|
||||
from ..structs.landmark import Landmark
|
||||
from structs.landmark import Landmark
|
||||
|
||||
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:
|
||||
"""
|
||||
Given a list of landmarks, return the n_important most important landmarks
|
||||
Args:
|
||||
landmarks: list[Landmark] - list of landmarks
|
||||
n_important: int - number of most important landmarks to return
|
||||
Returns:
|
||||
list[Landmark] - list of the n_important most important landmarks
|
||||
"""
|
||||
def take_most_important(landmarks: list[Landmark], N_important) -> list[Landmark] :
|
||||
L = len(landmarks)
|
||||
L_copy = []
|
||||
L_clean = []
|
||||
scores = [0]*len(landmarks)
|
||||
names = []
|
||||
name_id = {}
|
||||
|
||||
# Sort landmarks by attractiveness (descending)
|
||||
sorted_landmarks = sorted(landmarks, key=lambda x: x.attractiveness, reverse=True)
|
||||
for i, elem in enumerate(landmarks) :
|
||||
if elem.name not in names :
|
||||
names.append(elem.name)
|
||||
name_id[elem.name] = [i]
|
||||
L_copy.append(elem)
|
||||
else :
|
||||
name_id[elem.name] += [i]
|
||||
scores = []
|
||||
for j in name_id[elem.name] :
|
||||
scores.append(L[j].attractiveness)
|
||||
best_id = max(range(len(scores)), key=scores.__getitem__)
|
||||
t = name_id[elem.name][best_id]
|
||||
if t == i :
|
||||
for old in L_copy :
|
||||
if old.name == elem.name :
|
||||
old.attractiveness = L[t].attractiveness
|
||||
|
||||
scores = [0]*len(L_copy)
|
||||
for i, elem in enumerate(L_copy) :
|
||||
scores[i] = elem.attractiveness
|
||||
|
||||
return sorted_landmarks[:n_important]
|
||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-L):]
|
||||
|
||||
for i, elem in enumerate(L_copy) :
|
||||
if i in res :
|
||||
L_clean.append(elem)
|
||||
|
||||
return L_clean
|
||||
|
@@ -1,78 +0,0 @@
|
||||
import logging, yaml
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.landmark import Toilets
|
||||
from ..constants import LANDMARK_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
|
||||
|
||||
class ToiletsManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
location: tuple[float, float]
|
||||
radius: int # radius in meters
|
||||
|
||||
|
||||
def __init__(self, location: tuple[float, float], radius : int) -> None:
|
||||
|
||||
self.radius = radius
|
||||
self.location = location
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
|
||||
def generate_toilet_list(self) -> list[Toilets] :
|
||||
|
||||
|
||||
# Create a bbox using the around technique
|
||||
bbox = tuple((f"around:{self.radius}", str(self.location[0]), str(self.location[1])))
|
||||
toilets_list = []
|
||||
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
# selector can in principle be a list already,
|
||||
# but it generates the intersection of the queries
|
||||
# we want the union
|
||||
selector = ['"amenity"="toilets"'],
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
return None
|
||||
|
||||
for elem in result.elements():
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
# handle unprecise and no-name locations
|
||||
if location[0] is None:
|
||||
location = (elem.lat(), elem.lon())
|
||||
else :
|
||||
continue
|
||||
|
||||
toilets = Toilets(location=location)
|
||||
|
||||
if 'wheelchair' in elem.tags().keys() and elem.tag('wheelchair') == 'yes':
|
||||
toilets.wheelchair = True
|
||||
|
||||
if 'changing_table' in elem.tags().keys() and elem.tag('changing_table') == 'yes':
|
||||
toilets.changing_table = True
|
||||
|
||||
if 'fee' in elem.tags().keys() and elem.tag('fee') == 'yes':
|
||||
toilets.fee = True
|
||||
|
||||
if 'opening_hours' in elem.tags().keys() :
|
||||
toilets.opening_hours = elem.tag('opening_hours')
|
||||
|
||||
toilets_list.append(toilets)
|
||||
|
||||
return toilets_list
|
@@ -1,58 +0,0 @@
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: macos-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up ruby env
|
||||
uses: ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: 3.2.1
|
||||
bundler-cache: true
|
||||
|
||||
- name: Setup java for android build
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
java-version: '17'
|
||||
distribution: 'zulu'
|
||||
|
||||
- name: Setup android SDK
|
||||
uses: android-actions/setup-android@v3
|
||||
|
||||
- name: Install Flutter
|
||||
uses: subosito/flutter-action@v2
|
||||
with:
|
||||
channel: stable
|
||||
flutter-version: 3.22.0
|
||||
cache: true
|
||||
|
||||
- name: Infer version number from git tag
|
||||
id: version
|
||||
env:
|
||||
REF_NAME: ${{ github.ref_name }}
|
||||
run:
|
||||
# remove the 'v' prefix from the tag name
|
||||
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
|
||||
|
||||
- name: Load secrets from github
|
||||
run: |
|
||||
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
|
||||
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
|
||||
echo "${{ secrets.ANDROID_KEYSTORE_BASE64 }}" | base64 -d > release.keystore
|
||||
working-directory: android
|
||||
|
||||
- name: Install fastlane
|
||||
run: bundle install
|
||||
working-directory: android
|
||||
|
||||
- name: Run fastlane lane
|
||||
run: bundle exec fastlane deploy_testing
|
||||
working-directory: android
|
||||
env:
|
||||
BUILD_NUMBER: ${{ github.run_number }}
|
||||
# BUILD_NAME is implicitly available
|
@@ -1,6 +1,6 @@
|
||||
# Frontend
|
||||
|
||||
The frontend of this project is a Flutter application designed to run on both Android and iOS devices (and possibly as a PWA). The frontend is responsible for displaying the user interface and handling user input. It communicates with the backend via a REST-api to retrieve and send data.
|
||||
This is the frontend of the project. It is a Flutter application that is designed to run on both Android and iOS devices. The frontend is responsible for displaying the user interface and handling user input. It communicates with the backend to retrieve and send data.
|
||||
|
||||
|
||||
## Getting Started
|
||||
@@ -15,43 +15,3 @@ Once you have the Flutter SDK installed, you can locally install the dependencie
|
||||
```bash
|
||||
flutter pub get
|
||||
```
|
||||
|
||||
## Development
|
||||
### ...
|
||||
### Icons and logos
|
||||
The application uses a custom launcher icon and splash screen. These are managed platform-independently using the `flutter_launcher_icons` package.
|
||||
|
||||
To update the icons, change the `flutter_launcher_icons.yaml` configuration file. Especially the `image_path` is relevant. Then run
|
||||
```bash
|
||||
dart run flutter_launcher_icons
|
||||
```
|
||||
|
||||
### Deploying a new version
|
||||
To truly deploy a new version of the application, i.e. to the official app stores, a special CI step is required. This listens for new tags. To create a new tag position yourself on the main branch and run
|
||||
```bash
|
||||
git tag -a v<name> -m "Release <name>"
|
||||
git push origin v<name>
|
||||
```
|
||||
We adhere to the [Semantic Versioning](https://semver.org/) standard, so the tag should be of the form `v0.1.8` for example.
|
||||
|
||||
|
||||
## Fastlane - in depth
|
||||
The application is deployed to the Google Play Store and the Apple App Store using fastlane: [https://docs.fastlane.tools/](https://docs.fastlane.tools/)
|
||||
|
||||
Fastlane is installed as a Ruby gem. Since the bundler-gemfile is scoped to a single directory, a `Gemfile` is included in both the `android` and `ios` directories. Once installed, the usage is
|
||||
```bash
|
||||
cd frontend/android # or ios
|
||||
bundle install
|
||||
bundle exec fastlane <lane>
|
||||
```
|
||||
This is reused in the CI/CD pipeline to automate the deployment process.
|
||||
|
||||
Fastlane assumes mutliple secrets to be present as files in the platform directories. These are:
|
||||
- for android:
|
||||
- `secrets.properties` used by gradle to load secrets needed at execution time
|
||||
- `release.keystore` used by gradle to sign the apk
|
||||
- `google-key.json` used by fastlane to authenticate with the Google Play Store
|
||||
- for ios:
|
||||
- TODO
|
||||
|
||||
These files are stored as secrets in the GitHub repository so that the CI pipeline can access them.
|
9
frontend/android/.gitignore
vendored
@@ -1,8 +1,8 @@
|
||||
gradlew
|
||||
gradlew.bat
|
||||
gradle/
|
||||
gradle-wrapper.jar
|
||||
/.gradle
|
||||
/captures/
|
||||
/gradlew
|
||||
/gradlew.bat
|
||||
/local.properties
|
||||
/secrets.properties
|
||||
GeneratedPluginRegistrant.java
|
||||
@@ -12,6 +12,3 @@ GeneratedPluginRegistrant.java
|
||||
key.properties
|
||||
**/*.keystore
|
||||
**/*.jks
|
||||
|
||||
# Fastlane google cloud access
|
||||
google-key.json
|
||||
|
@@ -1,3 +0,0 @@
|
||||
source "https://rubygems.org"
|
||||
|
||||
gem "fastlane"
|
@@ -1,220 +0,0 @@
|
||||
GEM
|
||||
remote: https://rubygems.org/
|
||||
specs:
|
||||
CFPropertyList (3.0.7)
|
||||
base64
|
||||
nkf
|
||||
rexml
|
||||
addressable (2.8.7)
|
||||
public_suffix (>= 2.0.2, < 7.0)
|
||||
artifactory (3.0.17)
|
||||
atomos (0.1.3)
|
||||
aws-eventstream (1.3.0)
|
||||
aws-partitions (1.970.0)
|
||||
aws-sdk-core (3.202.2)
|
||||
aws-eventstream (~> 1, >= 1.3.0)
|
||||
aws-partitions (~> 1, >= 1.651.0)
|
||||
aws-sigv4 (~> 1.9)
|
||||
jmespath (~> 1, >= 1.6.1)
|
||||
aws-sdk-kms (1.88.0)
|
||||
aws-sdk-core (~> 3, >= 3.201.0)
|
||||
aws-sigv4 (~> 1.5)
|
||||
aws-sdk-s3 (1.159.0)
|
||||
aws-sdk-core (~> 3, >= 3.201.0)
|
||||
aws-sdk-kms (~> 1)
|
||||
aws-sigv4 (~> 1.5)
|
||||
aws-sigv4 (1.9.1)
|
||||
aws-eventstream (~> 1, >= 1.0.2)
|
||||
babosa (1.0.4)
|
||||
base64 (0.2.0)
|
||||
claide (1.1.0)
|
||||
colored (1.2)
|
||||
colored2 (3.1.2)
|
||||
commander (4.6.0)
|
||||
highline (~> 2.0.0)
|
||||
declarative (0.0.20)
|
||||
digest-crc (0.6.5)
|
||||
rake (>= 12.0.0, < 14.0.0)
|
||||
domain_name (0.6.20240107)
|
||||
dotenv (2.8.1)
|
||||
emoji_regex (3.2.3)
|
||||
excon (0.111.0)
|
||||
faraday (1.10.3)
|
||||
faraday-em_http (~> 1.0)
|
||||
faraday-em_synchrony (~> 1.0)
|
||||
faraday-excon (~> 1.1)
|
||||
faraday-httpclient (~> 1.0)
|
||||
faraday-multipart (~> 1.0)
|
||||
faraday-net_http (~> 1.0)
|
||||
faraday-net_http_persistent (~> 1.0)
|
||||
faraday-patron (~> 1.0)
|
||||
faraday-rack (~> 1.0)
|
||||
faraday-retry (~> 1.0)
|
||||
ruby2_keywords (>= 0.0.4)
|
||||
faraday-cookie_jar (0.0.7)
|
||||
faraday (>= 0.8.0)
|
||||
http-cookie (~> 1.0.0)
|
||||
faraday-em_http (1.0.0)
|
||||
faraday-em_synchrony (1.0.0)
|
||||
faraday-excon (1.1.0)
|
||||
faraday-httpclient (1.0.1)
|
||||
faraday-multipart (1.0.4)
|
||||
multipart-post (~> 2)
|
||||
faraday-net_http (1.0.2)
|
||||
faraday-net_http_persistent (1.2.0)
|
||||
faraday-patron (1.0.0)
|
||||
faraday-rack (1.0.0)
|
||||
faraday-retry (1.0.3)
|
||||
faraday_middleware (1.2.0)
|
||||
faraday (~> 1.0)
|
||||
fastimage (2.3.1)
|
||||
fastlane (2.222.0)
|
||||
CFPropertyList (>= 2.3, < 4.0.0)
|
||||
addressable (>= 2.8, < 3.0.0)
|
||||
artifactory (~> 3.0)
|
||||
aws-sdk-s3 (~> 1.0)
|
||||
babosa (>= 1.0.3, < 2.0.0)
|
||||
bundler (>= 1.12.0, < 3.0.0)
|
||||
colored (~> 1.2)
|
||||
commander (~> 4.6)
|
||||
dotenv (>= 2.1.1, < 3.0.0)
|
||||
emoji_regex (>= 0.1, < 4.0)
|
||||
excon (>= 0.71.0, < 1.0.0)
|
||||
faraday (~> 1.0)
|
||||
faraday-cookie_jar (~> 0.0.6)
|
||||
faraday_middleware (~> 1.0)
|
||||
fastimage (>= 2.1.0, < 3.0.0)
|
||||
gh_inspector (>= 1.1.2, < 2.0.0)
|
||||
google-apis-androidpublisher_v3 (~> 0.3)
|
||||
google-apis-playcustomapp_v1 (~> 0.1)
|
||||
google-cloud-env (>= 1.6.0, < 2.0.0)
|
||||
google-cloud-storage (~> 1.31)
|
||||
highline (~> 2.0)
|
||||
http-cookie (~> 1.0.5)
|
||||
json (< 3.0.0)
|
||||
jwt (>= 2.1.0, < 3)
|
||||
mini_magick (>= 4.9.4, < 5.0.0)
|
||||
multipart-post (>= 2.0.0, < 3.0.0)
|
||||
naturally (~> 2.2)
|
||||
optparse (>= 0.1.1, < 1.0.0)
|
||||
plist (>= 3.1.0, < 4.0.0)
|
||||
rubyzip (>= 2.0.0, < 3.0.0)
|
||||
security (= 0.1.5)
|
||||
simctl (~> 1.6.3)
|
||||
terminal-notifier (>= 2.0.0, < 3.0.0)
|
||||
terminal-table (~> 3)
|
||||
tty-screen (>= 0.6.3, < 1.0.0)
|
||||
tty-spinner (>= 0.8.0, < 1.0.0)
|
||||
word_wrap (~> 1.0.0)
|
||||
xcodeproj (>= 1.13.0, < 2.0.0)
|
||||
xcpretty (~> 0.3.0)
|
||||
xcpretty-travis-formatter (>= 0.0.3, < 2.0.0)
|
||||
gh_inspector (1.1.3)
|
||||
google-apis-androidpublisher_v3 (0.54.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-apis-core (0.11.3)
|
||||
addressable (~> 2.5, >= 2.5.1)
|
||||
googleauth (>= 0.16.2, < 2.a)
|
||||
httpclient (>= 2.8.1, < 3.a)
|
||||
mini_mime (~> 1.0)
|
||||
representable (~> 3.0)
|
||||
retriable (>= 2.0, < 4.a)
|
||||
rexml
|
||||
google-apis-iamcredentials_v1 (0.17.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-apis-playcustomapp_v1 (0.13.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-apis-storage_v1 (0.31.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-cloud-core (1.7.1)
|
||||
google-cloud-env (>= 1.0, < 3.a)
|
||||
google-cloud-errors (~> 1.0)
|
||||
google-cloud-env (1.6.0)
|
||||
faraday (>= 0.17.3, < 3.0)
|
||||
google-cloud-errors (1.4.0)
|
||||
google-cloud-storage (1.47.0)
|
||||
addressable (~> 2.8)
|
||||
digest-crc (~> 0.4)
|
||||
google-apis-iamcredentials_v1 (~> 0.1)
|
||||
google-apis-storage_v1 (~> 0.31.0)
|
||||
google-cloud-core (~> 1.6)
|
||||
googleauth (>= 0.16.2, < 2.a)
|
||||
mini_mime (~> 1.0)
|
||||
googleauth (1.8.1)
|
||||
faraday (>= 0.17.3, < 3.a)
|
||||
jwt (>= 1.4, < 3.0)
|
||||
multi_json (~> 1.11)
|
||||
os (>= 0.9, < 2.0)
|
||||
signet (>= 0.16, < 2.a)
|
||||
highline (2.0.3)
|
||||
http-cookie (1.0.7)
|
||||
domain_name (~> 0.5)
|
||||
httpclient (2.8.3)
|
||||
jmespath (1.6.2)
|
||||
json (2.7.2)
|
||||
jwt (2.8.2)
|
||||
base64
|
||||
mini_magick (4.13.2)
|
||||
mini_mime (1.1.5)
|
||||
multi_json (1.15.0)
|
||||
multipart-post (2.4.1)
|
||||
nanaimo (0.3.0)
|
||||
naturally (2.2.1)
|
||||
nkf (0.2.0)
|
||||
optparse (0.5.0)
|
||||
os (1.1.4)
|
||||
plist (3.7.1)
|
||||
public_suffix (6.0.1)
|
||||
rake (13.2.1)
|
||||
representable (3.2.0)
|
||||
declarative (< 0.1.0)
|
||||
trailblazer-option (>= 0.1.1, < 0.2.0)
|
||||
uber (< 0.2.0)
|
||||
retriable (3.1.2)
|
||||
rexml (3.3.6)
|
||||
strscan
|
||||
rouge (2.0.7)
|
||||
ruby2_keywords (0.0.5)
|
||||
rubyzip (2.3.2)
|
||||
security (0.1.5)
|
||||
signet (0.19.0)
|
||||
addressable (~> 2.8)
|
||||
faraday (>= 0.17.5, < 3.a)
|
||||
jwt (>= 1.5, < 3.0)
|
||||
multi_json (~> 1.10)
|
||||
simctl (1.6.10)
|
||||
CFPropertyList
|
||||
naturally
|
||||
strscan (3.1.0)
|
||||
terminal-notifier (2.0.0)
|
||||
terminal-table (3.0.2)
|
||||
unicode-display_width (>= 1.1.1, < 3)
|
||||
trailblazer-option (0.1.2)
|
||||
tty-cursor (0.7.1)
|
||||
tty-screen (0.8.2)
|
||||
tty-spinner (0.9.3)
|
||||
tty-cursor (~> 0.7)
|
||||
uber (0.1.0)
|
||||
unicode-display_width (2.5.0)
|
||||
word_wrap (1.0.0)
|
||||
xcodeproj (1.25.0)
|
||||
CFPropertyList (>= 2.3.3, < 4.0)
|
||||
atomos (~> 0.1.3)
|
||||
claide (>= 1.0.2, < 2.0)
|
||||
colored2 (~> 3.1)
|
||||
nanaimo (~> 0.3.0)
|
||||
rexml (>= 3.3.2, < 4.0)
|
||||
xcpretty (0.3.0)
|
||||
rouge (~> 2.0.7)
|
||||
xcpretty-travis-formatter (1.0.1)
|
||||
xcpretty (~> 0.2, >= 0.0.7)
|
||||
|
||||
PLATFORMS
|
||||
ruby
|
||||
x86_64-linux
|
||||
|
||||
DEPENDENCIES
|
||||
fastlane
|
||||
|
||||
BUNDLED WITH
|
||||
2.5.18
|
@@ -2,12 +2,13 @@
|
||||
|
||||
### Keystore setup
|
||||
```bash
|
||||
keytool -genkey -v -keystore release.keystore -keyalg RSA -keysize 2048 -validity 10000 -alias upload
|
||||
keytool -genkey -v -keystore release.keystore -keyalg RSA -keysize 2048 -validity 10000 -alias release
|
||||
```
|
||||
- This is required to store local credentials securely and more importantly to sign the app for google play store distribution.
|
||||
- This is required to store local credentials securely (not used for now).
|
||||
- But necesseary in order to restrict the particular api key to a particular app (through the sha1 of the associated keystore).
|
||||
|
||||
|
||||
### Using secret credentials during build
|
||||
### Building and secret credentials
|
||||
Following the guide under [https://developers.google.com/maps/flutter-package/config#android_1](https://developers.google.com/maps/flutter-package/config#android_1).
|
||||
- Add the following to `android/build.gradle`:
|
||||
```gradle
|
||||
@@ -35,39 +36,13 @@ Following the guide under [https://developers.google.com/maps/flutter-package/co
|
||||
android:value="${MAPS_API_KEY}" />
|
||||
```
|
||||
|
||||
### Signing the app
|
||||
Compared to the flutter template application, a few changes have to be made:
|
||||
- Added to `android/app/build.gradle`:
|
||||
```gradle
|
||||
signingConfigs {
|
||||
release {
|
||||
keyAlias = secretProperties['keyAlias']
|
||||
keyPassword = secretProperties['keyPassword']
|
||||
storeFile = secretProperties['storeFile'] ? file(secretProperties['storeFile']) : null
|
||||
storePassword = secretProperties['storePassword']
|
||||
}
|
||||
}
|
||||
```
|
||||
- Changed the `buildTypes` to use the `release` signing config:
|
||||
```gradle
|
||||
buildTypes {
|
||||
release {
|
||||
signingConfig signingConfigs.release
|
||||
}
|
||||
}
|
||||
```
|
||||
This makes use of the `secretProperties` defined previously:
|
||||
```gradle
|
||||
secretPropertiesFile.withReader('UTF-8') { reader ->
|
||||
secretProperties.load(reader)
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### Using the credentials in CI
|
||||
- Add the secret files to the repository secrets (e.g. `ANDROID_SECRETS_PROPERTIES`).
|
||||
|
||||
- temporarily write them back to files during the CI execution:
|
||||
- Add the base64 encoded credentials to the repository secrets (e.g. `ANDROID_SECRETS`).
|
||||
```bash
|
||||
echo {{ secrets.ANDROID_SECRETS }} >> android/secrets.properties
|
||||
base64 -i android/secrets.properties
|
||||
```
|
||||
- Use the following in the CI script:
|
||||
```bash
|
||||
echo {{ secrets.ANDROID_SECRETS }} | base64 -d > android/secrets.properties
|
||||
```
|
@@ -30,24 +30,19 @@ if (flutterVersionName == null) {
|
||||
|
||||
|
||||
def secretPropertiesFile = rootProject.file('secrets.properties')
|
||||
def fallbackPropertiesFile = rootProject.file('fallback.properties')
|
||||
def secretProperties = new Properties()
|
||||
|
||||
if (secretPropertiesFile.exists()) {
|
||||
secretPropertiesFile.withReader('UTF-8') { reader ->
|
||||
secretProperties.load(reader)
|
||||
}
|
||||
} else if (fallbackPropertiesFile.exists()) {
|
||||
fallbackPropertiesFile.withReader('UTF-8') { reader ->
|
||||
secretProperties.load(reader)
|
||||
}
|
||||
} else {
|
||||
throw new GradleException("Secrets file (secrets.properties, fallback.properties) not found")
|
||||
throw new GradleException("Secrets file secrets.properties not found")
|
||||
}
|
||||
|
||||
|
||||
android {
|
||||
namespace "com.anydev.anyway"
|
||||
namespace "com.example.fast_network_navigation"
|
||||
compileSdk flutter.compileSdkVersion
|
||||
ndkVersion flutter.ndkVersion
|
||||
|
||||
@@ -66,7 +61,7 @@ android {
|
||||
|
||||
defaultConfig {
|
||||
// TODO: Specify your own unique Application ID (https://developer.android.com/studio/build/application-id.html).
|
||||
applicationId "com.anydev.anyway"
|
||||
applicationId "com.example.fast_network_navigation"
|
||||
// You can update the following values to match your application needs.
|
||||
// For more information, see: https://docs.flutter.dev/deployment/android#reviewing-the-gradle-build-configuration.
|
||||
// Minimum Android version for Google Maps SDK
|
||||
@@ -81,18 +76,11 @@ android {
|
||||
|
||||
}
|
||||
|
||||
signingConfigs {
|
||||
release {
|
||||
keyAlias = secretProperties['keyAlias']
|
||||
keyPassword = secretProperties['keyPassword']
|
||||
storeFile = secretProperties['storeFile'] ? file(secretProperties['storeFile']) : null
|
||||
storePassword = secretProperties['storePassword']
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
release {
|
||||
signingConfig = signingConfigs.release
|
||||
// TODO: Add your own signing config for the release build.
|
||||
// Signing with the debug keys for now, so `flutter run --release` works.
|
||||
signingConfig signingConfigs.debug
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,12 +1,9 @@
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<!-- Required to fetch data from the internet. -->
|
||||
<uses-permission android:name="android.permission.INTERNET"/>
|
||||
<!-- Required to show user location -->
|
||||
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
|
||||
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
|
||||
|
||||
<application
|
||||
android:label="anyway"
|
||||
android:label="fast_network_navigation"
|
||||
android:name="${applicationName}"
|
||||
android:icon="@mipmap/ic_launcher">
|
||||
<activity
|
||||
|
@@ -1,4 +1,4 @@
|
||||
package com.anydev.anyway
|
||||
package com.example.fast_network_navigation
|
||||
|
||||
import io.flutter.embedding.android.FlutterActivity
|
||||
|
||||
|
Before Width: | Height: | Size: 3.6 KiB After Width: | Height: | Size: 544 B |
Before Width: | Height: | Size: 2.3 KiB After Width: | Height: | Size: 442 B |
Before Width: | Height: | Size: 5.2 KiB After Width: | Height: | Size: 721 B |
Before Width: | Height: | Size: 9.4 KiB After Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 1.4 KiB |
@@ -1,3 +1 @@
|
||||
# This file mirrors the state of secrets.properties as a reference for the developer.
|
||||
# And as a fallback for build.gradle
|
||||
MAPS_API_KEY=Key
|
@@ -1,2 +0,0 @@
|
||||
json_key_file("google-key.json") # Path to the json secret file - Follow https://docs.fastlane.tools/actions/supply/#setup to get one
|
||||
package_name("com.anydev.anyway") # e.g. com.krausefx.app
|
@@ -1,53 +0,0 @@
|
||||
# Uncomment the line if you want fastlane to automatically update itself
|
||||
# update_fastlane
|
||||
|
||||
default_platform(:android)
|
||||
|
||||
platform :android do
|
||||
|
||||
desc "Deploy a new version to closed testing"
|
||||
lane :deploy_testing do
|
||||
build_name = ENV["BUILD_NAME"]
|
||||
build_number = ENV["BUILD_NUMBER"]
|
||||
|
||||
sh(
|
||||
"flutter",
|
||||
"build",
|
||||
"appbundle",
|
||||
"--release",
|
||||
"--build-name=#{build_name}",
|
||||
"--build-number=#{build_number}",
|
||||
)
|
||||
|
||||
upload_to_play_store(
|
||||
track: 'alpha',
|
||||
skip_upload_apk: true,
|
||||
skip_upload_changelogs: true,
|
||||
aab: "../build/app/outputs/bundle/release/app-release.aab",
|
||||
# this is the default output of flutter build ... --release
|
||||
# in particular this the build folder lies in the flutter root folder
|
||||
# this is the parent folder for the android folder
|
||||
)
|
||||
end
|
||||
|
||||
desc "Deploy a new version as a full release"
|
||||
lane :deploy_release do
|
||||
gradle(
|
||||
task: "clean assembleRelease",
|
||||
# todo update to a flutter call
|
||||
properties: {
|
||||
# loaded from environment
|
||||
"android.injected.version.name" => ENV["VERSION_NAME"],
|
||||
}
|
||||
)
|
||||
upload_to_play_store(
|
||||
track: "production",
|
||||
skip_upload_apk: true,
|
||||
skip_upload_changelogs: true,
|
||||
aab: "../build/app/outputs/bundle/release/app-release.aab",
|
||||
# this is the default output of flutter build ... --release
|
||||
# in particular this the build folder lies in the flutter root folder
|
||||
# this is the parent folder for the android folder
|
||||
)
|
||||
end
|
||||
end
|
@@ -1,40 +0,0 @@
|
||||
fastlane documentation
|
||||
----
|
||||
|
||||
# Installation
|
||||
|
||||
Make sure you have the latest version of the Xcode command line tools installed:
|
||||
|
||||
```sh
|
||||
xcode-select --install
|
||||
```
|
||||
|
||||
For _fastlane_ installation instructions, see [Installing _fastlane_](https://docs.fastlane.tools/#installing-fastlane)
|
||||
|
||||
# Available Actions
|
||||
|
||||
## Android
|
||||
|
||||
### android deploy_testing
|
||||
|
||||
```sh
|
||||
[bundle exec] fastlane android deploy_testing
|
||||
```
|
||||
|
||||
Deploy a new version as a preview version
|
||||
|
||||
### android deploy_release
|
||||
|
||||
```sh
|
||||
[bundle exec] fastlane android deploy_release
|
||||
```
|
||||
|
||||
Deploy a new version as a full release
|
||||
|
||||
----
|
||||
|
||||
This README.md is auto-generated and will be re-generated every time [_fastlane_](https://fastlane.tools) is run.
|
||||
|
||||
More information about _fastlane_ can be found on [fastlane.tools](https://fastlane.tools).
|
||||
|
||||
The documentation of _fastlane_ can be found on [docs.fastlane.tools](https://docs.fastlane.tools).
|
@@ -1,7 +0,0 @@
|
||||
AnyWay - plan city trips your way
|
||||
|
||||
AnyWay is a mobile application that helps users plan city trips. The app allows users to specify their preferences and constraints, and then generates a personalized itinerary for them. The planning follows some guiding principles:
|
||||
- **Personalization**:The user's preferences should be reflected in the choice of destinations.
|
||||
- **Efficiency**:The itinerary should be optimized for the user's constraints.
|
||||
- **Flexibility**: We aknowledge that tourism is a dynamic activity, and that users may want to change their plans on the go.
|
||||
- **Discoverability**: Tourism is an inherently exploratory activity. Once a rough itinerary is generated, detours and spontaneous decisions should be encouraged.
|
Before Width: | Height: | Size: 106 KiB |
Before Width: | Height: | Size: 1.3 MiB |
Before Width: | Height: | Size: 637 KiB |
Before Width: | Height: | Size: 573 KiB |
Before Width: | Height: | Size: 175 KiB |
Before Width: | Height: | Size: 360 KiB |
@@ -1 +0,0 @@
|
||||
AnyWay - plan city trips your way!
|
@@ -1 +0,0 @@
|
||||
AnyWay
|
5
frontend/android/gradle/wrapper/gradle-wrapper.properties
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionPath=wrapper/dists
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
zipStorePath=wrapper/dists
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.6.3-all.zip
|
@@ -20,7 +20,7 @@ pluginManagement {
|
||||
plugins {
|
||||
id "dev.flutter.flutter-plugin-loader" version "1.0.0"
|
||||
id "com.android.application" version "7.3.0" apply false
|
||||
id "org.jetbrains.kotlin.android" version "2.0.20" apply false
|
||||
id "org.jetbrains.kotlin.android" version "1.7.10" apply false
|
||||
}
|
||||
|
||||
include ":app"
|
||||
|
@@ -1,107 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
viewBox="0 0 500 500" style="enable-background:new 0 0 500 500;" xml:space="preserve">
|
||||
<g id="OBJECTS">
|
||||
<g>
|
||||
<path style="fill:#F2DBDE;" d="M381.005,363.01c-53.963,8.445-84.441,11.1-138.832,6.101
|
||||
c-54.388-4.998-109.48-25.844-144.743-67.555c-23.468-27.759-36.728-62.943-43.732-98.613c-3.745-19.07-5.754-39.21,0.433-57.635
|
||||
c7.513-22.378,26.565-39.569,48.136-49.156c21.572-9.589,45.552-12.365,69.151-12.944c47.753-1.172,95.706,6.26,140.863,21.831
|
||||
c35.603,12.277,69.954,29.937,96.972,56.171c27.019,26.233,46.213,61.723,47.963,99.341
|
||||
C458.967,298.17,438.434,354.022,381.005,363.01z"/>
|
||||
<g>
|
||||
<path style="fill:#F2BFC6;" d="M314.479,248.209c-22.398,36.41-29.246,81.831-19.597,123.401
|
||||
c27.302-0.242,52.026-3.263,86.124-8.6c57.429-8.989,77.961-64.84,76.211-102.458c-1.503-32.308-15.881-63.041-37.024-87.694
|
||||
C375.546,184.337,337.241,211.21,314.479,248.209z"/>
|
||||
<path style="fill:#F2BFC6;" d="M60.074,229.111c2.232,7.566,4.802,15.029,7.749,22.32c40.138-5.931,78.066-26.379,104.834-56.907
|
||||
c26.459-30.176,41.716-69.876,42.677-109.969c-14.6-1.246-29.267-1.705-43.916-1.345c-11.908,0.292-23.911,1.147-35.655,3.151
|
||||
C136.569,142.478,107.155,198.423,60.074,229.111z"/>
|
||||
<path style="fill:#F2BFC6;" d="M365.131,128.557c-16.748-9.529-34.631-17.233-52.85-23.516
|
||||
c-6.45-2.224-12.962-4.262-19.517-6.153c-1.712,23.304-4.543,46.555-11.914,68.659c-9.236,27.692-26.464,53.808-52.01,67.931
|
||||
c-22.973,12.7-50.376,14.689-74.443,25.169c-21.624,9.417-39.587,25.305-54.36,43.893c8.346,9.381,17.714,17.663,27.862,24.902
|
||||
c16.736-21.461,41.874-37.166,67.161-48.559c35.578-16.03,74.129-26.682,105.739-49.566
|
||||
C334.357,207.023,357.577,169.22,365.131,128.557z"/>
|
||||
</g>
|
||||
</g>
|
||||
<ellipse style="opacity:0.15;fill:#2D3038;" cx="250.223" cy="394.224" rx="109.236" ry="18.917"/>
|
||||
<g>
|
||||
<path style="fill:#2D3038;" d="M305.132,388.442c-0.168,1.158-0.626,2.243-1.458,3.061c-1.863,1.832-4.823,1.724-7.427,1.538
|
||||
c-17.939-1.285-36.017-0.625-53.815,1.965c-7.053,3.155-16.423,3.233-25.275,2.004c-8.853-1.231-17.514-3.684-26.397-4.661
|
||||
c-8.885-0.976-21.867-0.33-26.499,2.758c0,0-7.266,3.996-12.907,12.021c-3.367,4.789-4.105,11.306-2.377,16.899
|
||||
c2.452,7.945,10.312,13.334,18.475,14.912c8.163,1.579,16.603-0.053,24.6-2.327c22.82-6.49,43.805-18.134,66.018-26.468
|
||||
c22.213-8.334,47.017-13.282,69.546-5.844c3.96,1.306,7.879,3.033,10.941,5.866c3.062,2.832,5.173,6.927,4.813,11.081
|
||||
c-0.464,5.356-4.97,9.719-10.061,11.444c-5.092,1.726-10.658,1.275-15.953,0.346c-5.296-0.93-10.554-2.17-15.926-2.414
|
||||
c-20.08-0.909-38.455,4.247-56.124,10.857c-17.669,6.608-35.096,14.21-53.56,18.085c-18.463,3.874-35.807,8.106-51.682-4.186
|
||||
c-20.345-15.753-19.603-41.137-8.091-63.296c5.521-10.629,12.589-18.637,19.416-27.732c-1.72-12.542-6.898-24.945-9.467-37.525
|
||||
c-4.135-20.25-1.309-41.854,7.666-61.314c5.614-15.439,11.257-30.942,19.093-45.38c7.835-14.438,18.007-27.88,31.297-37.536
|
||||
c13.289-9.656,29.927-15.279,46.993-13.222c7.787-8.403,16.038-16.377,24.703-23.871c-1.319-7.29-1.183-14.637,0.584-20.961
|
||||
c-4.077-8.872-8.2-17.907-9.54-27.579c-0.835-6.027-0.441-12.408,1.577-17.991c1.878-5.198,8.452-6.799,12.542-3.08
|
||||
c6.673,6.07,12.683,12.869,17.891,20.235c18.398-4.802,38.164-4.231,56.264,1.583c6.473-8.017,14.398-14.861,23.286-20.075
|
||||
c2.366-1.388,5.533-2.613,7.657-0.875c1.683,1.377,1.736,3.89,1.592,6.059c-0.815,12.217-3.418,24.313-8.016,36.577
|
||||
c4.862,15.779,0.82,33.862-9.812,46.412c-2.168,11.956,1.193,24.438,2.504,36.665c2.294,21.385-1.98,43.411-12.271,62.744
|
||||
c-2.4,4.508-5.754,8.444-9.863,11.477c-1.71,1.263-3.38,2.581-5.006,3.951c-5.172,20.881-10.139,41.311-15.351,62.281
|
||||
c2.061,7.78,4.487,15.496,7.272,23.126c3.209-0.899,6.478-1.696,9.816-1.809c3.896-0.132,7.942,0.744,11.024,3.131
|
||||
c2.308,1.785,3.979,4.375,4.658,7.212c0.484,2.028,0.445,4.26-0.563,6.086c-0.663,1.203-1.81,2.171-3.102,2.583
|
||||
c0.454,1.78,0.565,3.616,0.106,5.385c-0.778,3.004-3.622,5.6-6.675,5.375c-0.047,0.112-0.097,0.223-0.151,0.333
|
||||
c-0.979,1.985-3.08,3.228-5.239,3.714c-2.063,0.464-4.207,0.333-6.319,0.174c-0.138,0.225-0.3,0.437-0.489,0.633
|
||||
c-1.556,1.603-4.16,1.338-6.346,0.87c-3.015-0.645-6.04-1.471-8.688-3.051c-2.647-1.583-4.906-4.013-5.707-6.991
|
||||
c-1.237-4.607,2.111-10.097,0.151-14.313c-3.538-7.609-7.733-14.893-12.004-22.126c-8.712,7.077-18.162,13.242-28.147,18.367
|
||||
c6.95-0.974,14.248-1.345,21.476-0.293c3.273,0.475,6.596,1.283,9.285,3.208c2.689,1.924,4.631,5.173,4.214,8.453
|
||||
c-0.34,2.664-2.596,5.054-5.156,5.449"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M151.465,379.089
|
||||
c0.578-3.877,0.614-7.729,0.28-11.566"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M296.431,98.602
|
||||
c1.739,2.591,3.381,5.247,4.918,7.962"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M273.736,153.553
|
||||
c-0.645-1.929-1.188-3.891-1.625-5.865"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.23,106.811
|
||||
c-4.87-7.904-10.55-15.309-16.923-22.061c-1.834-1.943-4.156-3.987-6.799-3.598c-2.928,0.431-4.574,3.626-5.147,6.53
|
||||
c-1.629,8.254,1.474,16.627,4.521,24.47"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M352.846,98.327
|
||||
c1.084,0.372,2.162,0.763,3.232,1.174"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.545,168.179
|
||||
c-1.077,1.107-2.211,2.161-3.399,3.155"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.583,130.136
|
||||
c3.86-4.907,10.772-7.181,16.791-5.521c6.019,1.659,10.791,7.151,11.446,13.054c-4.594,3.601-11.6,3.717-16.311,0.268
|
||||
c-3.162-2.315-5.105-6.101-5.423-9.993"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.109,126.785
|
||||
c-1.79-2.631-5.159-4.002-8.321-3.646c-3.162,0.356-6.042,2.317-7.787,4.979c-1.743,2.662-2.395,5.96-1.828,9.854
|
||||
c4.738,1.952,10.727,0.164,13.621-4.066c1.462-2.137,2.057-4.785,1.832-7.36"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M350.957,171.048
|
||||
c-4.278,4.378-10.749,6.497-16.787,5.499"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.68,282.717
|
||||
c-5.42,4.867-10.31,10.327-14.541,16.258"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M333.834,368.351
|
||||
c0.757,2.017,1.54,4.028,2.348,6.032c2.26-0.589,4.541-1.183,6.876-1.268c2.333-0.084,4.757,0.381,6.656,1.74
|
||||
c1.559,1.116,2.664,2.753,3.552,4.452c0.261,0.499,0.505,1.013,0.727,1.536"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M317.138,283.315
|
||||
c0.476,18.805,3.038,37.553,7.633,55.961"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M337.823,376.837
|
||||
c2.877-0.595,5.878,0.99,7.67,3.316c1.791,2.327,2.567,5.273,3.025,8.174c0.191,1.214,0.327,2.48,0.209,3.695"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M327.236,380.633
|
||||
c3.086-0.38,6.102,1.606,7.733,4.252c1.632,2.645,2.112,5.835,2.285,8.939c0.04,0.721,0.054,1.476-0.027,2.204"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M305.059,385.808
|
||||
c-0.036-0.193-0.079-0.385-0.128-0.573c-1.058-4.111-4.728-7.422-8.927-8.052"/>
|
||||
<g>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M250.442,264.812
|
||||
c-1.67-3.125-3.183-6.325-4.488-9.622c-5.098-12.883-6.92-27.047-5.248-40.801"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M302.266,351.248
|
||||
c-7.667-12.944-15.022-25.405-19.496-39.762"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M272.435,372.065
|
||||
c-3.368,0.554-6.637,1.226-9.757,1.918c10.852-22.715,21.971-46.794,19.913-71.883c-0.826-10.055-4.036-20.316-11.156-27.463
|
||||
c-8.522-8.553-21.576-11.406-33.547-9.827c-22.022,2.903-41.327,20.57-46.167,42.248"/>
|
||||
</g>
|
||||
<g>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M328.579,152.076
|
||||
c1.379-0.341,2.796,0.501,3.736,1.565c0.942,1.065,1.588,2.366,2.551,3.41c0.963,1.044,2.43,1.826,3.784,1.398
|
||||
c1.002-0.317,1.702-1.217,2.207-2.139c0.504-0.921,0.888-1.923,1.572-2.721c1.237-1.447,3.432-1.978,5.192-1.258"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M360.735,158.173
|
||||
c-2.16,5.007-7.325,8.57-12.773,8.812c-1.946,0.086-3.967-0.245-5.593-1.317c-1.872-1.234-2.979-3.253-3.85-5.361
|
||||
c-0.089,1.146-0.496,2.29-1.133,3.25c-1.229,1.854-3.175,3.116-5.189,4.059c-3.3,1.546-7.007,2.373-10.616,1.879
|
||||
c-3.611-0.495-7.099-2.413-9.07-5.477"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.276,158.534
|
||||
c0,0,0.176,1.073,0.244,1.773"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 9.5 KiB |
@@ -1,273 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
viewBox="0 0 1000 700" style="enable-background:new 0 0 1000 700;" xml:space="preserve">
|
||||
<g id="Shadow">
|
||||
<g style="opacity:0.1;">
|
||||
<path style="fill:#38415C;" d="M186.919,556.734c0,0.331,0.541,0.599,1.208,0.599c0.667,0,1.208-0.268,1.208-0.599
|
||||
c0-0.331-0.541-0.599-1.208-0.599C187.46,556.135,186.919,556.403,186.919,556.734z"/>
|
||||
<path style="fill:#38415C;" d="M957.699,446.328h-12.196h-37.267h-8.131h-4.525h-22.106h-29.729h-8.01h-8.921h-7.462H777.69h-5.38
|
||||
h-8.517h-13.921h-24.898h-0.367h-35.201h-33.29h-13.405h-8.642h-18.387h-20.084H584.19h-2.542h-5.421h-37.944h-7.453h-2.757
|
||||
h-2.757h-1.428h-8.748h-5.514h-10.175h-0.905h-4.609h-10.175h-5.514h-10.175h-2.757h-2.757h-27.938h-8.05h-29.96h-6.713h-18.964
|
||||
h-11.234h-48.644h-12.099h-10.229h-20.764h-12.382h-3.512h-23.242h-5.943h-13.266h-10.795h-35.413h-16.467h-4.656h-8.696h-25.877
|
||||
H89.054h-4.763H72.026h-7.508H53.821H42.302v9.376h11.519v6.41h10.696v6.835h19.774v2.177h20.658v9.405h17.084v-5.919h11.557
|
||||
v10.475h3.789v11.69h11.18v9.823h-4.017v1.763h7.066v4.785h23.433v28.254h-1.845v1.897h4.028v2.429h4.636v0.913v2.777v2.41h5.594
|
||||
v4.306h0.673l0,0h0.673v-4.306h3.015l1.823-2.41h12.206v-3.69h31.948V543.3h4.028v-1.897h-1.845V484.37h15.302v40.617h1.509v3.023
|
||||
h2.811v10.012h1.016v-10.012h2.287v7.997h1.017v-7.997h4.828v-3.023h6.098v-10.569h11.445v-0.743h-1.492v-2.116h7.56v32.974
|
||||
h-1.078v0.849h7.678v5.101h-0.992v0.817h7.047v2.933h-1.099v0.627h3.502v2.77h3.348v5.513h0.402h0.398h0.314v-5.513h1.354v9.889
|
||||
h0.402h0.399h0.314v-9.889h0.451h2.897v-2.77h3.034v-0.627h-0.632v-2.933h7.047v-0.817h-0.992v-5.101h7.678v-0.849h-1.078v-43.096
|
||||
h23.505v-5.982h8.399v31.88h-4.954v0.806h4.954v1.443h6.279v2.37h30.344v27.318h7.165v21.803h13.871V593h1.952v-11.927h4.298
|
||||
v9.528h1.952v-9.528h21.941v-12.964h3.982v-8.839h11.148v-32.999h4.318v-7.629l6.342,0.769v1.742h5.514v-1.073l10.175,1.234v1.969
|
||||
h5.514v-1.3l9.332,1.131v9.523h2.491v16.539h11.982v6.297h6.46v5.29h2.267v9.068h0.586v-9.068h2.267v-5.29h6.46v-6.297h12.075
|
||||
v-16.539h2.399v-45.67l5.467,13.925h5.729v12.219h-2.645v0.527h31.278v6.75h-3.52v0.763h-1.791v2.08h8.284v2.313h-1.087v0.668
|
||||
h18.198v-0.668h-1.087v-2.313h23.966c0.802,1.935,2.023,3.811,3.668,5.596l-3.992,0.913c-0.688-0.732-2.184-1.239-3.92-1.239
|
||||
c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143c2.388,0,4.324-0.96,4.324-2.143
|
||||
c0-0.239-0.08-0.468-0.225-0.683l4.015-0.919c2.595,2.749,6.165,5.281,10.623,7.491c0.352,0.174,0.709,0.346,1.069,0.515
|
||||
l-3.154,1.668c-0.76-0.329-1.753-0.528-2.841-0.528c-2.388,0-4.324,0.959-4.324,2.143s1.936,2.143,4.324,2.143
|
||||
c2.388,0,4.324-0.959,4.324-2.143c0-0.559-0.432-1.068-1.139-1.449l3.16-1.671c5.36,2.471,11.576,4.337,18.308,5.527l-1.744,2.453
|
||||
c-0.378-0.054-0.777-0.083-1.19-0.083c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143
|
||||
c2.388,0,4.324-0.96,4.324-2.143c0-0.895-1.107-1.662-2.68-1.982l1.743-2.451c5.551,0.953,11.445,1.449,17.493,1.449
|
||||
c0.498,0,0.995-0.003,1.491-0.01l0.198,3.017c-2.096,0.148-3.707,1.041-3.707,2.121c0,1.183,1.936,2.143,4.324,2.143
|
||||
c2.388,0,4.324-0.96,4.324-2.143c0-1.184-1.936-2.143-4.324-2.143c-0.046,0-0.091,0.001-0.137,0.002l-0.197-3.004
|
||||
c2.456-0.044,4.881-0.173,7.265-0.378l-2.223,24.735l79.948-8.225v-43.336h13.883v22.309h24.985v8.902h1.355v-8.902h2.795v16.446
|
||||
h1.355v-16.446h3.219v11.855h1.355v-11.855h4.235v-54.059h12.874V506.6h2.033v3.715h2.033v2.582h14.483v-2.582h2.033V506.6h7.369
|
||||
v1.594h3.557V506.6h1.259v4.262h5.082V506.6h1.452l3.161-11.593h11.528v5.526h0.762v-5.526h4.32v6.746h0.762v-6.746h6.25v-1.567
|
||||
h-1.592v-17.317h12.874l1.507-4.997h10.931v-9.012h11.954v-6.86h12.196V446.328z M653.829,518.335l-11.117,0.179v-7.937h2.055
|
||||
v-0.76h-2.055v-0.593l13.295,2.426c-1.417,1.94-2.19,4.031-2.19,6.21C653.816,518.019,653.821,518.177,653.829,518.335z
|
||||
M689.289,499.58c-4.354,0.083-8.516,0.542-12.36,1.312l-5.314-6.414v-0.42h5.082v4.786h5.082v-4.786h7.148L689.289,499.58z
|
||||
M702.329,517.554l-8.713,0.14c-0.026-0.114-0.079-0.224-0.155-0.328l9.073-2.076L702.329,517.554z M666.025,494.058v0.401
|
||||
c-0.325,0.085-0.657,0.163-0.979,0.251l-0.713-0.651H666.025z M666.025,495.263v0.341l-0.291-0.266
|
||||
C665.83,495.311,665.929,495.289,666.025,495.263z M666.025,496.603v2.241h2.454l3.554,3.247c-2.98,0.871-5.693,1.943-8.062,3.179
|
||||
l-10.904-5.064c0.33-0.173,0.666-0.344,1.007-0.513c3.276-1.624,6.914-3.003,10.823-4.12L666.025,496.603z M672.377,502.405
|
||||
l15.07,13.768l-22.95-10.659C666.813,504.306,669.465,503.258,672.377,502.405z M669.572,498.844h2.043v-3.739l4.87,5.877
|
||||
c-1.242,0.259-2.449,0.55-3.618,0.872L669.572,498.844z M691.664,494.058v4.786h12.332l-1.224,1.721
|
||||
c-3.776-0.648-7.828-1.001-12.044-1.001c-0.32,0-0.64,0.002-0.959,0.006l-0.361-5.512H691.664z M703.939,499.641l-0.101,1.127
|
||||
c-0.206-0.039-0.404-0.087-0.612-0.124L703.939,499.641z M702.896,511.25l-8.307,4.394l8.619-7.874L702.896,511.25z
|
||||
M702.863,511.616l-0.306,3.407l-9.299,2.127c-0.053-0.046-0.11-0.09-0.172-0.133l0.598-0.547L702.863,511.616z M693.364,518.468
|
||||
l8.74,1.595l-0.252,2.801l-8.846-4.108C693.147,518.667,693.268,518.571,693.364,518.468z M693.53,518.245
|
||||
c0.056-0.1,0.091-0.205,0.102-0.312l8.676-0.14l-0.182,2.021L693.53,518.245z M656.116,486.551l-11.415-10.428h11.415V486.551z
|
||||
M656.116,487.55v4.746h-1.779v1.763h8.903l0.969,0.885c-4.029,1.15-7.778,2.571-11.154,4.243
|
||||
c-0.352,0.175-0.698,0.352-1.039,0.53l-3.311-1.538c0.63-0.372,1.01-0.852,1.01-1.376c0-1.184-1.936-2.143-4.324-2.143
|
||||
c-1.018,0-1.941,0.182-2.68,0.473v-5.035h2.055v-0.76h-2.055v-9.479h2.055v-0.76h-2.055v-2.977h0.897L656.116,487.55z
|
||||
M642.711,500.338h2.055v-0.76h-2.055v-1.104c0.739,0.292,1.662,0.473,2.68,0.473c1.158,0,2.209-0.226,2.985-0.593l3.31,1.537
|
||||
c-3.677,1.959-6.684,4.15-8.975,6.503V500.338z M642.711,508.163c2.337-2.844,5.703-5.479,10.027-7.784l10.906,5.065
|
||||
c-3.215,1.722-5.771,3.749-7.47,5.983l-13.463-2.457V508.163z M664.17,505.688l24.004,11.148l0.198,0.181
|
||||
c-0.107,0.074-0.2,0.152-0.279,0.235l-31.242-5.701C658.515,509.362,661.02,507.375,664.17,505.688z M673.21,502.168
|
||||
c1.146-0.316,2.33-0.602,3.548-0.855l12.647,15.264c-0.111,0.028-0.218,0.06-0.32,0.094L673.21,502.168z M677.203,501.222
|
||||
c3.766-0.755,7.844-1.204,12.11-1.286l1.082,16.492c-0.187,0.011-0.369,0.03-0.544,0.057L677.203,501.222z M689.793,499.928
|
||||
c0.311-0.004,0.623-0.006,0.935-0.006c4.131,0,8.103,0.346,11.804,0.981l-11.067,15.563c-0.19-0.025-0.388-0.04-0.591-0.045
|
||||
L689.793,499.928z M702.985,500.982c0.278,0.05,0.543,0.112,0.818,0.165l-0.497,5.535l-10.935,9.99
|
||||
c-0.142-0.048-0.294-0.09-0.453-0.126L702.985,500.982z M692.678,518.929l9.146,4.247l-0.629,7.002l-9.143-11.035
|
||||
C692.279,519.085,692.49,519.013,692.678,518.929z M656.683,511.774l31.244,5.702c-0.056,0.1-0.091,0.204-0.102,0.312
|
||||
l-33.276,0.536c-0.008-0.154-0.012-0.309-0.012-0.464C654.537,515.724,655.295,513.675,656.683,511.774z M687.841,518.026
|
||||
c0.026,0.114,0.079,0.224,0.155,0.328l-30.225,6.916c-1.892-2.059-3.018-4.325-3.204-6.708L687.841,518.026z M688.199,518.57
|
||||
c0.106,0.092,0.231,0.178,0.373,0.257l-22.753,12.035c-3.243-1.527-5.915-3.348-7.845-5.376L688.199,518.57z M688.923,518.989
|
||||
c0.188,0.074,0.394,0.137,0.616,0.186l-11.067,15.563c-4.604-0.824-8.776-2.098-12.301-3.714L688.923,518.989z M689.992,519.254
|
||||
c0.19,0.024,0.388,0.04,0.591,0.045l1.082,16.493c-0.311,0.004-0.623,0.006-0.936,0.006c-4.131,0-8.102-0.346-11.804-0.98
|
||||
L689.992,519.254z M691.063,519.291c0.187-0.011,0.369-0.03,0.544-0.057l9.537,11.51l-0.39,4.342
|
||||
c-2.753,0.394-5.632,0.641-8.61,0.697L691.063,519.291z M640.035,523.229h7.987v-2.08h-1.791v-0.763h-3.52v-1.635l11.136-0.179
|
||||
c0.189,2.432,1.339,4.745,3.27,6.846l-13.578,3.106C641.982,526.835,640.816,525.059,640.035,523.229z M654.074,536.027
|
||||
c-4.336-2.149-7.809-4.612-10.333-7.285l13.579-3.107c1.969,2.07,4.697,3.929,8.007,5.487l-10.218,5.404
|
||||
C654.761,536.362,654.415,536.196,654.074,536.027z M655.459,536.689l10.219-5.405c3.597,1.65,7.855,2.95,12.553,3.791
|
||||
l-4.97,6.989C666.716,540.907,660.672,539.092,655.459,536.689z M690.728,543.552c-5.882,0-11.614-0.483-17.013-1.409l4.97-6.989
|
||||
c3.776,0.648,7.828,1.001,12.043,1.001c0.321,0,0.64-0.002,0.959-0.006l0.485,7.393
|
||||
C691.692,543.549,691.211,543.552,690.728,543.552z M692.653,543.535l-0.485-7.395c2.956-0.057,5.813-0.299,8.553-0.681
|
||||
l-0.69,7.679C697.611,543.354,695.148,543.49,692.653,543.535z"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="Object">
|
||||
<g style="opacity:0.3;">
|
||||
<linearGradient id="SVGID_1_" gradientUnits="userSpaceOnUse" x1="207.5072" y1="393.376" x2="207.5072" y2="229.7061">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
|
||||
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
|
||||
<stop offset="0.5479" style="stop-color:#626262"/>
|
||||
<stop offset="1" style="stop-color:#646464"/>
|
||||
</linearGradient>
|
||||
<polygon style="fill:url(#SVGID_1_);" points="175.04,393.376 239.974,393.376 239.974,259.43 241.819,259.43 241.819,255.601
|
||||
237.792,255.601 237.792,250.701 205.844,250.701 205.844,243.255 193.638,243.255 191.815,238.393 188.799,238.393
|
||||
188.799,229.706 188.126,229.706 187.454,229.706 187.454,238.393 181.859,238.393 181.859,243.255 181.859,248.859
|
||||
181.859,250.701 177.223,250.701 177.223,255.601 173.195,255.601 173.195,259.43 175.04,259.43 "/>
|
||||
|
||||
<linearGradient id="SVGID_00000000931258187104496080000017865145222397382034_" gradientUnits="userSpaceOnUse" x1="188.1266" y1="229.7061" x2="188.1266" y2="227.2891">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
|
||||
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
|
||||
<stop offset="0.5479" style="stop-color:#626262"/>
|
||||
<stop offset="1" style="stop-color:#646464"/>
|
||||
</linearGradient>
|
||||
<path style="fill:url(#SVGID_00000000931258187104496080000017865145222397382034_);" d="M189.335,228.498
|
||||
c0-0.668-0.541-1.209-1.209-1.209c-0.667,0-1.208,0.541-1.208,1.209c0,0.667,0.541,1.208,1.208,1.208
|
||||
C188.794,229.706,189.335,229.165,189.335,228.498z"/>
|
||||
|
||||
<linearGradient id="SVGID_00000036247364810958532620000001993945857249512106_" gradientUnits="userSpaceOnUse" x1="508.9194" y1="421.4165" x2="508.9194" y2="155.3276">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
|
||||
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
|
||||
<stop offset="0.5479" style="stop-color:#626262"/>
|
||||
<stop offset="1" style="stop-color:#646464"/>
|
||||
</linearGradient>
|
||||
<polygon style="fill:url(#SVGID_00000036247364810958532620000001993945857249512106_);" points="777.689,401.218 777.689,221.14
|
||||
697.741,204.545 706.501,401.218 471.904,401.218 471.904,289.958 467.586,289.958 467.586,223.38 456.438,223.38
|
||||
456.438,205.547 452.456,205.547 452.456,179.391 430.514,179.391 430.514,160.168 428.562,160.168 428.562,179.391
|
||||
424.264,179.391 424.264,155.328 422.311,155.328 422.311,179.391 408.44,179.391 408.44,223.38 401.275,223.38 401.275,289.958
|
||||
395.133,289.958 395.133,401.218 332.748,401.218 332.748,253.114 333.825,253.114 333.825,251.402 326.147,251.402
|
||||
326.147,241.111 327.14,241.111 327.14,239.463 320.092,239.463 320.092,233.547 320.725,233.547 320.725,232.282 317.69,232.282
|
||||
317.69,226.693 314.794,226.693 314.343,226.693 314.343,206.742 314.029,206.742 313.63,206.742 313.228,206.742
|
||||
313.228,226.693 311.874,226.693 311.874,215.571 311.56,215.571 311.161,215.571 310.759,215.571 310.759,226.693
|
||||
307.411,226.693 307.411,232.282 303.909,232.282 303.909,233.547 305.009,233.547 305.009,239.463 297.962,239.463
|
||||
297.962,241.111 298.954,241.111 298.954,251.402 291.276,251.402 291.276,253.114 292.354,253.114 292.354,401.218
|
||||
84.29,401.218 84.29,421.417 933.548,421.417 933.548,401.218 "/>
|
||||
</g>
|
||||
|
||||
<linearGradient id="SVGID_00000121963338060960119620000016097684000583641491_" gradientUnits="userSpaceOnUse" x1="499.6613" y1="451.2495" x2="499.6613" y2="202.0752">
|
||||
<stop offset="0.0815" style="stop-color:#403E40"/>
|
||||
<stop offset="0.4715" style="stop-color:#444244"/>
|
||||
<stop offset="0.8768" style="stop-color:#504F50"/>
|
||||
<stop offset="1" style="stop-color:#555455"/>
|
||||
</linearGradient>
|
||||
<path style="fill:url(#SVGID_00000121963338060960119620000016097684000583641491_);" d="M918.278,419.4v-18.183h-25.56
|
||||
l-9.674-71.571h-1.452v-8.598h-5.082v8.598h-1.259v-3.216h-3.557v3.216h-7.369v-7.496h-2.033v-5.209h-14.483v5.209h-2.033v7.496
|
||||
h-2.033v42.986h-12.874V263.564h-4.235v-23.92h-1.355v23.92h-3.219v-33.181h-1.355v33.181h-2.795v-17.961h-1.355v17.961h-24.985
|
||||
v77.418h-27.78v50.154h-25.944l-20.601-37.972c3.473-2,6.738-4.405,9.735-7.193l4.225,4.508c-0.907,0.793-1.481,1.957-1.481,3.256
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-0.916,0-1.764,0.285-2.463,0.771l-4.255-4.54c0.36-0.341,0.717-0.687,1.069-1.039c4.458-4.459,8.028-9.568,10.623-15.114
|
||||
l4.705,2.172c-0.086,0.339-0.131,0.693-0.131,1.059c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-1.852,0-3.432,1.165-4.048,2.803l-4.648-2.146c2.866-6.273,4.489-13.092,4.744-20.153
|
||||
l5.065,0.165c0.062,2.334,1.972,4.207,4.321,4.207c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.266,0-4.123,1.743-4.308,3.961l-5.064-0.165c0.013-0.496,0.021-0.993,0.021-1.491c0-6.303-1.088-12.438-3.173-18.192
|
||||
l4.231-1.558c0.664,1.533,2.191,2.606,3.968,2.606c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.388,0-4.324,1.936-4.324,4.324c0,0.44,0.066,0.866,0.189,1.267l-4.229,1.557c-2.41-6.464-6.085-12.437-10.898-17.611
|
||||
l3.31-3.102c0.776,0.741,1.827,1.197,2.985,1.197c2.388,0,4.324-1.935,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.388,0-4.324,1.936-4.324,4.324c0,1.057,0.38,2.025,1.01,2.776l-3.31,3.102c-0.341-0.36-0.687-0.717-1.039-1.069
|
||||
c-5.012-5.013-10.848-8.903-17.201-11.546l1.821-4.434c0.413,0.131,0.853,0.203,1.309,0.203c2.388,0,4.324-1.936,4.324-4.324
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,1.762,1.054,3.276,2.566,3.95l-1.816,4.423
|
||||
c-5.685-2.304-11.775-3.615-18.057-3.842l0.197-6.06c0.046,0.001,0.091,0.003,0.137,0.003c2.388,0,4.324-1.936,4.324-4.324
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.179,1.611,3.98,3.707,4.279l-0.198,6.086
|
||||
c-0.496-0.014-0.993-0.021-1.491-0.021c-6.048,0-11.942,1.001-17.493,2.925l-1.743-4.946c1.573-0.647,2.68-2.193,2.68-4
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324
|
||||
c0.413,0,0.812-0.059,1.19-0.167l1.744,4.948c-6.732,2.401-12.948,6.166-18.308,11.152l-3.16-3.372
|
||||
c0.707-0.77,1.139-1.796,1.139-2.923c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.935-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c1.088,0,2.081-0.402,2.841-1.065l3.154,3.366c-0.36,0.341-0.717,0.688-1.069,1.04
|
||||
c-4.458,4.458-8.028,9.568-10.623,15.114l-4.015-1.854c0.146-0.433,0.225-0.896,0.225-1.377c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324c1.736,0,3.232-1.023,3.92-2.5l3.992,1.843
|
||||
c-2.865,6.273-4.489,13.093-4.744,20.153l-5.154-0.167c-0.064-2.333-1.973-4.204-4.321-4.204c-2.388,0-4.324,1.936-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.267,0,4.125-1.744,4.308-3.963l5.153,0.167c-0.013,0.496-0.021,0.993-0.021,1.491
|
||||
c0,6.302,1.088,12.438,3.173,18.191l-4.231,1.558c-0.664-1.533-2.191-2.606-3.969-2.606c-2.388,0-4.324,1.936-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-0.44-0.066-0.866-0.189-1.266l4.229-1.557
|
||||
c2.409,6.464,6.084,12.436,10.898,17.611l-3.31,3.102c-0.776-0.741-1.827-1.197-2.985-1.197c-2.388,0-4.324,1.935-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.057-0.38-2.025-1.01-2.776l3.311-3.102
|
||||
c0.341,0.36,0.687,0.717,1.039,1.069c3.376,3.375,7.125,6.242,11.154,8.561l-20.601,37.972h-16.685v-25.743h-6.801v-48.882h2.645
|
||||
v-1.063H564.32v1.063h2.645v24.652h-5.729l-5.467,28.096v-92.143h-2.399v-33.37h-12.075v-12.705h-6.46V220.37h-2.267v-18.294
|
||||
h-0.586v18.294h-2.267v10.672h-6.46v12.705h-11.982v33.37h-2.491V337.7h-18.579v53.436h-61.639V287.814h4.954v-1.626h-4.954v-2.911
|
||||
h-6.279v-4.781h-51.354v4.781h-6.279v2.911h-4.954v1.626h4.954v64.319h-8.4v-12.069h-51.819v14.737h-11.298v27.442h-18.294V292.55
|
||||
h-6.098v-6.099h-4.828v-16.134h-1.017v16.134h-2.287v-20.2h-1.016v20.2h-2.811v6.099h-1.509v89.693h-37.859v-52.597h1.779v-3.557
|
||||
h-11.688v-9.655h-5.59v9.655h-5.082v-9.655h-5.082v9.655h-9.885v-9.655h-30.261v9.655h-7.066v3.557h4.017v19.819h-11.18v44.72
|
||||
h-15.346v-11.942h-17.084v26.044H84.29V419.4H53.82v31.849h891.682V419.4H918.278z M716.559,351.896l-7.135-13.152
|
||||
c2.287-1.349,4.417-2.938,6.354-4.731l10.219,10.906C723.091,347.622,719.925,349.955,716.559,351.896z M689.85,309.7
|
||||
c0.175,0.055,0.357,0.094,0.544,0.116l-1.082,33.274c-4.266-0.165-8.344-1.071-12.11-2.594L689.85,309.7z M676.758,340.314
|
||||
c-1.218-0.512-2.402-1.089-3.548-1.726l15.875-29.261c0.102,0.07,0.209,0.133,0.32,0.19L676.758,340.314z M690.874,309.832
|
||||
c0.203-0.01,0.401-0.041,0.591-0.091l11.067,31.4c-3.701,1.281-7.673,1.978-11.804,1.978c-0.313,0-0.625-0.004-0.936-0.012
|
||||
L690.874,309.832z M691.917,309.581c0.159-0.072,0.311-0.157,0.453-0.254l15.875,29.261c-1.677,0.932-3.435,1.734-5.261,2.394
|
||||
L691.917,309.581z M694.589,311.399l20.697,22.088c-1.893,1.751-3.973,3.303-6.206,4.623L694.589,311.399z M693.683,309.731
|
||||
l-0.598-1.103c0.062-0.086,0.119-0.176,0.172-0.268l30.224,13.952c-1.93,4.091-4.602,7.766-7.844,10.847L693.683,309.731z
|
||||
M693.46,307.925c0.077-0.21,0.129-0.432,0.156-0.662l33.274,1.082c-0.186,4.809-1.313,9.38-3.204,13.534L693.46,307.925z
|
||||
M693.631,306.783c-0.011-0.217-0.046-0.428-0.102-0.63l31.244-11.503c1.388,3.836,2.146,7.971,2.146,12.279
|
||||
c0,0.313-0.004,0.624-0.012,0.936L693.631,306.783z M693.364,305.702c-0.097-0.207-0.217-0.401-0.358-0.579l24.281-22.752
|
||||
c3.15,3.404,5.654,7.411,7.319,11.828L693.364,305.702z M692.678,304.772c-0.188-0.17-0.399-0.315-0.627-0.433l12.647-30.797
|
||||
c4.661,1.958,8.83,4.864,12.261,8.477L692.678,304.772z M691.606,304.157c-0.175-0.055-0.357-0.094-0.544-0.116l1.082-33.273
|
||||
c4.265,0.164,8.344,1.071,12.11,2.594L691.606,304.157z M690.582,304.025c-0.203,0.01-0.401,0.041-0.591,0.09l-11.067-31.4
|
||||
c3.701-1.281,7.672-1.978,11.804-1.978c0.313,0,0.625,0.004,0.936,0.012L690.582,304.025z M689.539,304.276
|
||||
c-0.221,0.099-0.428,0.226-0.616,0.375L666.17,280.37c3.525-3.261,7.697-5.832,12.301-7.494L689.539,304.276z M688.572,304.978
|
||||
c-0.143,0.158-0.268,0.332-0.373,0.518l-30.224-13.953c1.929-4.091,4.602-7.766,7.845-10.847L688.572,304.978z M687.996,305.932
|
||||
c-0.077,0.211-0.129,0.432-0.156,0.662l-33.274-1.082c0.186-4.809,1.313-9.38,3.204-13.534L687.996,305.932z M687.825,307.075
|
||||
c0.011,0.217,0.046,0.427,0.102,0.629l-31.244,11.503c-1.388-3.836-2.146-7.97-2.146-12.279c0-0.313,0.004-0.625,0.012-0.936
|
||||
L687.825,307.075z M688.092,308.155c0.078,0.168,0.171,0.326,0.279,0.474l-0.198,0.365l-24.004,22.492
|
||||
c-3.15-3.404-5.654-7.411-7.319-11.828L688.092,308.155z M687.446,310.332l-15.07,27.777c-2.912-1.72-5.564-3.835-7.88-6.272
|
||||
L687.446,310.332z M672.866,339.221c1.169,0.649,2.376,1.238,3.618,1.759l-5.681,13.833c-1.732-0.721-3.424-1.537-5.07-2.445
|
||||
L672.866,339.221z M676.929,341.163c3.843,1.555,8.006,2.479,12.36,2.647l-0.485,14.92c-6.107-0.221-12.028-1.496-17.555-3.735
|
||||
L676.929,341.163z M689.769,343.828c0.319,0.008,0.638,0.013,0.959,0.013c4.215,0,8.267-0.712,12.043-2.02l4.97,14.101
|
||||
c-5.399,1.87-11.131,2.844-17.013,2.844c-0.482,0-0.964-0.007-1.444-0.021L689.769,343.828z M703.225,341.661
|
||||
c1.862-0.672,3.655-1.49,5.365-2.44l7.133,13.148c-2.417,1.333-4.933,2.468-7.528,3.394L703.225,341.661z M727.382,343.582
|
||||
c-0.341,0.341-0.686,0.676-1.035,1.007l-10.217-10.904c3.31-3.144,6.038-6.895,8.007-11.07l13.579,6.269
|
||||
C735.191,334.277,731.718,339.247,727.382,343.582z M737.917,328.448l-13.578-6.268c1.931-4.239,3.081-8.904,3.27-13.813
|
||||
l14.921,0.485C742.281,315.718,740.702,322.349,737.917,328.448z M742.565,306.929c0,0.482-0.007,0.963-0.02,1.444l-14.917-0.485
|
||||
c0.008-0.319,0.012-0.639,0.012-0.959c0-4.397-0.774-8.615-2.19-12.528l14.03-5.165
|
||||
C741.507,294.832,742.565,300.799,742.565,306.929z M728.718,271.66c4.68,5.032,8.253,10.839,10.596,17.124l-14.032,5.167
|
||||
c-1.699-4.508-4.255-8.598-7.47-12.072L728.718,271.66z M727.382,270.274c0.341,0.341,0.676,0.686,1.007,1.035l-10.904,10.217
|
||||
c-3.502-3.687-7.756-6.653-12.513-8.65l5.681-13.833C716.831,261.615,722.507,265.399,727.382,270.274z M692.652,255.126
|
||||
c6.107,0.221,12.028,1.496,17.555,3.735l-5.681,13.833c-3.843-1.555-8.006-2.479-12.36-2.647L692.652,255.126z M690.728,255.092
|
||||
c0.482,0,0.964,0.007,1.444,0.02l-0.485,14.917c-0.319-0.008-0.638-0.012-0.959-0.012c-4.215,0-8.267,0.712-12.043,2.019
|
||||
l-4.97-14.101C679.114,256.065,684.846,255.092,690.728,255.092z M673.261,258.094l4.97,14.102
|
||||
c-4.698,1.696-8.956,4.319-12.553,7.648l-10.219-10.906C660.671,264.091,666.716,260.43,673.261,258.094z M654.074,270.274
|
||||
c0.341-0.341,0.687-0.676,1.035-1.007l10.218,10.904c-3.31,3.144-6.038,6.895-8.007,11.071l-13.579-6.269
|
||||
C646.265,279.58,649.738,274.61,654.074,270.274z M643.539,285.409l13.578,6.268c-1.931,4.239-3.081,8.905-3.27,13.813
|
||||
l-14.921-0.485C639.175,298.14,640.754,291.509,643.539,285.409z M638.891,306.929c0-0.482,0.007-0.964,0.02-1.444l14.917,0.485
|
||||
c-0.008,0.318-0.012,0.638-0.012,0.959c0,4.396,0.774,8.614,2.19,12.528l-14.03,5.166
|
||||
C639.949,319.025,638.891,313.058,638.891,306.929z M652.738,342.197c-4.68-5.032-8.253-10.839-10.597-17.124l14.032-5.167
|
||||
c1.699,4.508,4.255,8.598,7.47,12.072L652.738,342.197z M654.074,343.582c-0.341-0.341-0.676-0.686-1.007-1.035l10.904-10.217
|
||||
c2.368,2.494,5.082,4.656,8.062,6.414l-7.135,13.152C660.988,349.642,657.35,346.859,654.074,343.582z M665.046,353.636
|
||||
c1.692,0.934,3.431,1.771,5.21,2.512l-1.821,4.434c-0.413-0.131-0.853-0.202-1.309-0.202c-2.388,0-4.324,1.936-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.762-1.054-3.276-2.566-3.95l1.816-4.423
|
||||
c5.685,2.304,11.775,3.615,18.057,3.842l-0.148,4.534c-2.341,0.053-4.224,1.967-4.224,4.321c0,2.388,1.936,4.324,4.324,4.324
|
||||
c2.388,0,4.324-1.936,4.324-4.324c0-2.26-1.734-4.113-3.944-4.306l0.148-4.535c0.496,0.014,0.993,0.021,1.491,0.021
|
||||
c6.048,0,11.942-1.001,17.493-2.925l1.554,4.408c-1.471,0.69-2.491,2.184-2.491,3.916c0,2.388,1.936,4.324,4.324,4.324
|
||||
c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324c-0.485,0-0.951,0.081-1.387,0.229l-1.547-4.388
|
||||
c2.667-0.952,5.252-2.117,7.736-3.487l20.345,37.5h-92.055L665.046,353.636z"/>
|
||||
<g>
|
||||
|
||||
<linearGradient id="SVGID_00000121273610027325662480000007068999652675512506_" gradientUnits="userSpaceOnUse" x1="815.83" y1="285.1626" x2="815.83" y2="287.5796">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="1" style="stop-color:#161F21"/>
|
||||
</linearGradient>
|
||||
<path style="fill:url(#SVGID_00000121273610027325662480000007068999652675512506_);" d="M816.844,286.371
|
||||
c0-0.667-0.454-1.208-1.014-1.208c-0.56,0-1.014,0.541-1.014,1.208c0,0.668,0.454,1.208,1.014,1.208
|
||||
C816.39,287.58,816.844,287.039,816.844,286.371z"/>
|
||||
|
||||
<linearGradient id="SVGID_00000011738580747612097720000010840228285618223286_" gradientUnits="userSpaceOnUse" x1="500" y1="287.5796" x2="500" y2="451.2495">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="1" style="stop-color:#161F21"/>
|
||||
</linearGradient>
|
||||
<polygon style="fill:url(#SVGID_00000011738580747612097720000010840228285618223286_);" points="927.404,433.241 921.11,391.136
|
||||
908.236,391.136 908.236,356.197 909.828,356.197 909.828,353.036 903.578,353.036 903.578,339.427 902.815,339.427
|
||||
902.815,353.036 898.496,353.036 898.496,341.887 897.734,341.887 897.734,353.036 871.695,353.036 871.695,356.197
|
||||
873.474,356.197 873.474,427.088 843.745,427.088 843.745,395.334 826.815,395.334 826.815,317.303 828.363,317.303
|
||||
828.363,313.475 824.982,313.475 824.982,308.574 821.091,308.574 821.091,306.732 821.091,301.129 821.091,296.267
|
||||
816.395,296.267 816.395,287.58 815.83,287.58 815.265,287.58 815.265,296.267 812.734,296.267 811.204,301.129 800.958,301.129
|
||||
800.958,308.574 774.141,308.574 774.141,313.475 770.76,313.475 770.76,317.303 772.309,317.303 772.309,368.073
|
||||
749.871,368.073 749.871,417.957 724.973,406.925 724.973,358.507 728.991,358.507 728.991,354.95 721.924,354.95
|
||||
721.924,345.294 691.664,345.294 691.664,354.95 681.778,354.95 681.778,345.294 676.696,345.294 676.696,354.95 671.615,354.95
|
||||
671.615,345.294 666.025,345.294 666.025,354.95 654.337,354.95 654.337,358.507 656.115,358.507 656.115,425.617
|
||||
644.765,425.617 644.765,424.913 642.711,424.913 642.711,405.789 644.765,405.789 644.765,404.255 642.711,404.255
|
||||
642.711,385.13 644.765,385.13 644.765,383.597 642.711,383.597 642.711,364.472 644.765,364.472 644.765,362.939
|
||||
642.711,362.939 642.711,343.814 644.765,343.814 644.765,342.28 642.711,342.28 642.711,323.156 644.765,323.156
|
||||
644.765,321.622 642.711,321.622 642.711,301.83 646.231,301.83 646.231,300.291 648.021,300.291 648.021,296.095
|
||||
614.595,296.095 614.595,291.429 615.682,291.429 615.682,290.081 597.484,290.081 597.484,291.429 598.571,291.429
|
||||
598.571,296.095 590.287,296.095 590.287,300.291 592.078,300.291 592.078,301.83 595.598,301.83 595.598,321.622
|
||||
593.543,321.622 593.543,323.156 595.598,323.156 595.598,342.28 593.543,342.28 593.543,343.814 595.598,343.814
|
||||
595.598,362.939 593.543,362.939 593.543,364.472 595.598,364.472 595.598,383.597 593.543,383.597 593.543,385.13
|
||||
595.598,385.13 595.598,404.255 593.543,404.255 593.543,405.789 595.598,405.789 595.598,424.913 593.543,424.913
|
||||
593.543,426.447 595.598,426.447 595.598,442.075 584.189,442.075 584.189,381.685 538.283,381.685 538.283,425.617
|
||||
530.83,425.617 530.83,288.763 525.315,288.763 525.315,292.286 515.14,294.775 515.14,292.487 509.625,292.487 509.625,296.124
|
||||
499.45,298.612 499.45,295.989 493.936,295.989 493.936,299.961 483.76,302.45 483.76,300.286 478.246,300.286 478.246,303.799
|
||||
468.071,306.288 468.071,304.423 462.557,304.423 462.557,438.816 454.799,438.816 454.799,367.168 426.065,367.168
|
||||
426.065,411.227 396.608,411.227 396.608,373.655 392.979,373.655 392.979,361.316 395.133,361.316 395.133,360.077
|
||||
385.601,360.077 385.601,356.197 384.584,356.197 384.584,360.077 381.535,360.077 381.535,340.162 380.773,340.162
|
||||
380.773,360.077 376.802,360.077 376.802,361.316 379.138,361.316 379.138,373.655 359.697,373.655 359.697,402.316
|
||||
340.771,402.316 330.886,438.816 311.053,438.816 311.053,319.642 284.794,319.642 284.794,315.373 286.286,315.373
|
||||
286.286,313.875 266.397,313.875 266.397,315.373 267.961,315.373 267.961,319.642 267.961,326.508 267.961,408.127
|
||||
255.579,408.127 255.579,377.289 259.98,377.289 259.98,374.497 228.825,374.497 228.825,355.867 222.882,355.867
|
||||
222.882,352.039 209.616,352.039 209.616,355.867 198.821,355.867 198.821,422.389 163.408,422.389 163.408,373.052
|
||||
133.589,373.052 133.589,412.021 107.712,412.021 107.712,436.954 89.054,436.954 89.054,405.609 64.517,405.609 64.517,432.333
|
||||
42.301,432.333 42.301,451.25 64.517,451.25 72.025,451.25 84.29,451.25 89.054,451.25 107.712,451.25 133.589,451.25
|
||||
142.285,451.25 146.941,451.25 163.408,451.25 198.821,451.25 209.616,451.25 222.882,451.25 228.825,451.25 252.067,451.25
|
||||
255.579,451.25 267.961,451.25 288.725,451.25 298.954,451.25 311.053,451.25 359.697,451.25 370.931,451.25 389.895,451.25
|
||||
396.608,451.25 426.568,451.25 434.618,451.25 462.557,451.25 465.314,451.25 468.071,451.25 478.246,451.25 483.76,451.25
|
||||
493.936,451.25 498.545,451.25 499.45,451.25 509.625,451.25 515.14,451.25 523.887,451.25 525.315,451.25 528.072,451.25
|
||||
530.83,451.25 538.283,451.25 576.227,451.25 581.647,451.25 584.189,451.25 595.598,451.25 615.682,451.25 634.069,451.25
|
||||
642.711,451.25 656.115,451.25 689.405,451.25 724.606,451.25 724.973,451.25 749.871,451.25 763.792,451.25 772.309,451.25
|
||||
777.689,451.25 819.353,451.25 826.815,451.25 835.736,451.25 843.745,451.25 873.474,451.25 895.58,451.25 900.105,451.25
|
||||
908.236,451.25 957.698,451.25 957.698,433.241 "/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 24 KiB |
@@ -1,161 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
viewBox="0 0 2200 2200" style="enable-background:new 0 0 2200 2200;" xml:space="preserve">
|
||||
|
||||
<g id="Objects">
|
||||
<g>
|
||||
<path style="fill:#788D8E;" d="M1202.178,2002.073c-5.328,0-9.648-4.319-9.649-9.647c-0.001-5.328,4.319-9.649,9.647-9.649
|
||||
c9.63-0.001,19.271-0.006,28.918-0.014c0.003,0,0.006,0,0.009,0c5.325,0,9.643,4.314,9.647,9.639
|
||||
c0.005,5.328-4.311,9.651-9.639,9.656C1221.458,2002.068,1211.813,2002.072,1202.178,2002.073z M1144.298,2002.03
|
||||
c-0.006,0-0.01,0-0.016,0c-9.658-0.015-19.305-0.036-28.94-0.061c-5.328-0.014-9.636-4.345-9.622-9.673
|
||||
c0.014-5.319,4.331-9.622,9.648-9.622c0.008,0,0.017,0,0.025,0c9.628,0.025,19.269,0.046,28.919,0.061
|
||||
c5.328,0.009,9.641,4.335,9.632,9.663C1153.937,1997.721,1149.619,2002.03,1144.298,2002.03z M1288.979,2001.966
|
||||
c-5.317,0-9.634-4.306-9.647-9.626c-0.012-5.328,4.298-9.657,9.626-9.669c9.634-0.022,19.274-0.047,28.923-0.075
|
||||
c5.297,0.018,9.66,4.292,9.676,9.619c0.015,5.328-4.291,9.66-9.619,9.676c-9.652,0.028-19.299,0.054-28.936,0.075
|
||||
C1288.994,2001.966,1288.986,2001.966,1288.979,2001.966z M1057.498,2001.759c-0.015,0-0.03,0-0.045,0
|
||||
c-9.659-0.044-19.306-0.095-28.939-0.152c-5.328-0.031-9.622-4.376-9.591-9.704c0.031-5.309,4.344-9.591,9.646-9.591
|
||||
c0.02,0,0.04,0,0.058,0c9.625,0.057,19.263,0.107,28.914,0.152c5.328,0.025,9.628,4.364,9.603,9.692
|
||||
C1067.12,1997.468,1062.805,2001.759,1057.498,2001.759z M1375.787,2001.691c-5.31,0-9.625-4.293-9.647-9.609
|
||||
c-0.022-5.328,4.281-9.665,9.609-9.686c9.636-0.039,19.28-0.079,28.928-0.123c0.015,0,0.029,0,0.044,0
|
||||
c5.308,0,9.623,4.291,9.647,9.604c0.024,5.328-4.276,9.666-9.604,9.691c-9.651,0.043-19.297,0.084-28.937,0.122
|
||||
C1375.813,2001.691,1375.8,2001.691,1375.787,2001.691z M1462.601,2001.29c-5.305,0-9.619-4.287-9.647-9.598
|
||||
c-0.027-5.328,4.27-9.67,9.598-9.698c9.641-0.05,19.285-0.102,28.932-0.156c0.018,0,0.037,0,0.056,0
|
||||
c5.302,0,9.616,4.284,9.646,9.594c0.029,5.328-4.266,9.671-9.594,9.701c-9.649,0.054-19.297,0.105-28.94,0.156
|
||||
C1462.635,2001.29,1462.618,2001.29,1462.601,2001.29z M970.707,2001.198c-0.027,0-0.054,0-0.081,0
|
||||
c-9.662-0.079-19.308-0.166-28.939-0.259c-5.328-0.052-9.605-4.413-9.554-9.741c0.052-5.296,4.361-9.554,9.646-9.554
|
||||
c0.032,0,0.063,0,0.095,0.001c9.621,0.093,19.258,0.179,28.911,0.258c5.328,0.044,9.612,4.399,9.568,9.727
|
||||
C980.31,1996.93,975.998,2001.198,970.707,2001.198z M1549.42,2000.802c-5.301,0-9.614-4.281-9.646-9.59
|
||||
c-0.032-5.328,4.262-9.673,9.59-9.705l28.936-0.176c0.021,0,0.042,0,0.061,0c5.301,0,9.614,4.279,9.647,9.587
|
||||
c0.033,5.328-4.259,9.674-9.587,9.708l-28.942,0.176C1549.459,2000.802,1549.439,2000.802,1549.42,2000.802z M883.923,2000.297
|
||||
c-0.041,0-0.083,0-0.124-0.001c-9.663-0.122-19.308-0.25-28.935-0.385c-5.328-0.075-9.586-4.454-9.511-9.782
|
||||
c0.075-5.328,4.464-9.604,9.782-9.511c9.617,0.136,19.254,0.264,28.907,0.385c5.328,0.067,9.592,4.44,9.525,9.768
|
||||
C893.501,1996.057,889.195,2000.297,883.923,2000.297z M1636.244,2000.264c-5.3,0-9.612-4.279-9.646-9.586
|
||||
c-0.034-5.328,4.258-9.675,9.586-9.709l28.943-0.184c0.021,0,0.042,0,0.062,0c5.3,0,9.613,4.279,9.647,9.586
|
||||
c0.034,5.328-4.259,9.675-9.586,9.709l-28.943,0.184C1636.286,2000.264,1636.265,2000.264,1636.244,2000.264z M1723.075,1999.719
|
||||
c-5.3,0-9.614-4.28-9.647-9.588c-0.033-5.328,4.26-9.674,9.588-9.707l28.946-0.177c0.02,0,0.04,0,0.059,0
|
||||
c5.301,0,9.615,4.28,9.647,9.589c0.032,5.328-4.261,9.674-9.589,9.706l-28.945,0.177
|
||||
C1723.115,1999.719,1723.095,1999.719,1723.075,1999.719z M1809.912,1999.201c-5.303,0-9.616-4.283-9.647-9.593
|
||||
c-0.03-5.328,4.265-9.672,9.593-9.702l28.952-0.16c0.018,0,0.036,0,0.053,0c5.304,0,9.618,4.285,9.647,9.596
|
||||
c0.028,5.328-4.268,9.67-9.596,9.699l-28.947,0.16C1809.949,1999.201,1809.931,1999.201,1809.912,1999.201z M797.15,1998.997
|
||||
c-0.057,0-0.115-0.001-0.172-0.002c-9.665-0.169-19.31-0.346-28.935-0.531c-5.327-0.103-9.562-4.504-9.459-9.832
|
||||
c0.104-5.327,4.48-9.533,9.832-9.459c9.612,0.186,19.245,0.363,28.899,0.531c5.327,0.092,9.57,4.487,9.477,9.814
|
||||
C806.701,1994.788,802.399,1998.997,797.15,1998.997z M1896.756,1998.75c-5.307,0-9.621-4.29-9.647-9.602
|
||||
c-0.025-5.328,4.274-9.667,9.602-9.693c9.658-0.045,19.31-0.089,28.958-0.129c0.014,0,0.027,0,0.041,0
|
||||
c5.309,0,9.624,4.292,9.647,9.607c0.023,5.328-4.279,9.666-9.607,9.688c-9.644,0.041-19.294,0.084-28.948,0.129
|
||||
C1896.787,1998.75,1896.771,1998.75,1896.756,1998.75z M710.388,1997.237c-0.076,0-0.152-0.001-0.228-0.003
|
||||
c-9.667-0.223-19.311-0.457-28.932-0.7c-5.326-0.135-9.535-4.562-9.401-9.889c0.133-5.243,4.425-9.404,9.64-9.404
|
||||
c0.083,0,0.166,0.001,0.249,0.003c9.607,0.243,19.237,0.477,28.891,0.7c5.327,0.122,9.545,4.541,9.421,9.868
|
||||
C719.907,1993.064,715.612,1997.237,710.388,1997.237z M623.642,1994.948c-0.096,0-0.193-0.001-0.29-0.004
|
||||
c-9.67-0.287-19.314-0.585-28.929-0.894c-5.326-0.172-9.503-4.628-9.333-9.953c0.171-5.325,4.65-9.465,9.953-9.333
|
||||
c9.6,0.309,19.227,0.607,28.88,0.892c5.326,0.158,9.516,4.604,9.357,9.93C633.126,1990.815,628.838,1994.948,623.642,1994.948z
|
||||
M536.937,1991.683c-0.226,0-0.453-0.007-0.682-0.024c-10.955-0.765-20.624-1.8-29.559-3.167
|
||||
c-5.267-0.806-8.883-5.728-8.078-10.995c0.805-5.268,5.725-8.888,10.995-8.078c8.408,1.286,17.563,2.264,27.985,2.992
|
||||
c5.316,0.371,9.323,4.981,8.952,10.296C546.196,1987.794,541.959,1991.683,536.937,1991.683z M452.936,1972.044
|
||||
c-1.444,0-2.91-0.325-4.291-1.012c-5.129-2.553-10.134-5.398-14.875-8.458c-3.821-2.466-7.597-5.17-11.224-8.036
|
||||
c-4.179-3.305-4.889-9.372-1.585-13.552c3.305-4.18,9.371-4.889,13.552-1.585c3.144,2.486,6.415,4.828,9.719,6.961
|
||||
c4.142,2.673,8.519,5.162,13.01,7.397c4.77,2.373,6.713,8.165,4.34,12.935C459.893,1970.083,456.481,1972.044,452.936,1972.044z
|
||||
M390.843,1913.094c-3.257,0-6.436-1.65-8.252-4.636c-5.088-8.366-9.753-17.406-13.866-26.869
|
||||
c-2.125-4.886,0.115-10.57,5.002-12.693c4.884-2.125,10.569,0.114,12.694,5.002c3.765,8.661,8.023,16.915,12.657,24.534
|
||||
c2.768,4.552,1.323,10.487-3.23,13.256C394.28,1912.639,392.55,1913.094,390.843,1913.094z M360.798,1832.103
|
||||
c-4.545,0-8.593-3.227-9.469-7.857c-1.832-9.681-3.208-19.642-4.092-29.605c-0.471-5.307,3.45-9.991,8.757-10.463
|
||||
c5.305-0.466,9.991,3.449,10.462,8.757c0.828,9.335,2.117,18.663,3.831,27.724c0.99,5.236-2.451,10.282-7.686,11.272
|
||||
C361.996,1832.047,361.393,1832.103,360.798,1832.103z M357.3,1745.636c-0.337,0-0.677-0.018-1.02-0.054
|
||||
c-5.299-0.557-9.143-5.304-8.586-10.603c1.051-10.004,2.612-19.95,4.636-29.561c1.098-5.214,6.217-8.55,11.429-7.451
|
||||
c5.214,1.099,8.55,6.215,7.451,11.429c-1.889,8.965-3.345,18.252-4.327,27.6C366.362,1741.952,362.175,1745.636,357.3,1745.636z
|
||||
M379.592,1662.099c-1.292,0-2.604-0.261-3.863-0.812c-4.881-2.136-7.107-7.824-4.97-12.706
|
||||
c3.967-9.067,8.429-18.064,13.26-26.742c2.591-4.655,8.466-6.329,13.122-3.737c4.656,2.592,6.329,8.466,3.737,13.122
|
||||
c-4.533,8.143-8.72,16.585-12.442,25.091C386.85,1659.939,383.308,1662.099,379.592,1662.099z M425.149,1588.527
|
||||
c-2.174,0-4.36-0.73-6.162-2.228c-4.097-3.407-4.658-9.489-1.252-13.587c6.291-7.567,13.033-14.977,20.039-22.024
|
||||
c3.756-3.78,9.865-3.796,13.644-0.039c3.778,3.756,3.796,9.865,0.039,13.643c-6.604,6.642-12.958,13.624-18.884,20.754
|
||||
C430.666,1587.342,427.917,1588.527,425.149,1588.527z M488.757,1529.81c-3.021,0-5.994-1.414-7.875-4.063
|
||||
c-3.085-4.345-2.062-10.367,2.282-13.452c8.036-5.705,16.424-11.148,24.935-16.182c4.587-2.711,10.502-1.194,13.215,3.393
|
||||
c2.712,4.586,1.194,10.503-3.393,13.215c-8.051,4.762-15.987,9.912-23.588,15.308
|
||||
C492.639,1529.232,490.688,1529.81,488.757,1529.81z M565.026,1488.849c-3.858,0-7.5-2.33-8.989-6.14
|
||||
c-1.939-4.962,0.513-10.558,5.476-12.497c8.996-3.515,18.386-6.814,27.91-9.805c5.085-1.593,10.499,1.23,12.094,6.314
|
||||
c1.597,5.083-1.229,10.498-6.313,12.095c-9.107,2.86-18.081,6.012-26.67,9.368
|
||||
C567.381,1488.636,566.194,1488.849,565.026,1488.849z M648.419,1465.236c-4.529,0-8.569-3.204-9.462-7.816
|
||||
c-1.012-5.232,2.408-10.293,7.639-11.306c9.243-1.788,18.981-3.446,28.945-4.926c5.268-0.786,10.177,2.855,10.961,8.125
|
||||
c0.783,5.27-2.855,10.178-8.125,10.961c-9.686,1.439-19.145,3.049-28.114,4.784
|
||||
C649.644,1465.178,649.027,1465.236,648.419,1465.236z M734.448,1453.776c-4.949,0-9.161-3.786-9.599-8.809
|
||||
c-0.464-5.308,3.463-9.987,8.771-10.45c8.927-0.779,18.419-1.521,29.019-2.265c5.285-0.369,9.926,3.633,10.3,8.948
|
||||
c0.373,5.315-3.633,9.926-8.948,10.299c-10.489,0.737-19.875,1.469-28.691,2.239
|
||||
C735.013,1453.764,734.729,1453.776,734.448,1453.776z M821.074,1447.866c-5.059,0-9.308-3.941-9.621-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.341-0.318,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.766C821.471,1447.86,821.272,1447.866,821.074,1447.866z M907.74,1442.568c-5.059,0-9.308-3.941-9.621-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.344-0.326,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.218
|
||||
l-28.889,1.767C908.137,1442.562,907.938,1442.568,907.74,1442.568z M994.406,1437.269c-5.059,0-9.307-3.941-9.62-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.345-0.309,9.893,3.722,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.767C994.805,1437.263,994.604,1437.269,994.406,1437.269z M1081.072,1431.969c-5.059,0-9.307-3.941-9.62-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.322-0.318,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.767C1081.47,1431.964,1081.27,1431.969,1081.072,1431.969z M1167.738,1426.671c-5.059,0-9.307-3.941-9.62-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.349-0.326,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.766C1168.135,1426.665,1167.936,1426.671,1167.738,1426.671z M1254.358,1420.693c-4.914,0-9.115-3.738-9.592-8.73
|
||||
c-0.508-5.304,3.38-10.015,8.685-10.523c10.205-0.975,19.481-2.043,28.357-3.264c5.276-0.72,10.146,2.966,10.872,8.244
|
||||
c0.725,5.279-2.966,10.146-8.244,10.872c-9.142,1.257-18.676,2.354-29.148,3.356
|
||||
C1254.976,1420.678,1254.665,1420.693,1254.358,1420.693z M1339.835,1406.05c-4.233,0-8.115-2.807-9.295-7.086
|
||||
c-1.416-5.136,1.6-10.448,6.735-11.864c9.242-2.549,18.223-5.456,26.694-8.639c4.994-1.875,10.551,0.65,12.425,5.636
|
||||
c1.875,4.988-0.649,10.55-5.636,12.425c-9.014,3.388-18.553,6.476-28.353,9.178
|
||||
C1341.548,1405.937,1340.684,1406.05,1339.835,1406.05z M1418.99,1371.212c-3.131,0-6.201-1.522-8.057-4.329
|
||||
c-2.938-4.445-1.716-10.43,2.729-13.368c7.542-4.985,14.948-10.622,22.014-16.754c4.022-3.493,10.115-3.063,13.609,0.962
|
||||
c3.493,4.024,3.062,10.117-0.962,13.609c-7.698,6.683-15.781,12.832-24.022,18.28
|
||||
C1422.663,1370.694,1420.817,1371.212,1418.99,1371.212z M1480.743,1310.868c-1.931,0-3.882-0.578-5.577-1.782
|
||||
c-4.344-3.086-5.366-9.108-2.281-13.452c5.366-7.558,10.318-15.487,14.721-23.567c2.549-4.679,8.41-6.406,13.087-3.856
|
||||
c4.679,2.549,6.406,8.409,3.856,13.087c-4.765,8.747-10.126,17.328-15.932,25.506
|
||||
C1486.737,1309.454,1483.762,1310.868,1480.743,1310.868z M1517.216,1232.602c-0.778,0-1.568-0.094-2.356-0.292
|
||||
c-5.169-1.297-8.306-6.538-7.009-11.707c2.256-8.984,3.898-18.121,4.878-27.155c0.575-5.299,5.342-9.13,10.632-8.55
|
||||
c5.298,0.575,9.126,5.335,8.55,10.633c-1.076,9.911-2.875,19.928-5.346,29.771
|
||||
C1525.467,1229.681,1521.535,1232.602,1517.216,1232.602z M1520.169,1146.498c-4.554,0-8.606-3.239-9.472-7.879
|
||||
c-1.672-8.957-4.032-17.905-7.015-26.593c-1.731-5.04,0.953-10.527,5.992-12.257c5.036-1.729,10.528,0.953,12.257,5.992
|
||||
c3.287,9.575,5.889,19.438,7.733,29.318c0.978,5.237-2.475,10.276-7.713,11.254
|
||||
C1521.352,1146.444,1520.757,1146.498,1520.169,1146.498z M1486.631,1067.128c-3.053,0-6.055-1.445-7.93-4.142
|
||||
c-5.223-7.514-11.025-14.791-17.243-21.63c-3.585-3.942-3.295-10.044,0.647-13.629c3.942-3.584,10.044-3.295,13.628,0.648
|
||||
c6.781,7.457,13.11,15.396,18.811,23.597c3.041,4.375,1.961,10.387-2.415,13.428
|
||||
C1490.452,1066.568,1488.532,1067.128,1486.631,1067.128z M1424.593,1007.152c-1.794,0-3.608-0.499-5.227-1.546
|
||||
c-7.728-4.995-15.75-9.441-23.845-13.217l-0.314-0.146c-4.827-2.257-6.911-7.999-4.653-12.826c2.257-4.826,8-6.91,12.825-4.653
|
||||
l0.276,0.129c8.915,4.158,17.716,9.036,26.183,14.508c4.475,2.892,5.758,8.864,2.866,13.339
|
||||
C1430.859,1005.596,1427.759,1007.152,1424.593,1007.152z M1344.533,974.803c-0.7,0-1.41-0.076-2.123-0.236
|
||||
c-8.759-1.966-18.077-3.643-27.693-4.985c-5.277-0.736-8.958-5.611-8.222-10.888c0.737-5.277,5.615-8.957,10.888-8.222
|
||||
c10.137,1.415,19.98,3.187,29.254,5.268c5.199,1.167,8.467,6.327,7.3,11.527C1352.93,971.754,1348.947,974.803,1344.533,974.803z
|
||||
M274.324,966.773c-5.318,0-9.634-4.305-9.647-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.023,0
|
||||
c5.317,0,9.634,4.305,9.647,9.625c0.012,5.328-4.297,9.657-9.625,9.67l-28.943,0.066
|
||||
C274.339,966.773,274.331,966.773,274.324,966.773z M361.152,966.573c-5.318,0-9.635-4.305-9.647-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.338-0.002,9.657,4.297,9.67,9.625s-4.297,9.657-9.625,9.67l-28.943,0.066
|
||||
C361.167,966.573,361.16,966.573,361.152,966.573z M447.979,966.373c-5.318,0-9.634-4.305-9.647-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.942-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.942,0.066C447.995,966.373,447.987,966.373,447.979,966.373z M534.808,966.174
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C534.823,966.174,534.815,966.174,534.808,966.174z M621.636,965.973c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C621.651,965.973,621.643,965.973,621.636,965.973z M708.463,965.774
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C708.478,965.774,708.471,965.774,708.463,965.774z M795.291,965.574c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.292,0.018,9.658,4.297,9.67,9.625c0.012,5.328-4.297,9.657-9.626,9.67
|
||||
l-28.943,0.066C795.306,965.574,795.299,965.574,795.291,965.574z M882.12,965.374c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.317,0,9.634,4.305,9.647,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C882.135,965.374,882.127,965.374,882.12,965.374z M968.947,965.174
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C968.962,965.174,968.955,965.174,968.947,965.174z M1258.376,965.13c-0.103,0-0.204-0.001-0.307-0.005
|
||||
c-8.629-0.27-17.745-0.424-28.69-0.483c-5.328-0.029-9.623-4.372-9.595-9.7c0.029-5.31,4.342-9.595,9.647-9.595
|
||||
c0.018,0,0.036,0,0.054,0c11.114,0.06,20.389,0.216,29.188,0.492c5.326,0.167,9.508,4.619,9.341,9.945
|
||||
C1267.849,961.007,1263.564,965.13,1258.376,965.13z M1055.775,964.974c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.318,0,9.634,4.305,9.647,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C1055.79,964.974,1055.783,964.974,1055.775,964.974z M1142.603,964.775
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.007,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C1142.619,964.775,1142.611,964.775,1142.603,964.775z"/>
|
||||
<path style="fill:#D13737;" d="M462.452,197.927c-156.647,0-283.638,126.991-283.638,283.638
|
||||
c0,251.801,283.638,464.048,283.638,464.048S746.09,733.366,746.09,481.565C746.09,324.918,619.099,197.927,462.452,197.927z
|
||||
M462.316,679.485c-109.374,0-198.045-88.671-198.045-198.055c0-109.374,88.671-198.045,198.045-198.045
|
||||
c109.384,0,198.055,88.671,198.055,198.045C660.371,590.814,571.701,679.485,462.316,679.485z"/>
|
||||
<path style="fill:#18ACB7;" d="M1737.548,1228.212c-156.647,0-283.638,126.991-283.638,283.638
|
||||
c0,251.801,283.638,464.048,283.638,464.048s283.638-212.246,283.638-464.048
|
||||
C2021.187,1355.203,1894.196,1228.212,1737.548,1228.212z M1737.413,1709.77c-109.374,0-198.045-88.671-198.045-198.055
|
||||
c0-109.374,88.671-198.045,198.045-198.045c109.384,0,198.055,88.671,198.055,198.045
|
||||
C1935.468,1621.1,1846.797,1709.77,1737.413,1709.77z"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 16 KiB |
@@ -1,3 +0,0 @@
|
||||
description: This file stores settings for Dart & Flutter DevTools.
|
||||
documentation: https://docs.flutter.dev/tools/devtools/extensions#configure-extension-enablement-states
|
||||
extensions:
|
@@ -1,17 +0,0 @@
|
||||
flutter_launcher_icons:
|
||||
image_path: "assets/launcher/icon.png"
|
||||
|
||||
# Android section
|
||||
android: true
|
||||
min_sdk_android: 21 # android min sdk min:16, default 21
|
||||
|
||||
# iOS section
|
||||
ios: true
|
||||
remove_alpha_ios: true # app store rejecs icons with alpha
|
||||
|
||||
# Web section
|
||||
web:
|
||||
generate: true
|
||||
image_path: "assets/launcher/icon.png"
|
||||
# background_color: "#hexcode"
|
||||
# theme_color: "#hexcode"
|
@@ -427,7 +427,7 @@
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ALWAYS_SEARCH_USER_PATHS = NO;
|
||||
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
|
||||
CLANG_ANALYZER_NONNULL = YES;
|
||||
CLANG_CXX_LANGUAGE_STANDARD = "gnu++0x";
|
||||
CLANG_CXX_LIBRARY = "libc++";
|
||||
@@ -484,7 +484,7 @@
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ALWAYS_SEARCH_USER_PATHS = NO;
|
||||
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
|
||||
CLANG_ANALYZER_NONNULL = YES;
|
||||
CLANG_CXX_LANGUAGE_STANDARD = "gnu++0x";
|
||||
CLANG_CXX_LIBRARY = "libc++";
|
||||
|
Before Width: | Height: | Size: 97 KiB After Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 738 B After Width: | Height: | Size: 295 B |
Before Width: | Height: | Size: 1.6 KiB After Width: | Height: | Size: 406 B |
Before Width: | Height: | Size: 2.5 KiB After Width: | Height: | Size: 450 B |
Before Width: | Height: | Size: 1.1 KiB After Width: | Height: | Size: 282 B |
Before Width: | Height: | Size: 2.3 KiB After Width: | Height: | Size: 462 B |
Before Width: | Height: | Size: 3.8 KiB After Width: | Height: | Size: 704 B |