66 Commits

Author SHA1 Message Date
431ae7c670 Merge pull request 'fix loki' (#54) from backend/fix-loki-dependencies into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 1m37s
/ push-to-remote (push) Failing after 46s
Build and deploy the backend to production / Deploy to production (push) Successful in 21s
Reviewed-on: #54
2025-01-24 15:45:33 +00:00
e612a82921 fixed loki + some opti changes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m36s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m46s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 16:03:05 +01:00
163e10032c removed click
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m20s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m31s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 15:01:16 +01:00
06c01837cf ???
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m3s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 09:12:45 +01:00
cd24ee4a67 nothing changed
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m31s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 2m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-24 08:54:42 +01:00
85c69d5e01 installed requests pkg
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 2m59s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 06:42:08 +01:00
d02ba85c31 Merge pull request 'backend/better-README' (#53) from backend/better-README into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 2m19s
/ push-to-remote (push) Failing after 42s
Build and deploy the backend to production / Deploy to production (push) Successful in 23s
Reviewed-on: #53
2025-01-23 17:11:14 +00:00
0c9b829c3f more stuff
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m2s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Failing after 4m29s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-01-23 18:08:20 +01:00
b9d45ac9f1 better src readme 2025-01-23 18:02:57 +01:00
2f86536893 more readme 2025-01-23 17:57:17 +01:00
8d9e2d9207 Merge pull request 'backend/new-overpass' (#52) from backend/new-overpass into main
Reviewed-on: #52
2025-01-23 15:34:21 +00:00
259b0d36fd corrcected msitakes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m48s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-23 16:22:41 +01:00
577ee232fc overpass as class
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m4s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Failing after 4m39s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 16:02:33 +01:00
1cc935fb34 revert json cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m51s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 5m41s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-23 15:33:21 +01:00
4818bde820 cleanup before prod
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m57s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 53s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 12:53:01 +01:00
b30fa1f02e ready for prod
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m25s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m5s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 12:37:47 +01:00
150055c1b2 better tests, ready for prod actually
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m31s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m58s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-23 12:28:10 +01:00
f863c41653 excellent results
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 49s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
Run testing on the backend code / Build (pull_request) Failing after 5m48s
2025-01-23 12:17:34 +01:00
f67e2b5dd6 better dosctrings
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m26s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 1m27s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 52s
2025-01-23 12:13:51 +01:00
28ff0460ab cleanup
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m16s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 1m14s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 12:01:49 +01:00
b9356dc4ee linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m51s
Run linting on the backend code / Build (pull_request) Successful in 37s
Run testing on the backend code / Build (pull_request) Failing after 3m8s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 11:28:41 +01:00
78f1dcaab4 fixed up clusters
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m28s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m51s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 10:33:32 +01:00
ca40de82dd working cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m19s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 7m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 08:04:26 +01:00
c668158341 first homemade OSM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m50s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m44s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-22 20:21:00 +01:00
98576cff0a forgot tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m9s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 10m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 13s
2025-01-16 14:56:32 +01:00
7027444602 linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 43s
Run testing on the backend code / Build (pull_request) Failing after 2m23s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-16 12:22:36 +01:00
e5a4645f7a faster pulp and more tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m14s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 7m45s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-16 10:15:24 +01:00
e2e54f5205 finally pulp is working !
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m31s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 5m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-16 07:34:55 +01:00
2be7cd1e61 some rpoblem 2025-01-15 21:12:47 +01:00
3ebe0b7191 good starting point, working pulp 2025-01-15 19:55:48 +01:00
814da4b5f6 working pulp 2025-01-15 17:11:29 +01:00
3fe6056f3c first steps toward pulp 2025-01-15 16:48:32 +01:00
d62dddd424 forgot assertion
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m3s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m11s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 28s
2025-01-15 10:05:42 +01:00
133f81ce3b more print
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m23s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Successful in 1m18s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-15 10:05:12 +01:00
14385342cc better sym breaking
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m7s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 1m11s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-15 09:35:25 +01:00
dba988629d formatting for tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m23s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m13s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-15 08:58:17 +01:00
ecd505a9ce massive numpy optimization and more tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 6m58s
2025-01-14 18:23:58 +01:00
4fae658dbb better array handling in the optimizer
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m39s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 1m37s
2025-01-14 11:59:23 +01:00
41976e3e85 corrected timing
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m18s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 2m55s
2025-01-10 16:07:10 +01:00
73373e0fc3 linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m9s
Run linting on the backend code / Build (pull_request) Successful in 34s
Run testing on the backend code / Build (pull_request) Failing after 1m56s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2025-01-10 15:59:44 +01:00
c6cebd0fdf speeding up optimizer
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Failing after 25s
Run testing on the backend code / Build (pull_request) Failing after 2m0s
2025-01-10 15:46:10 +01:00
11bbf34375 better logs
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m20s
Run linting on the backend code / Build (pull_request) Failing after 26s
Run testing on the backend code / Build (pull_request) Failing after 2m40s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2025-01-09 16:58:38 +01:00
a0a3d76b78 cleaning up
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Failing after 25s
Run testing on the backend code / Build (pull_request) Failing after 1m54s
2025-01-09 09:42:11 +01:00
160059d94b Merge pull request 'some more fixes' (#49) from fix/frontend/more-pipeline-fixes into main
Reviewed-on: #49
2025-01-08 09:44:54 +00:00
18d59012cb Merge pull request 'use additional loki logger' (#48) from feature/backend/centralized-logging into main
Reviewed-on: #48
2025-01-08 09:43:36 +00:00
f297094c1a Merge pull request 'better naming and MM' (#45) from backend/fix/better-match-making into main
Reviewed-on: #45
2025-01-08 09:42:35 +00:00
86187d9069 launch adjustments
Some checks failed
Run linting on the backend code / Build (pull_request) Failing after 28s
Run testing on the backend code / Build (pull_request) Failing after 1m28s
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m35s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2024-12-29 15:06:23 +01:00
4e07c10969 actually use fastapi lifetime manager to setup logging
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2024-12-29 14:45:41 +01:00
bc63b57154 dumb type conversion
Some checks failed
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m14s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 38s
2024-12-28 22:34:14 +01:00
fa083a1080 logging cleanup
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m9s
Run linting on the backend code / Build (pull_request) Failing after 30s
Run testing on the backend code / Build (pull_request) Failing after 1m41s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 18s
2024-12-28 22:25:42 +01:00
c448e2dfb7 more verbose logger setup
Some checks failed
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
2024-12-28 15:52:29 +01:00
d9061388dd use additional loki logger
Some checks failed
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 1m27s
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 20s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
2024-12-28 14:01:21 +01:00
a9851f9627 some more fixes
Some checks failed
Build and release debug APK / Build APK (pull_request) Has been cancelled
2024-12-28 12:39:14 +01:00
e764393706 Some more pipeline-fixes (#46)
Some checks failed
/ push-to-remote (push) Successful in 13s
Build and deploy the backend to production / Deploy to production (push) Has been cancelled
Build and deploy the backend to production / Build and push image (push) Has been cancelled
Reviewed-on: #46
2024-12-21 15:54:04 +00:00
a0467e1e19 higher importance for historic clusters and first time no failed test
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m52s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Successful in 2m7s
Build and release debug APK / Build APK (pull_request) Successful in 7m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2024-12-16 18:09:33 +01:00
9b61471c94 better naming and MM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 32s
Run testing on the backend code / Build (pull_request) Failing after 2m15s
Build and release debug APK / Build APK (pull_request) Successful in 7m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2024-12-16 17:56:53 +01:00
a59029c809 Merge pull request 'don't use vault anymore' (#43) from frontend/ci-cd-fixes into main
All checks were successful
/ push-to-remote (push) Successful in 13s
Build and deploy the backend to production / Build and push image (push) Successful in 2m33s
Build and deploy the backend to production / Deploy to production (push) Successful in 16s
Reviewed-on: #43
2024-12-15 11:24:23 +00:00
9e0864d300 don't use vault anymore
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 3m55s
2024-12-15 12:24:00 +01:00
3dc27b2382 Merge pull request 'Build pipeline for both platforms' (#42) from feature/frontend/ios-builds into main
Reviewed-on: #42
2024-12-14 20:49:04 +00:00
9326cf8a74 final fixes for an inital test
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Build and release debug APK / Build APK (pull_request) Failing after 3m34s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 56s
2024-12-14 21:47:41 +01:00
97cb5b16aa some more fastlane fixes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m52s
Build and release debug APK / Build APK (pull_request) Failing after 3m50s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
2024-12-14 19:54:28 +01:00
a4a70d56c6 fastlane fixes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m23s
Build and release debug APK / Build APK (pull_request) Failing after 3m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
2024-12-14 19:48:08 +01:00
7acfb84122 keep using match
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m42s
Build and release debug APK / Build APK (pull_request) Failing after 3m26s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
2024-12-14 19:16:37 +01:00
cbada7e4a4 move secrets to hashicorp, don't use match (wip)
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m41s
Build and release debug APK / Build APK (pull_request) Failing after 4m46s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
2024-12-14 16:39:27 +01:00
4a542a4a1f switch secrets to loading from env - towards a more unified way of handling secrets
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m42s
Build and release debug APK / Build APK (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
2024-12-13 15:05:18 +01:00
f25355ee3e gearing up towards a working build pipeline
Some checks failed
Build and release debug APK / Build APK (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2024-12-12 19:33:30 +01:00
78 changed files with 3627 additions and 198783 deletions

View File

@@ -25,10 +25,8 @@ jobs:
ls -la
# only install dev-packages
pipenv install --categories=dev-packages
pipenv run pip freeze
working-directory: backend
- name: Run linter
run: pipenv run pylint src --fail-under=9
run: pipenv run pylint src --fail-under=9
working-directory: backend

View File

@@ -25,11 +25,10 @@ jobs:
ls -la
# install all packages, including dev-packages
pipenv install --dev
pipenv run pip freeze
working-directory: backend
- name: Run Tests
run: pipenv run pytest src --html=report.html --self-contained-html
run: pipenv run pytest src --html=report.html --self-contained-html --log-cli-level=INFO
working-directory: backend
- name: Upload HTML report

14
.vscode/launch.json vendored
View File

@@ -9,18 +9,16 @@
"name": "Backend - debug",
"type": "debugpy",
"request": "launch",
"module": "uvicorn",
"env": {
"DEBUG": "true"
},
"args": [
// "--app-dir",
// "src",
"src.main:app",
"--reload",
],
"jinja": true,
"cwd": "${workspaceFolder}/backend"
"cwd": "${workspaceFolder}/backend",
"module": "fastapi",
"args": [
"dev",
"src/main.py"
]
},
{
"name": "Backend - tester",

View File

@@ -1,3 +0,0 @@
{
"cmake.ignoreCMakeListsMissing": true
}

View File

@@ -15,7 +15,7 @@ This project is divided into two main components: a frontend and a backend. The
See the [frontend README](frontend/README.md) for more information. The application is centered around its map view, which displays the user's itinerary. This is based on the Google Maps API.
### Backend
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap API, which is much more flexible.
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap database through the Overpass API, which is much more flexible.
## Getting Started
@@ -24,8 +24,8 @@ Refer to the READMEs in the `frontend` and `backend` directories for instruction
- `google_maps_flutter` plugin
- Python 3
- `fastapi`
- `OSMPythonTools`
- `numpy, scipy`
- `numpy`
- `pydantic`
- Docker

8
backend/.gitignore vendored
View File

@@ -1,9 +1,5 @@
# osm-cache and wikidata cache
cache/
apicache/
# wikidata throttle
*.ctrl
# osm-cache
cache_XML/
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@@ -293,7 +293,7 @@ ignored-parents=
max-args=5
# Maximum number of attributes for a class (see R0902).
max-attributes=7
max-attributes=20
# Maximum number of boolean expressions in an if statement (see R0916).
max-bool-expr=5
@@ -302,7 +302,7 @@ max-bool-expr=5
max-branches=12
# Maximum number of locals for function / method body.
max-locals=15
max-locals=30
# Maximum number of parents for a class (see R0901).
max-parents=7
@@ -402,7 +402,7 @@ preferred-modules=
# The type of string formatting that logging methods do. `old` means using %
# formatting, `new` is for `{}` formatting.
logging-format-style=old
logging-format-style=new
# Logging modules to check that the string format arguments are in logging
# function parameter format.
@@ -440,7 +440,12 @@ disable=raw-checker-failed,
use-implicit-booleaness-not-comparison-to-string,
use-implicit-booleaness-not-comparison-to-zero,
import-error,
line-too-long
multiple-statements,
line-too-long,
logging-fstring-interpolation,
duplicate-code,
relative-beyond-top-level,
invalid-name
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option

View File

@@ -14,5 +14,7 @@ EXPOSE 8000
ENV NUM_WORKERS=1
ENV OSM_CACHE_DIR=/cache
ENV MEMCACHED_HOST_PATH=none
ENV LOKI_URL=none
# explicitly use a string instead of an argument list to force a shell and variable expansion
CMD fastapi run src/main.py --port 8000 --workers $NUM_WORKERS

View File

@@ -18,10 +18,10 @@ numpy = "*"
fastapi = "*"
pydantic = "*"
shapely = "*"
scipy = "*"
osmpythontools = "*"
pywikibot = "*"
pymemcache = "*"
fastapi-cli = "*"
scikit-learn = "*"
pyqt6 = "*"
loki-logger-handler = "*"
pulp = "*"
scipy = "*"
requests = "*"

1881
backend/Pipfile.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -38,7 +38,19 @@ To deploy the backend docker container, we use kubernetes. Modifications to the
The deployment configuration is included as a submodule in the `deployment` directory. The standalone repository is under [https://git.kluster.moll.re/anydev/anyway-backend-deployment/](https://git.kluster.moll.re/anydev/anyway-backend-deployment/).
## Development
TBD
The backend application is structured around the `src` directory, which contains the core components for handling route optimization and API logic. Development generally involves working with key modules such as the optimization engine, Overpass API integration, and utilities for managing landmarks and trip data.
### Key Areas:
- **API Endpoints**: The main interaction with the backend is through the endpoints defined in `src/main.py`. FastAPI simplifies the creation of RESTful services that manage trip and landmark data.
- **Optimization Logic**: The trip optimization and refinement are handled in the `src/optimization` module. This is where the core algorithms are implemented.
- **Landmark Management**: Fetching and prioritizing points of interest (POIs) based on user preferences happens in `src/utils/LandmarkManager`.
- **Testing**: The `src/tests` directory includes tests in various scenarii, ensuring that the logic works as expected.
For detailed information, refer to the [src README](backend/src/README.md).
### Running the Application:
To run the backend locally, ensure that the virtual environment is activated and all dependencies are installed as outlined in the "Getting Started" section. You can start the FastAPI server with:
```bash
uvicorn src.main:app --reload

File diff suppressed because one or more lines are too long

65
backend/src/README.md Normal file
View File

@@ -0,0 +1,65 @@
# Overview of backend/src
This project is structured into several components that handle different aspects of the application's functionality. Below is a high-level overview of each folder and the key Python files in the |src| directory.
## Folders
### src/optimization
This folder contains modules related to the optimization algorithm used to compute the optimal trip. It comprises the optimizer for the first rough trip and a refiner to include less famous landmarks as well.
### src/overpass
This folder handles interactions with the Overpass API, including constructing and sending queries, caching responses, and parsing results from the Overpass database.
### src/parameters
The modules in this folder define and manage parameters for various parts of the application. This includes configuration values for the optimizer or the list of selectors for Overpass queries.
### src/structs
This folder defines the commonly used data structures used within the project. The models leverage Pydantic's `BaseModel` to ensure data validation, serialization, and easy interaction between different components of the application. The main classes are:
- **Landmark**:
- Represents a point of interest in the context of a trip. It stores various attributes like the landmark's name, type, location (latitude and longitude), and its OSM details.
- It also includes other optional fields like image URLs, website links, and descriptions. Additionally, the class has properties to track its attractiveness score or elative importance.
- **Preferences**:
- This class captures user-defined preferences needed to personalize a trip. Preferences are provided for sightseeing (history and culture), nature (parks and gardens), and shopping. These preferences guide the trip optimization process.
- **Trip**:
- The `Trip` class represents the complete travel plan generated by the system. It holds key information like the trip's total time and the first landmark's UUID.
### src/tests
This folder contains unit tests and test cases for the application's various modules. It is used to ensure the correctness and stability of the code.
### src/utils
The `utils` folder contains utility classes and functions that provide core functionality for the application. The main component in this folder is the `LandmarkManager`, which is central to the process of fetching and organizing landmarks.
- **LandmarkManager**:
- The `LandmarkManager` is responsible for fetching landmarks from OpenStreetMap (via the Overpass API) and managing their classification based on user preferences. It processes raw geographical data, filters landmarks into relevant categories (such as sightseeing, nature, shopping), and prioritizes them for trip planning.
## Files
### src/cache.py
This file manages the caching mechanisms used throughout the application. It defines the caching strategy for storing and retrieving data, improving the performance of repeated operations by avoiding redundant API calls or computations.
### src/constants.py
This module defines global constants used throughout the project. These constants may include API endpoints, fixed configuration values, or reusable strings and integers that need to remain consistent.
### src/logging_config.py
This file configures the logging system for the application. It defines how logs are formatted, where they are output (e.g., console or file), and the logging levels (e.g., debug, info, error).
### src/main.py
This file contains the main application logic and API endpoints for interacting with the system. The application is built using the FastAPI framework, which provides several endpoints for creating trips, fetching trips, and retrieving landmarks or nearby facilities. The key endpoints include:
- **POST /trip/new**:
- This endpoint allows users to create a new trip by specifying preferences, start coordinates, and optionally end coordinates. The preferences guide the optimization process for selecting landmarks.
- Returns: A `Trip` object containing the optimized route, landmarks, and trip details.
- **GET /trip/{trip_uuid}**:
- This endpoint fetches an already generated trip by its unique identifier (`trip_uuid`). It retrieves the trip data from the cache.
- Returns: A `Trip` object corresponding to the given `trip_uuid`.
- **GET /landmark/{landmark_uuid}**:
- This endpoint retrieves a specific landmark by its unique identifier (`landmark_uuid`) from the cache.
- Returns: A `Landmark` object containing the details of the requested landmark.
- **POST /toilets/new**:
- This endpoint searches for public toilets near a specified location within a given radius. The location and radius are passed as query parameters.
- Returns: A list of `Toilets` objects located within the specified radius of the provided coordinates.

View File

@@ -70,6 +70,6 @@ else:
MEMCACHED_HOST_PATH,
timeout=1,
allow_unicode_keys=True,
encoding='utf-8',
encoding='utf-8',
serde=serde.pickle_serde
)

View File

@@ -1,6 +1,5 @@
"""Module allowing to access the parameters of route generation"""
"""Module setting global parameters for the application such as cache, route generation, etc."""
import logging
import os
from pathlib import Path
@@ -16,21 +15,6 @@ cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
OSM_CACHE_DIR = Path(cache_dir_string)
# if we are in a debug session, set verbose and rich logging
if os.getenv('DEBUG', "false") == "true":
from rich.logging import RichHandler
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[RichHandler()]
)
else:
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
MEMCACHED_HOST_PATH = os.getenv('MEMCACHED_HOST_PATH', None)
if MEMCACHED_HOST_PATH == "none":
MEMCACHED_HOST_PATH = None

View File

@@ -0,0 +1,56 @@
"""Sets up global logging configuration for the application."""
import logging
import os
logger = logging.getLogger(__name__)
def configure_logging():
"""
Called at startup of a FastAPI application instance to setup logging. Depending on the environment, it will log to stdout or to Loki.
"""
is_debug = os.getenv('DEBUG', "false") == "true"
is_kubernetes = os.getenv('KUBERNETES_SERVICE_HOST') is not None
if is_kubernetes:
# in that case we want to log to stdout and also to loki
from loki_logger_handler.loki_logger_handler import LokiLoggerHandler
loki_url = os.getenv('LOKI_URL')
if loki_url is None:
raise ValueError("LOKI_URL environment variable is not set")
loki_handler = LokiLoggerHandler(
url = loki_url,
labels = {'app': 'anyway', 'environment': 'staging' if is_debug else 'production'}
)
logger.info(f"Logging to Loki at {loki_url} with {loki_handler.labels} and {is_debug=}")
logging_handlers = [loki_handler, logging.StreamHandler()]
logging_level = logging.DEBUG if is_debug else logging.INFO
# silence the chatty logs loki generates itself
logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING)
# no need for time since it's added by loki or can be shown in kube logs
logging_format = '%(name)s - %(levelname)s - %(message)s'
else:
# if we are in a debug (local) session, set verbose and rich logging
from rich.logging import RichHandler
logging_handlers = [RichHandler()]
logging_level = logging.DEBUG if is_debug else logging.INFO
logging_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(
level = logging_level,
format = logging_format,
handlers = logging_handlers
)
# also overwrite the uvicorn loggers
logging.getLogger('uvicorn').handlers = logging_handlers
logging.getLogger('uvicorn.access').handlers = logging_handlers
logging.getLogger('uvicorn.error').handlers = logging_handlers

View File

@@ -1,27 +1,41 @@
"""Main app for backend api"""
import logging
import time
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Query
from .logging_config import configure_logging
from .structs.landmark import Landmark, Toilets
from .structs.preferences import Preferences
from .structs.linked_landmarks import LinkedLandmarks
from .structs.trip import Trip
from .utils.landmarks_manager import LandmarkManager
from .utils.toilets_manager import ToiletsManager
from .utils.optimizer import Optimizer
from .utils.refiner import Refiner
from .persistence import client as cache_client
from .optimization.optimizer import Optimizer
from .optimization.refiner import Refiner
from .cache import client as cache_client
logger = logging.getLogger(__name__)
app = FastAPI()
manager = LandmarkManager()
optimizer = Optimizer()
refiner = Refiner(optimizer=optimizer)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Function to run at the start of the app"""
logger.info("Setting up logging")
configure_logging()
yield
logger.info("Shutting down logging")
app = FastAPI(lifespan=lifespan)
@app.post("/trip/new")
def new_trip(preferences: Preferences,
start: tuple[float, float],
@@ -56,6 +70,7 @@ def new_trip(preferences: Preferences,
osm_type='start',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags = 0)
@@ -65,9 +80,11 @@ def new_trip(preferences: Preferences,
osm_type='end',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags=0)
start_time = time.time()
# Generate the landmarks from the start location
landmarks, landmarks_short = manager.generate_landmarks_list(
center_coordinates = start,
@@ -78,22 +95,38 @@ def new_trip(preferences: Preferences,
landmarks_short.insert(0, start_landmark)
landmarks_short.append(end_landmark)
t_generate_landmarks = time.time() - start_time
logger.info(f'Fetched {len(landmarks)} landmarks in \t: {round(t_generate_landmarks,3)} seconds')
start_time = time.time()
# First stage optimization
try:
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
except ArithmeticError as exc:
raise HTTPException(status_code=500, detail="No solution found") from exc
except TimeoutError as exc:
raise HTTPException(status_code=500, detail="Optimzation took too long") from exc
except Exception as exc:
raise HTTPException(status_code=500, detail=f"Optimization failed: {str(exc)}") from exc
t_first_stage = time.time() - start_time
start_time = time.time()
# Second stage optimization
refined_tour = refiner.refine_optimization(landmarks, base_tour,
# TODO : only if necessary (not enough landmarks for ex.)
try :
refined_tour = refiner.refine_optimization(landmarks, base_tour,
preferences.max_time_minute,
preferences.detour_tolerance_minute)
except Exception as exc :
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(exc)}") from exc
t_second_stage = time.time() - start_time
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
return trip
@@ -152,7 +185,7 @@ def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -
raise HTTPException(status_code=406, detail="Coordinates not provided or invalid")
if not (-90 <= location[0] <= 90 or -180 <= location[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
toilets_manager = ToiletsManager(location, radius)
try :

View File

View File

@@ -0,0 +1,618 @@
"""Module responsible for sloving an MILP to find best tour around the given landmarks."""
import logging
from collections import defaultdict, deque
import yaml
import numpy as np
import pulp as pl
from ..structs.landmark import Landmark
from ..utils.get_time_distance import get_time
from ..constants import OPTIMIZER_PARAMETERS_PATH
# Silence the pupl logger
logging.getLogger('pulp').setLevel(level=logging.CRITICAL)
class Optimizer:
"""
Optimizes the balance between the efficiency of a tour and the inclusion of landmarks.
The `Optimizer` class is responsible for calculating the best possible detour adjustments
to a tour based on specific parameters such as detour time, walking speed, and the maximum
number of landmarks to visit. It helps refine a tour by determining whether adding additional
landmarks would significantly reduce the overall efficiency.
Responsibilities:
- Calculates the maximum detour time allowed for a given tour.
- Considers the detour factor, which accounts for real-world walking paths versus straight-line distance.
- Takes into account the average walking speed to estimate walking times.
- Limits the number of landmarks that can be added to the tour to prevent excessive detouring.
- Allows some overflow (overshoot) in the maximum detour time to accommodate for slight inefficiencies.
Attributes:
logger (logging.Logger): Logger for capturing relevant events and errors.
detour (int): The accepted maximum detour time in minutes.
detour_factor (float): The ratio between straight-line distance and actual walking distance in cities.
average_walking_speed (float): The average walking speed of an adult (in meters per second or kilometers per hour).
max_landmarks (int): The maximum number of landmarks to include in the tour.
overshoot (float): The overshoot allowance for exceeding the maximum detour time in a restrictive manner.
"""
logger = logging.getLogger(__name__)
detour: int = None # accepted max detour time (in minutes)
detour_factor: float # detour factor of straight line vs real distance in cities
average_walking_speed: float # average walking speed of adult
max_landmarks: int # max number of landmarks to visit
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
def __init__(self) :
# load parameters from file
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.detour_factor = parameters['detour_factor']
self.average_walking_speed = parameters['average_walking_speed']
self.max_landmarks = parameters['max_landmarks']
self.overshoot = parameters['overshoot']
def init_ub_time(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark], max_time: int):
"""
Initialize the objective function and inequality constraints for the linear program.
This function sets up the objective to maximize the attractiveness of visiting landmarks,
while ensuring that the total time (including travel and visit duration) does not exceed
the maximum allowed time. It calculates the pairwise travel times between landmarks and
incorporates visit duration to form the inequality constraints.
The objective is to maximize sightseeing by selecting the most attractive landmarks within
the time limit.
Args:
prob (pl.LpProblem): The linear programming problem where constraints and the objective will be added.
x (pl.LpVariable): A decision variable representing whether a landmark is visited.
L (int): The number of landmarks.
landmarks (list[Landmark]): List of landmarks to visit.
max_time (int): Maximum allowable time for sightseeing, including travel and visit duration.
Returns:
None: Adds the objective function and constraints to the LP problem directly.
constraint coefficients, and the right-hand side of the inequality constraint.
"""
L = len(landmarks)
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = np.zeros(L, dtype=np.int16)
# inequality matrix and vector
A_ub = np.zeros(L*L, dtype=np.int16)
b_ub = round(max_time*(1.1+max_time*self.overshoot))
for i, spot1 in enumerate(landmarks) :
c[i] = spot1.attractiveness
for j in range(i+1, L) :
if i !=j :
t = get_time(spot1.location, landmarks[j].location)
A_ub[i*L + j] = t + spot1.duration
A_ub[j*L + i] = t + landmarks[j].duration
# Expand 'c' to L*L for every decision variable and ad
c = np.tile(c, L)
# Now sort and modify A_ub for each row
if L > 22 :
for i in range(L):
# Get indices of the 4 smallest values in row i
row_values = A_ub[i*L:i*L+L]
closest_indices = np.argpartition(row_values, 22)[:22]
# Create a mask for non-closest landmarks
mask = np.ones(L, dtype=bool)
mask[closest_indices] = False
# Set non-closest landmarks to 32765
row_values[mask] = 32765
A_ub[i*L:i*L+L] = row_values
# Add the objective and the 1 distance constraint
prob += pl.lpSum([c[j] * x[j] for j in range(L*L)])
prob += (pl.lpSum([A_ub[j] * x[j] for j in range(L*L)]) <= b_ub)
def respect_number(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, max_landmarks: int):
"""
Generate constraints to ensure each landmark is visited at most once and cap the total number of visited landmarks.
This function adds the following constraints to the linear program:
1. Each landmark is visited at most once by creating L-2 constraints (one for each landmark).
2. The total number of visited landmarks is capped by the specified maximum number (`max_landmarks`) plus 2.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable indicating whether a landmark is visited.
L (int): The total number of landmarks.
max_landmarks (int): The maximum number of landmarks that can be visited.
Returns:
None: This function directly modifies the `prob` object by adding constraints.
"""
# L-2 constraints: each landmark is visited exactly once
for i in range(1, L-1):
prob += (pl.lpSum([x[L*i + j] for j in range(L)]) <= 1)
# 1 constraint: cap the total number of visits
prob += (pl.lpSum([1 * x[j] for j in range(L*L)]) <= max_landmarks+2)
def break_sym(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to prevent simultaneous travel between two landmarks
in both directions. This constraint ensures that, for any pair of landmarks,
travel from landmark i to landmark j (dij) and travel from landmark j to landmark i (dji)
cannot happen simultaneously.
This method adds constraints to break symmetry, specifically to prevent
cyclic paths with only two elements. It does not prevent cyclic paths involving more than two elements.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding constraints in-place.
"""
upper_ind = np.triu_indices(L, 0, L) # Get the upper triangular indices
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
# Loop over the upper triangular indices, excluding diagonal elements
for i, up_ind in enumerate(up_ind_x):
if up_ind != up_ind_y[i]:
# Add (L*L-L)/2 constraints to break symmetry
prob += (x[up_ind*L + up_ind_y[i]] + x[up_ind_y[i]*L + up_ind] <= 1)
def init_eq_not_stay(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to prevent staying at the same position during travel.
Specifically, it removes travel from a landmark to itself (e.g., d11, d22, d33, etc.).
This function adds one equality constraint to the optimization problem that ensures
no decision variable corresponding to staying at the same landmark is included
in the solution. This helps in ensuring that the path does not include self-loops.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding an equality constraint in-place.
"""
A_eq = np.zeros((L, L), dtype=np.int8)
# Set diagonal elements to 1 (to prevent staying in the same position)
np.fill_diagonal(A_eq, 1)
A_eq = A_eq.flatten()
# First equality constraint
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 0)
def respect_start_finish(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated
start landmark and finishes at the goal landmark.
Specifically, this function adds three equality constraints:
1. Ensures that the path starts at the designated start landmark (row 0).
2. Ensures that the path finishes at the designated goal landmark (row 1).
3. Prevents any arrivals at the start landmark or departures from the goal landmark (row 2).
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding three equality constraints in-place.
"""
# Fill-in row 0.
A_eq = np.zeros((3,L*L), dtype=np.int8)
A_eq[0, :L] = np.ones(L, dtype=np.int8) # sets departures only for start (horizontal ones)
for k in range(L-1) :
if k != 0 :
# Fill-in row 1
A_eq[1, k*L+L-1] = 1 # sets arrivals only for finish (vertical ones)
# Fill-in row 1
A_eq[2, k*L] = 1
A_eq[2, L*(L-1):] = np.ones(L, dtype=np.int8) # prevents arrivals at start and departures from goal
b_eq= [1, 1, 0]
# Add the constraints to pulp
for i in range(3) :
prob += (pl.lpSum([A_eq[i][j] * x[j] for j in range(L*L)]) == b_eq[i])
def respect_order(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to tie the optimization problem together and prevent
stacked ones, although this does not fully prevent circles.
This function adds constraints to the optimization problem that prevent
simultaneous travel between landmarks in a way that would result in stacked ones.
However, it does not fully prevent circular paths.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding L-2 equality constraints in-place.
"""
# FIXME: weird 0 artifact in the coefficients popping up
# Loop through rows 1 to L-2 to prevent stacked ones
for i in range(1, L-1):
# Add the constraint that sums across each "row" or "block" in the decision variables
row_sum = -pl.lpSum(x[i + j*L] for j in range(L)) + pl.lpSum(x[i*L:(i+1)*L])
prob += (row_sum == 0)
def respect_user_must(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
This function adds constraints to the optimization problem to ensure that landmarks marked as
'must_do' are included in the solution. It precomputes the constraints and adds them to the
problem accordingly.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
Returns:
None: This function modifies the `prob` object by adding equality constraints in-place.
"""
ones = np.ones(L, dtype=np.int8)
A_eq = np.zeros(L*L, dtype=np.int8)
for i, elem in enumerate(landmarks) :
if elem.must_do is True and i not in [0, L-1]:
A_eq[i*L:i*L+L] = ones
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 1)
if elem.must_avoid is True and i not in [0, L-1]:
A_eq[i*L:i*L+L] = ones
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 2)
def prevent_circle(self, prob: pl.LpProblem, x: pl.LpVariable, circle_vertices: list, L: int) :
"""
Prevent circular paths by adding constraints to the optimization.
This function ensures that circular paths in both directions (i.e., forward and reverse)
between landmarks are avoided in the optimization problem by adding the corresponding constraints.
Args:
prob (pl.LpProblem): The linear programming problem instance to which the constraints will be added.
x (pl.LpVariable): Decision variable representing the travel between landmarks in the problem.
circle_vertices (list): List of indices representing the landmarks that form a circular path.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding two equality constraints that
prevent circular paths in both directions for the specified circle vertices.
"""
l = np.zeros((2, L*L), dtype=np.int8)
for i, node in enumerate(circle_vertices[:-1]) :
next = circle_vertices[i+1]
l[0, node*L + next] = 1
l[1, next*L + node] = 1
s = circle_vertices[0]
g = circle_vertices[-1]
l[0, g*L + s] = 1
l[1, s*L + g] = 1
# Add the constraints
prob += (pl.lpSum([l[0][j] * x[j] for j in range(L*L)]) == 0)
prob += (pl.lpSum([l[1][j] * x[j] for j in range(L*L)]) == 0)
def is_connected(self, resx) :
"""
Determine the order of visits and detect any circular paths in the given configuration.
Args:
resx (list): List of edge weights.
Returns:
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
resx = np.round(resx).astype(np.int8) # round all elements and cast them to int
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0]
ind_b = nonzero_tup[1]
# Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = self.get_journey(node, ind_a, ind_b)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
all_journeys_nodes.remove(l)
break
if not all_journeys_nodes :
return None
return all_journeys_nodes
def get_journey(self, start, ind_a, ind_b):
"""
Trace the journey starting from a given node and follow the connections between landmarks.
This method constructs a graph from two lists of landmark connections, `ind_a` and `ind_b`,
where each element in `ind_a` is connected to the corresponding element in `ind_b`.
It then performs a depth-first search (DFS) starting from the `start` node to determine
the path (journey) by following the connections.
Args:
start (int): The starting node of the journey.
ind_a (list[int]): List of "from" nodes, representing the starting points of each connection.
ind_b (list[int]): List of "to" nodes, representing the endpoints of each connection.
Returns:
list[int]: A list of nodes representing the order of the journey, starting from the `start` node.
Example:
If `ind_a = [0, 1, 2]` and `ind_b = [1, 2, 3]`, starting from node 0, the journey would be `[0, 1, 2, 3]`.
"""
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
journey_nodes = []
visited = set()
stack = deque([start])
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
return journey_nodes
def get_order(self, resx):
"""
Determine the order of visits given the result of the optimization.
Args:
resx (list): List of edge weights.
Returns:
list[int]: A list containing the visit order.
"""
resx = np.round(resx).astype(np.uint8) # must contain only 0 and 1
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
order = [0]
current = 0
used_indices = set() # Track visited index pairs
while True:
# Find index of the current node in ind_a
try:
i = ind_a.index(current)
except ValueError:
break # No more links, stop the search
if i in used_indices:
break # Prevent infinite loops
used_indices.add(i) # Mark this index as visited
next_node = ind_b[i] # Get the corresponding node in ind_b
order.append(next_node) # Add it to the path
# Switch roles, now look for next_node in ind_a
try:
current = next_node
except ValueError:
break # No further connections, end the path
return order
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
"""
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
Args:
order (list[int]): List of indices representing the order of landmarks to visit.
landmarks (list[Landmark]): List of all landmarks.
Returns:
list[Landmark]]: The updated linked list of landmarks with travel times
"""
L = []
j = 0
while j < len(order)-1 :
# get landmarks involved
elem = landmarks[order[j]]
next = landmarks[order[j+1]]
# get attributes
elem.time_to_reach_next = get_time(elem.location, next.location)
elem.must_do = True
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
elem.next_uuid = next.uuid
L.append(elem)
j += 1
next.location = (round(next.location[0], 5), round(next.location[1], 5))
next.must_do = True
L.append(next)
return L
def warm_start(self, x: list[pl.LpVariable], L: int) :
for i in range(L*L) :
x[i].setInitialValue(0)
x[1].setInitialValue(1)
x[2*L-1].setInitialValue(1)
return x
def pre_processing(self, L: int, landmarks: list[Landmark], max_time: int, max_landmarks: int | None) :
"""
Preprocesses the optimization problem by setting up constraints and variables for the tour optimization.
This method initializes and prepares the linear programming problem to optimize a tour that includes landmarks,
while respecting various constraints such as time limits, the number of landmarks to visit, and user preferences.
The pre-processing step sets up the problem before solving it using a linear programming solver.
Responsibilities:
- Defines the optimization problem using linear programming (LP) with the objective to maximize the tour value.
- Creates binary decision variables for each potential transition between landmarks.
- Sets up inequality constraints to respect the maximum time available for the tour and the maximum number of landmarks.
- Implements equality constraints to ensure the tour respects the start and finish positions, avoids staying in the same place,
and adheres to a visit order.
- Forces inclusion or exclusion of specific landmarks based on user preferences.
Attributes:
prob (pl.LpProblem): The linear programming problem to be solved.
x (list): A list of binary variables representing transitions between landmarks.
L (int): The total number of landmarks considered in the optimization.
landmarks (list[Landmark]): The list of landmarks to be visited in the tour.
max_time (int): The maximum allowable time for the entire tour.
max_landmarks (int | None): The maximum number of landmarks to visit in the tour, or None if no limit is set.
Returns:
prob (pl.LpProblem): The linear programming problem setup for optimization.
x (list): The list of binary variables for transitions between landmarks in the tour.
"""
if max_landmarks is None :
max_landmarks = self.max_landmarks
# Initalize the optimization problem
prob = pl.LpProblem("OptimizationProblem", pl.LpMaximize)
# Define the problem
x_bounds = [(0, 1)]*L*L
x = [pl.LpVariable(f"x_{i}", lowBound=x_bounds[i][0], upBound=x_bounds[i][1], cat='Binary') for i in range(L*L)]
# Setup the inequality constraints
self.init_ub_time(prob, x, L, landmarks, max_time) # Adds the distances from each landmark to the other.
self.respect_number(prob, x, L, max_landmarks) # Respects max number of visits (no more possible stops than landmarks).
self.break_sym(prob, x, L) # Breaks the 'zig-zag' symmetry. Avoids d12 and d21 but not larger cirlces.
# Setup the equality constraints
self.init_eq_not_stay(prob, x, L) # Force solution not to stay in same place
self.respect_start_finish(prob, x, L) # Force start and finish positions
self.respect_order(prob, x, L) # Respect order of visit (only works when max_time is limiting factor)
self.respect_user_must(prob, x, L, landmarks) # Force to do/avoid landmarks set by user.
# return prob, self.warm_start(x, L)
return prob, x
def solve_optimization(self, max_time: int, landmarks: list[Landmark], max_landmarks: int = None) -> list[Landmark]:
"""
Main optimization pipeline to solve the landmark visiting problem.
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
Args:
max_time (int): Maximum time allowed for the tour in minutes.
landmarks (list[Landmark]): List of landmarks to visit.
max_landmarks (int): Maximum number of landmarks visited
Returns:
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
"""
# Setup the optimization proplem.
L = len(landmarks)
prob, x = self.pre_processing(L, landmarks, max_time, max_landmarks)
# Solve the problem and extract results.
prob.solve(pl.PULP_CBC_CMD(msg=False, gapRel=0.1, timeLimit=10, warmStart=False))
status = pl.LpStatus[prob.status]
solution = [pl.value(var) for var in x] # The values of the decision variables (will be 0 or 1)
self.logger.debug("First results are out. Looking out for circles and correcting.")
# Raise error if no solution is found. FIXME: for now this throws the internal server error
if status != 'Optimal' :
self.logger.error("The problem is overconstrained, no solution on first try.")
raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.")
# If there is a solution, we're good to go, just check for connectiveness
circles = self.is_connected(solution)
i = 0
timeout = 40
while circles is not None :
i += 1
if i == timeout :
self.logger.error(f'Timeout: No solution found after {timeout} iterations.')
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
for circle in circles :
self.prevent_circle(prob, x, circle, L)
# Solve the problem again
prob.solve(pl.PULP_CBC_CMD(msg=False))
solution = [pl.value(var) for var in x]
if pl.LpStatus[prob.status] != 'Optimal' :
self.logger.error("The problem is overconstrained, no solution after {i} cycles.")
raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.")
circles = self.is_connected(solution)
if circles is None :
break
# Sort the landmarks in the order of the solution
order = self.get_order(solution)
tour = [landmarks[i] for i in order]
self.logger.debug(f"Re-optimized {i} times, objective value : {int(pl.value(prob.objective))}")
return tour

View File

@@ -1,23 +1,32 @@
import yaml, logging
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
"""Allows to refine the tour by adding more landmarks and making the path easier to follow."""
import logging
from math import pi
import yaml
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
from ..structs.landmark import Landmark
from . import take_most_important, get_time_separation
from ..utils.get_time_distance import get_time
from ..utils.take_most_important import take_most_important
from .optimizer import Optimizer
from ..constants import OPTIMIZER_PARAMETERS_PATH
class Refiner :
"""
Refines a tour by incorporating smaller landmarks along the path to enhance the experience.
This class is designed to adjust an existing tour by considering additional,
smaller points of interest (landmarks) that may require minor detours but
improve the overall quality of the tour. It balances the efficiency of travel
with the added value of visiting these landmarks.
"""
logger = logging.getLogger(__name__)
detour_factor: float # detour factor of straight line vs real distance in cities
detour_corridor_width: float # width of the corridor around the path
average_walking_speed: float # average walking speed of adult
max_landmarks_refiner: int # max number of landmarks to visit
max_landmarks_refiner: int # max number of landmarks to visit
optimizer: Optimizer # optimizer object
def __init__(self, optimizer: Optimizer) :
@@ -45,7 +54,7 @@ class Refiner :
"""
corrected_width = (180*width)/(6371000*pi)
path = self.create_linestring(landmarks)
obj = buffer(path, corrected_width, join_style="mitre", cap_style="square", mitre_limit=2)
@@ -70,7 +79,7 @@ class Refiner :
return LineString(points)
# Check if some coordinates are in area. Used for the corridor
# Check if some coordinates are in area. Used for the corridor
def is_in_area(self, area: Polygon, coordinates) -> bool :
"""
Check if a given point is within a specified area.
@@ -86,7 +95,7 @@ class Refiner :
return point.within(area)
# Function to determine if two landmarks are close to each other
# Function to determine if two landmarks are close to each other
def is_close_to(self, location1: tuple[float], location2: tuple[float]):
"""
Determine if two locations are close to each other by rounding their coordinates to 3 decimal places.
@@ -119,7 +128,7 @@ class Refiner :
Returns:
list[Landmark]: The rearranged list of landmarks with grouped nearby visits.
"""
i = 1
while i < len(tour):
j = i+1
@@ -131,9 +140,9 @@ class Refiner :
break # Move to the next i-th element after rearrangement
j += 1
i += 1
return tour
def integrate_landmarks(self, sub_list: list[Landmark], main_list: list[Landmark]) :
"""
Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched.
@@ -166,27 +175,27 @@ class Refiner :
should be visited, and the second element is a `Polygon` representing
the path connecting all landmarks.
"""
# Step 1: Find 'start' and 'finish' landmarks
start_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'start')
finish_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'finish')
start_landmark = landmarks[start_idx]
finish_landmark = landmarks[finish_idx]
# Step 2: Create a list of unvisited landmarks excluding 'start' and 'finish'
unvisited_landmarks = [lm for i, lm in enumerate(landmarks) if i not in [start_idx, finish_idx]]
# Step 3: Initialize the path with the 'start' landmark
path = [start_landmark]
coordinates = [landmarks[start_idx].location]
current_landmark = start_landmark
# Step 4: Use nearest neighbor heuristic to visit all landmarks
while unvisited_landmarks:
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_separation.get_time(current_landmark.location, lm.location))
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time(current_landmark.location, lm.location))
path.append(nearest_landmark)
coordinates.append(nearest_landmark.location)
current_landmark = nearest_landmark
@@ -224,12 +233,12 @@ class Refiner :
for visited in visited_landmarks :
visited_names.append(visited.name)
for landmark in all_landmarks :
if self.is_in_area(area, landmark.location) and landmark.name not in visited_names:
second_order_landmarks.append(landmark)
return take_most_important.take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
return take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
# Try fix the shortest path using shapely
@@ -256,7 +265,7 @@ class Refiner :
coords_dict[landmark.location] = landmark
tour_poly = Polygon(coords)
better_tour_poly = tour_poly.buffer(0)
try :
xs, ys = better_tour_poly.exterior.xy
@@ -265,7 +274,7 @@ class Refiner :
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
xs, ys = better_tour_poly.exterior.xy
except :
except Exception:
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
xs, ys = better_tour_poly.exterior.xy
"""
@@ -299,7 +308,7 @@ class Refiner :
# Rearrange only if polygon still not simple
if not better_tour_poly.is_simple :
better_tour = self.rearrange(better_tour)
return better_tour
@@ -330,10 +339,10 @@ class Refiner :
# No need to refine if no detour is taken
# if detour == 0:
# return base_tour
minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width)
self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
self.logger.debug(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
# Full set of visitable landmarks.
full_set = self.integrate_landmarks(minor_landmarks, base_tour) # could probably be optimized with less overhead
@@ -341,7 +350,7 @@ class Refiner :
# Generate a new tour with the optimizer.
new_tour = self.optimizer.solve_optimization(
max_time = max_time + detour,
landmarks = full_set,
landmarks = full_set,
max_landmarks = self.max_landmarks_refiner
)
@@ -357,7 +366,7 @@ class Refiner :
# Find shortest path using the nearest neighbor heuristic.
better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour)
# Fix the tour using Polygons if the path looks weird.
# Fix the tour using Polygons if the path looks weird.
# Conditions : circular trip and invalid polygon.
if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid :
better_tour = self.fix_using_polygon(better_tour)

View File

View File

@@ -0,0 +1,140 @@
"""Module defining the caching strategy for overpass requests."""
import os
import xml.etree.ElementTree as ET
import hashlib
from ..constants import OSM_CACHE_DIR
def get_cache_key(query: str) -> str:
"""
Generate a unique cache key for the query using a hash function.
This ensures that queries with different parameters are cached separately.
"""
return hashlib.md5(query.encode('utf-8')).hexdigest()
class CachingStrategyBase:
"""
Base class for implementing caching strategies.
This class defines the structure for a caching strategy with basic methods
that must be implemented by subclasses. Subclasses should define how to
retrieve, store, and close the cache.
"""
def get(self, key):
"""Retrieve the cached data associated with the provided key."""
raise NotImplementedError('Subclass should implement get')
def set(self, key, value):
"""Store data in the cache with the specified key."""
raise NotImplementedError('Subclass should implement set')
def close(self):
"""Clean up or close any resources used by the caching strategy."""
class XMLCache(CachingStrategyBase):
"""
A caching strategy that stores and retrieves data in XML format.
This class provides methods to cache data as XML files in a specified directory.
The directory is automatically suffixed with '_XML' to distinguish it from other
caching strategies. The data is stored and retrieved using XML serialization.
Args:
cache_dir (str): The base directory where XML cache files will be stored.
Defaults to 'OSM_CACHE_DIR' with a '_XML' suffix.
Methods:
get(key): Retrieve cached data from a XML file associated with the given key.
set(key, value): Store data in a XML file with the specified key.
"""
def __init__(self, cache_dir=OSM_CACHE_DIR):
# Add the class name as a suffix to the directory
self._cache_dir = f'{cache_dir}_XML'
if not os.path.exists(self._cache_dir):
os.makedirs(self._cache_dir)
def _filename(self, key):
return os.path.join(self._cache_dir, f'{key}.xml')
def get(self, key):
"""Retrieve XML data from the cache and parse it as an ElementTree."""
filename = self._filename(key)
if os.path.exists(filename):
try:
# Parse and return the cached XML data
tree = ET.parse(filename)
return tree.getroot() # Return the root element of the parsed XML
except ET.ParseError:
# print(f"Error parsing cached XML file: {filename}")
return None
return None
def set(self, key, value):
"""Save the XML data as an ElementTree to the cache."""
filename = self._filename(key)
tree = ET.ElementTree(value) # value is expected to be an ElementTree root element
try:
# Write the XML data to a file
with open(filename, 'wb') as file:
tree.write(file, encoding='utf-8', xml_declaration=True)
except IOError as e:
raise IOError(f"Error writing to cache file: {filename} - {e}") from e
class CachingStrategy:
"""
A class to manage different caching strategies.
This class provides an interface to switch between different caching strategies
(e.g., XMLCache, JSONCache) dynamically. It allows caching data in different formats,
depending on the strategy being used. By default, it uses the XMLCache strategy.
Attributes:
__strategy (CachingStrategyBase): The currently active caching strategy.
__strategies (dict): A mapping between strategy names (as strings) and their corresponding
classes, allowing dynamic selection of caching strategies.
"""
__strategy = XMLCache() # Default caching strategy
__strategies = {
'XML': XMLCache,
}
@classmethod
def use(cls, strategy_name='XML', **kwargs):
"""
Set the caching strategy based on the strategy_name provided.
Args:
strategy_name (str): The name of the caching strategy (e.g., 'XML').
**kwargs: Additional keyword arguments to pass when initializing the strategy.
"""
# If a previous strategy exists, close it
if cls.__strategy:
cls.__strategy.close()
# Retrieve the strategy class based on the strategy name
strategy_class = cls.__strategies.get(strategy_name)
if not strategy_class:
raise ValueError(f"Unknown caching strategy: {strategy_name}")
# Instantiate the new strategy with the provided arguments
cls.__strategy = strategy_class(**kwargs)
return cls.__strategy
@classmethod
def get(cls, key):
"""Get data from the current strategy's cache."""
if not cls.__strategy:
raise RuntimeError("Caching strategy has not been set.")
return cls.__strategy.get(key)
@classmethod
def set(cls, key, value):
"""Set data in the current strategy's cache."""
if not cls.__strategy:
raise RuntimeError("Caching strategy has not been set.")
cls.__strategy.set(key, value)

View File

@@ -0,0 +1,171 @@
"""Module allowing connexion to overpass api and fectch data from OSM."""
from typing import Literal, List
import urllib
import logging
import xml.etree.ElementTree as ET
from .caching_strategy import get_cache_key, CachingStrategy
from ..constants import OSM_CACHE_DIR
logger = logging.getLogger('Overpass')
osm_types = List[Literal['way', 'node', 'relation']]
class Overpass :
"""
Overpass class to manage the query building and sending to overpass api.
The caching strategy is a part of this class and initialized upon creation of the Overpass object.
"""
def __init__(self, caching_strategy: str = 'XML', cache_dir: str = OSM_CACHE_DIR) :
"""
Initialize the Overpass instance with the url, headers and caching strategy.
"""
self.overpass_url = "https://overpass-api.de/api/interpreter"
self.headers = {'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',}
self.caching_strategy = CachingStrategy.use(caching_strategy, cache_dir=cache_dir)
@classmethod
def build_query(self, area: tuple, osm_types: osm_types,
selector: str, conditions=[], out='center') -> str:
"""
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
Args:
area (tuple): A tuple representing the geographical search area, typically in the format
(radius, latitude, longitude). The first element is a string like "around:2000"
specifying the search radius, and the second and third elements represent
the latitude and longitude as floats or strings.
osm_types (list[str]): A list of OSM element types to search for. Must be one or more of
'Way', 'Node', or 'Relation'.
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
conditions (list, optional): A list of conditions to apply as additional filters for the
selected OSM elements. The conditions should be written in
the Overpass QL format, and they are combined with '&&' if
multiple are provided. Defaults to an empty list.
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
Defaults to 'center'.
Returns:
str: The constructed Overpass QL query string.
Notes:
- If no conditions are provided, the query will just use the `selector` to filter the OSM
elements without additional constraints.
- The search area must always formatted as "(radius, lat, lon)".
"""
if not isinstance(conditions, list) :
conditions = [conditions]
if not isinstance(osm_types, list) :
osm_types = [osm_types]
query = '('
# Round the radius to nearest 50 and coordinates to generate less queries
if area[0] > 500 :
search_radius = round(area[0] / 50) * 50
loc = tuple((round(area[1], 2), round(area[2], 2)))
else :
search_radius = round(area[0] / 25) * 25
loc = tuple((round(area[1], 3), round(area[2], 3)))
search_area = f"(around:{search_radius}, {str(loc[0])}, {str(loc[1])})"
if conditions :
conditions = '(if: ' + ' && '.join(conditions) + ')'
else :
conditions = ''
for elem in osm_types :
query += elem + '[' + selector + ']' + conditions + search_area + ';'
query += ');' + f'out {out};'
return query
def send_query(self, query: str) -> ET:
"""
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
Args:
query (str): The Overpass QL query to be sent to the Overpass API.
Returns:
dict: The parsed JSON response from the Overpass API, or None if the request fails.
"""
# Generate a cache key for the current query
cache_key = get_cache_key(query)
# Try to fetch the result from the cache
cached_response = self.caching_strategy.get(cache_key)
if cached_response is not None :
logger.debug("Cache hit.")
return cached_response
# Prepare the data to be sent as POST request, encoded as bytes
data = urllib.parse.urlencode({'data': query}).encode('utf-8')
try:
# Create a Request object with the specified URL, data, and headers
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
# Send the request and read the response
with urllib.request.urlopen(request) as response:
# Read and decode the response
response_data = response.read().decode('utf-8')
root = ET.fromstring(response_data)
# Cache the response data as an ElementTree root
self.caching_strategy.set(cache_key, root)
logger.debug("Response data added to cache.")
return root
except urllib.error.URLError as e:
raise ConnectionError(f"Error connecting to Overpass API: {e}") from e
def get_base_info(elem: ET.Element, osm_type: osm_types, with_name=False) :
"""
Extracts base information (coordinates, OSM ID, and optionally a name) from an OSM element.
This function retrieves the latitude and longitude coordinates, OSM ID, and optionally the name
of a given OpenStreetMap (OSM) element. It handles different OSM types (e.g., 'node', 'way') by
extracting coordinates either directly or from a center tag, depending on the element type.
Args:
elem (ET.Element): The XML element representing the OSM entity.
osm_type (str): The type of the OSM entity (e.g., 'node', 'way'). If 'node', the coordinates
are extracted directly from the element; otherwise, from the 'center' tag.
with_name (bool): Whether to extract and return the name of the element. If True, it attempts
to find the 'name' tag within the element and return its value. Defaults to False.
Returns:
tuple: A tuple containing:
- osm_id (str): The OSM ID of the element.
- coords (tuple): A tuple of (latitude, longitude) coordinates.
- name (str, optional): The name of the element if `with_name` is True; otherwise, not included.
"""
# 1. extract coordinates
if osm_type != 'node' :
center = elem.find('center')
lat = float(center.get('lat'))
lon = float(center.get('lon'))
else :
lat = float(elem.get('lat'))
lon = float(elem.get('lon'))
coords = tuple((lat, lon))
# 2. Extract OSM id
osm_id = elem.get('id')
# 3. Extract name if specified and return
if with_name :
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
return osm_id, coords, name
else :
return osm_id, coords

View File

@@ -51,25 +51,26 @@ sightseeing:
- place_of_worship
- fountain
- townhall
water:
- reflecting_pool
water: reflecting_pool
bridge:
- aqueduct
- viaduct
- boardwalk
- cantilever
- abandoned
building:
- church
- chapel
- mosque
- synagogue
- ruins
- temple
- government
- cathedral
- castle
- museum
building: cathedral
# unused sightseeing/buildings:
# - church
# - chapel
# - mosque
# - synagogue
# - ruins
# - temple
# - government
# - cathedral
# - castle
# - museum
museums:
tourism:

View File

@@ -1,12 +1,12 @@
city_bbox_side: 7500 #m
radius_close_to: 50
church_coeff: 0.9
nature_coeff: 1.25
church_coeff: 0.55
nature_coeff: 1.4
overall_coeff: 10
tag_exponent: 1.15
image_bonus: 10
viewpoint_bonus: 15
wikipedia_bonus: 4
image_bonus: 1.1
viewpoint_bonus: 5
wikipedia_bonus: 1.25
name_bonus: 3
N_important: 40
pay_bonus: -1

View File

@@ -2,5 +2,5 @@ detour_factor: 1.4
detour_corridor_width: 300
average_walking_speed: 4.8
max_landmarks: 10
max_landmarks_refiner: 30
overshoot: 1.1
max_landmarks_refiner: 20
overshoot: 0.0016

File diff suppressed because it is too large Load Diff

View File

@@ -1,698 +0,0 @@
{
"type": "FeatureCollection",
"generator": "overpass-turbo",
"copyright": "The data included in this document is from www.openstreetmap.org. The data is made available under ODbL.",
"timestamp": "2024-12-02T21:14:59Z",
"features": [
{
"type": "Feature",
"properties": {
"@id": "node/1345741798",
"name": "Cordonnerie Saint-Joseph",
"shop": "shoes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3481705,
48.0816462
]
},
"id": "node/1345741798"
},
{
"type": "Feature",
"properties": {
"@id": "node/2659184738",
"brand": "Armand Thiery",
"brand:wikidata": "Q2861975",
"brand:wikipedia": "fr:Armand Thiery",
"name": "Armand Thiery",
"opening_hours": "Mo-Sa 09:30-19:00",
"shop": "clothes",
"wheelchair": "limited"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3594454,
48.0785574
]
},
"id": "node/2659184738"
},
{
"type": "Feature",
"properties": {
"@id": "node/3618136290",
"name": "Chez Dominique",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3362362,
48.0712174
]
},
"id": "node/3618136290"
},
{
"type": "Feature",
"properties": {
"@id": "node/3618136605",
"name": "Divamod",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3304253,
48.0782989
]
},
"id": "node/3618136605"
},
{
"type": "Feature",
"properties": {
"@id": "node/3618284507",
"name": "Star tendances et voyages",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3474029,
48.0830993
]
},
"id": "node/3618284507"
},
{
"type": "Feature",
"properties": {
"@id": "node/3619696125",
"brand": "Zeeman",
"brand:wikidata": "Q184399",
"name": "Zeeman",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3413834,
48.0638444
]
},
"id": "node/3619696125"
},
{
"type": "Feature",
"properties": {
"@id": "node/4594398129",
"name": "Miss et Mister",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3308309,
48.0779118
]
},
"id": "node/4594398129"
},
{
"type": "Feature",
"properties": {
"@id": "node/4907320441",
"brand": "Sergent Major",
"brand:wikidata": "Q62521738",
"clothes": "babies;children",
"name": "Sergent Major",
"opening_hours": "Mo-Sa 09:30-19:00",
"shop": "clothes",
"wheelchair": "no"
},
"geometry": {
"type": "Point",
"coordinates": [
7.359116,
48.0787229
]
},
"id": "node/4907320441"
},
{
"type": "Feature",
"properties": {
"@id": "node/4907364791",
"brand": "Armand Thiery",
"brand:wikidata": "Q2861975",
"brand:wikipedia": "fr:Armand Thiery",
"clothes": "women",
"name": "Armand Thiery",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3601857,
48.0783373
]
},
"id": "node/4907364791"
},
{
"type": "Feature",
"properties": {
"@id": "node/4907385675",
"check_date": "2024-05-19",
"clothes": "children",
"name": "Du Pareil...au même",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3604521,
48.0779726
]
},
"id": "node/4907385675"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922191645",
"name": "Abilos",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3566167,
48.0794136
]
},
"id": "node/4922191645"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922191648",
"brand": "Esprit",
"brand:wikidata": "Q532746",
"brand:wikipedia": "en:Esprit Holdings",
"name": "Esprit",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3554004,
48.0787549
]
},
"id": "node/4922191648"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922191972",
"brand": "Guess",
"brand:wikidata": "Q2470307",
"brand:wikipedia": "en:Guess (clothing)",
"name": "Guess",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.355273,
48.0788003
]
},
"id": "node/4922191972"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922192001",
"name": "Lingerie",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3575453,
48.0779317
]
},
"id": "node/4922192001"
},
{
"type": "Feature",
"properties": {
"@id": "node/5359915869",
"name": "Al Assil",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3305665,
48.0780902
]
},
"id": "node/5359915869"
},
{
"type": "Feature",
"properties": {
"@id": "node/9089360040",
"brand": "Grain de Malice",
"brand:wikidata": "Q66757157",
"clothes": "women",
"name": "Grain de Malice",
"shop": "clothes",
"short_name": "GDM"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3593125,
48.0786234
]
},
"id": "node/9089360040"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095193153",
"brand": "Undiz",
"brand:wikidata": "Q105306275",
"clothes": "underwear",
"name": "Undiz",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3599579,
48.0782846
]
},
"id": "node/9095193153"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095193154",
"branch": "Lingerie",
"brand": "RougeGorge",
"brand:wikidata": "Q104600739",
"clothes": "underwear",
"name": "RougeGorge",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3604883,
48.0781607
]
},
"id": "node/9095193154"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095212690",
"alt_name": "North Face",
"brand": "The North Face",
"brand:wikidata": "Q152784",
"brand:wikipedia": "en:The North Face",
"check_date": "2024-05-19",
"name": "The North Face",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3603923,
48.0773727
]
},
"id": "node/9095212690"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095270059",
"air_conditioning": "no",
"clothes": "men",
"level": "0",
"name": "Maison Aume",
"second_hand": "no",
"shop": "clothes",
"wheelchair": "no"
},
"geometry": {
"type": "Point",
"coordinates": [
7.361364,
48.0799999
]
},
"id": "node/9095270059"
},
{
"type": "Feature",
"properties": {
"@id": "node/9098624272",
"name": "Destock Place",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3575161,
48.0793009
]
},
"id": "node/9098624272"
},
{
"type": "Feature",
"properties": {
"@id": "node/9123861652",
"name": "Weackers",
"shop": "shoes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.361329,
48.0785972
]
},
"id": "node/9123861652"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162179887",
"brand": "Calzedonia",
"brand:wikidata": "Q1027874",
"brand:wikipedia": "en:Calzedonia",
"name": "Calzedonia",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3606374,
48.0780809
]
},
"id": "node/9162179887"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162206449",
"clothes": "women",
"name": "Cop. Copine",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3600947,
48.078399
]
},
"id": "node/9162206449"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162226360",
"brand": "Okaïdi",
"brand:wikidata": "Q3350027",
"brand:wikipedia": "fr:Okaïdi",
"name": "Okaïdi",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3596986,
48.078428
]
},
"id": "node/9162226360"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162227010",
"brand": "Jules",
"brand:wikidata": "Q3188386",
"brand:wikipedia": "fr:Jules (enseigne)",
"clothes": "men",
"name": "Jules",
"opening_hours": "Mo-Sa 09:30-19:00",
"phone": "+33 3 89 41 03 62",
"shop": "clothes",
"website": "https://www.jules.com/fr-fr/magasins/1600133/"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3600323,
48.0782229
]
},
"id": "node/9162227010"
},
{
"type": "Feature",
"properties": {
"@id": "node/10151865029",
"name": "Atelier Cinq",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3571756,
48.0772657
]
},
"id": "node/10151865029"
},
{
"type": "Feature",
"properties": {
"@id": "node/10862176110",
"name": "L'hexagone",
"shop": "bag"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3808571,
48.0814138
]
},
"id": "node/10862176110"
},
{
"type": "Feature",
"properties": {
"@id": "node/11150877331",
"brand": "Punt Roma",
"brand:wikidata": "Q101423290",
"clothes": "women",
"name": "Punt Roma",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3571859,
48.0779406
]
},
"id": "node/11150877331"
},
{
"type": "Feature",
"properties": {
"@id": "node/11150959880",
"name": "Caroll",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3579354,
48.0779291
]
},
"id": "node/11150959880"
},
{
"type": "Feature",
"properties": {
"@id": "node/11302242094",
"branch": "Wintzenheim",
"name": "Label Fripe",
"opening_hours": "Mo-Sa 09:00-18:45",
"phone": "+33 3 89 27 39 25",
"second_hand": "only",
"shop": "clothes",
"website": "https://labelfripe.fr/label-fripe-wintzenheim/"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3109899,
48.0850362
]
},
"id": "node/11302242094"
},
{
"type": "Feature",
"properties": {
"@id": "node/11392247003",
"name": "Lingerie Sipp",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3111507,
48.0841835
]
},
"id": "node/11392247003"
},
{
"type": "Feature",
"properties": {
"@id": "node/11778819781",
"addr:city": "Colmar",
"addr:housenumber": "10",
"addr:postcode": "68000",
"addr:street": "Rue des Têtes",
"clothes": "suits;hats;men",
"name": "Phillipe",
"phone": "0389411983",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3559389,
48.0789064
]
},
"id": "node/11778819781"
},
{
"type": "Feature",
"properties": {
"@id": "node/11799215969",
"brand": "Petit Bateau",
"brand:wikidata": "Q3377090",
"name": "Petit Bateau",
"opening_hours": "Mo-Sa 10:00-19:00; Su 10:00-18:00",
"phone": "+33 3 89 24 97 85",
"shop": "clothes",
"website": "https://stores.petit-bateau.com/france/colmar/9-rue-des-boulangers"
},
"geometry": {
"type": "Point",
"coordinates": [
7.355149,
48.0780213
]
},
"id": "node/11799215969"
},
{
"type": "Feature",
"properties": {
"@id": "node/11816704669",
"addr:housenumber": "10",
"addr:street": "Rue des Boulangers",
"name": "des petits hauts",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3555001,
48.0780768
]
},
"id": "node/11816704669"
},
{
"type": "Feature",
"properties": {
"@id": "node/12320343534",
"addr:city": "Colmar",
"addr:housenumber": "44",
"addr:postcode": "68000",
"addr:street": "Rue des Clefs",
"brand": "Un Jour Ailleurs",
"brand:wikidata": "Q105106211",
"clothes": "women",
"name": "Un Jour Ailleurs",
"opening_hours": "Mo-Fr 10:00-19:00; Sa 10:00-18:30",
"phone": "+33368318572",
"shop": "clothes",
"website": "https://boutique.unjourailleurs.com/fr/mode-femme/boutique-colmar-76"
},
"geometry": {
"type": "Point",
"coordinates": [
7.35897,
48.0789807
]
},
"id": "node/12320343534"
},
{
"type": "Feature",
"properties": {
"@id": "node/12320343536",
"addr:city": "Colmar",
"addr:housenumber": "38",
"addr:postcode": "68000",
"addr:street": "Rue des Clefs",
"brand": "Timberland",
"brand:wikidata": "Q1539185",
"name": "Timberland",
"opening_hours": "Mo-Sa 10:00-19:00",
"phone": "+33389298650",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3592409,
48.0788785
]
},
"id": "node/12320343536"
}
]
}

View File

@@ -1,350 +0,0 @@
# pylint: skip-file
import numpy as np
import json
import os
from typing import Optional, Literal
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from pydantic import BaseModel
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from math import sin, cos, sqrt, atan2, radians
EARTH_RADIUS_KM = 6373
class ShoppingLocation(BaseModel):
type: Literal['street', 'area']
importance: int
centroid: tuple
start: Optional[list] = None
end: Optional[list] = None
# Output to frontend
class Landmark(BaseModel) :
# Properties of the landmark
name : str
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
location : tuple
osm_type : str
osm_id : int
attractiveness : int
n_tags : int
image_url : Optional[str] = None
website_url : Optional[str] = None
description : Optional[str] = None # TODO future
duration : Optional[int] = 0
name_en : Optional[str] = None
# Additional properties depending on specific tour
must_do : Optional[bool] = False
must_avoid : Optional[bool] = False
is_secondary : Optional[bool] = False
time_to_reach_next : Optional[int] = 0
next_uuid : Optional[str] = None
def extract_points(filestr: str) :
"""
Extract points from geojson file.
Returns :
np.array containing the points
"""
points = []
with open(os.path.dirname(__file__) + '/' + filestr, 'r') as f:
geojson = json.load(f)
for feature in geojson['features']:
if feature['geometry']['type'] == 'Point':
centroid = feature['geometry']['coordinates']
points.append(centroid)
elif feature['geometry']['type'] == 'Polygon':
centroid = np.array(feature['geometry']['coordinates'][0][0])
points.append(centroid)
# Convert the list of points to a NumPy array
return np.array(points)
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
Calculate the time in minutes to travel from one location to another.
Args:
p1 (tuple[float, float]): Coordinates of the starting location.
p2 (tuple[float, float]): Coordinates of the destination.
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
return EARTH_RADIUS_KM * c
def filter_clusters(cluster_points, cluster_labels):
"""
Remove clusters of less importance.
"""
label_counts = np.bincount(cluster_labels)
# Step 3: Get the indices (labels) of the 5 largest clusters
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
# Step 4: Filter points to keep only the points in the top 5 clusters
filtered_cluster_points = []
filtered_cluster_labels = []
for label in top_5_labels:
filtered_cluster_points.append(cluster_points[cluster_labels == label])
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
# Concatenate filtered clusters into a single array
return np.vstack(filtered_cluster_points), np.concatenate(filtered_cluster_labels)
def fit_lines(points, labels):
"""
Fit lines to identified clusters.
"""
all_x = []
all_y = []
lines = []
locations = []
for label in set(labels):
cluster_points = points[labels == label]
# If there's not enough points, skip
if len(cluster_points) < 2:
continue
# Apply PCA to find the principal component (i.e., the line of best fit)
pca = PCA(n_components=1)
pca.fit(cluster_points)
direction = pca.components_[0]
centroid = pca.mean_
# Project the cluster points onto the principal direction (line direction)
projections = np.dot(cluster_points - centroid, direction)
# Get the range of the projections to find the approximate length of the cluster
cluster_length = projections.max() - projections.min()
# Now adjust `t` so that it scales with the cluster length
t = np.linspace(-cluster_length / 2.75, cluster_length / 2.75, 10)
# Calculate the start and end of the line based on min/max projections
start_point = centroid[0] + t*direction[0]
end_point = centroid[1] + t*direction[1]
# Store the line
lines.append((start_point, end_point))
# For visualization, store the points
all_x.append(min(start_point))
all_x.append(max(start_point))
all_y.append(min(end_point))
all_y.append(max(end_point))
if np.linalg.norm(t) <= 0.0045 :
loc = ShoppingLocation(
type='area',
centroid=tuple((centroid[1], centroid[0])),
importance = len(cluster_points),
)
else :
loc = ShoppingLocation(
type='street',
centroid=tuple((centroid[1], centroid[0])),
importance = len(cluster_points),
start=start_point,
end=end_point
)
locations.append(loc)
xmin = min(all_x)
xmax = max(all_x)
ymin = min(all_y)
ymax = max(all_y)
corners = (xmin, xmax, ymin, ymax)
return corners, locations
def create_landmark(shopping_location: ShoppingLocation):
# Define the bounding box for a given radius around the coordinates
lat, lon = shopping_location.centroid
bbox = ("around:1000", str(lat), str(lon))
overpass = Overpass()
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
min_dist = float('inf')
new_name = 'Shopping Area'
new_name_en = None
osm_id = 0
osm_type = 'node'
for sel in selectors :
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node', 'way', 'relation'],
selector = sel,
includeCenter = True,
out = 'center'
)
try:
result = overpass.query(query)
except Exception as e:
raise Exception("query unsuccessful")
for elem in result.elements():
location = (elem.centerLat(), elem.centerLon())
if location[0] is None :
location = (elem.lat(), elem.lon())
if location[0] is None :
# print(f"Fetching coordinates failed with {elem.type()}/{elem.id()}")
continue
# print(f"Distance : {get_distance(shopping_location.centroid, location)}")
d = get_distance(shopping_location.centroid, location)
if d < min_dist :
min_dist = d
new_name = elem.tag('name')
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
# add english name if it exists
try :
new_name_en = elem.tag('name:en')
except:
pass
return Landmark(
name=new_name,
type='shopping',
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
attractiveness=shopping_location.importance,
n_tags=0,
osm_id=osm_id,
osm_type=osm_type,
name_en=new_name_en
)
# Extract points
points = extract_points('vienna_data.json')
# print(len(points))
######## Create a figure with 1 row and 3 columns for side-by-side plots
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Plot Raw data points
axes[0].set_title('Raw Data')
axes[0].scatter(points[:, 0], points[:, 1], color='blue', s=20)
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if len(points) > 400 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(points)
# Separate clustered points and noise points
clustered_points = points[labels != -1]
clustered_labels = labels[labels != -1]
noise_points = points[labels == -1]
######## Plot n°1: DBSCAN Clustering Results
axes[1].set_title('DBSCAN Clusters')
axes[1].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=20)
axes[1].scatter(noise_points[:, 0], noise_points[:, 1], c='blue', s=7, label='Noise')
# Keep the 5 biggest clusters
clustered_points, clustered_labels = filter_clusters(clustered_points, clustered_labels)
# Fit lines
corners, locations = fit_lines(clustered_points, clustered_labels)
(xmin, xmax, ymin, ymax) = corners
######## Plot clustered points in normal size and noise points separately
axes[2].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=30)
axes[2].set_title('PCA Fitted Lines on Clusters')
# Create a list of Landmarks for the shopping things
shopping_landmarks = []
for loc in locations :
axes[2].scatter(loc.centroid[1], loc.centroid[0], color='red', marker='x', s=200, linewidth=3)
landmark = create_landmark(loc)
shopping_landmarks.append(landmark)
axes[2].text(loc.centroid[1], loc.centroid[0], landmark.name,
ha='center', va='top', fontsize=6,
bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.2'),
zorder=3)
####### Plot the detected lines in the final plot #######
# for loc in locations:
# if loc.type == 'street' :
# line_x = loc.start
# line_y = loc.end
# axes[2].plot(line_x, line_y, color='lime', linewidth=3)
# else :
axes[0].set_xlim(xmin-0.01, xmax+0.01)
axes[0].set_ylim(ymin-0.01, ymax+0.01)
axes[1].set_xlim(xmin-0.01, xmax+0.01)
axes[1].set_ylim(ymin-0.01, ymax+0.01)
axes[2].set_xlim(xmin-0.01, xmax+0.01)
axes[2].set_ylim(ymin-0.01, ymax+0.01)
print("\n\n\n")
for landmark in shopping_landmarks :
print(f"{landmark.name} is a shopping area with a score of {landmark.attractiveness}")
plt.tight_layout()
plt.show()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
"""Definition of the Landmark class to handle visitable objects across the world."""
from typing import Optional, Literal
from uuid import uuid4
from uuid import uuid4, UUID
from pydantic import BaseModel, Field
@@ -29,12 +29,12 @@ class Landmark(BaseModel) :
description (Optional[str]): A text description of the landmark.
duration (Optional[int]): The estimated time to visit the landmark (in minutes).
name_en (Optional[str]): The English name of the landmark.
uuid (str): A unique identifier for the landmark, generated by default using uuid4.
uuid (UUID): A unique identifier for the landmark, generated by default using uuid4.
must_do (Optional[bool]): Whether the landmark is a "must-do" attraction.
must_avoid (Optional[bool]): Whether the landmark should be avoided.
is_secondary (Optional[bool]): Whether the landmark is secondary or less important.
time_to_reach_next (Optional[int]): Estimated time (in minutes) to reach the next landmark.
next_uuid (Optional[str]): UUID of the next landmark in sequence (if applicable).
next_uuid (Optional[UUID]): UUID of the next landmark in sequence (if applicable).
"""
# Properties of the landmark
@@ -45,14 +45,17 @@ class Landmark(BaseModel) :
osm_id : int
attractiveness : int
n_tags : int
# Optional properties to gather more information.
image_url : Optional[str] = None
website_url : Optional[str] = None
wiki_url : Optional[str] = None
description : Optional[str] = None # TODO future
duration : Optional[int] = 0
duration : Optional[int] = 5
name_en : Optional[str] = None
# Unique ID of a given landmark
uuid: str = Field(default_factory=uuid4)
uuid: UUID = Field(default_factory=uuid4)
# Additional properties depending on specific tour
must_do : Optional[bool] = False
@@ -60,7 +63,11 @@ class Landmark(BaseModel) :
is_secondary : Optional[bool] = False
time_to_reach_next : Optional[int] = 0
next_uuid : Optional[str] = None
next_uuid : Optional[UUID] = None
# More properties to define the score
is_viewpoint : Optional[bool] = False
is_place_of_worship : Optional[bool] = False
def __str__(self) -> str:
"""
@@ -136,7 +143,9 @@ class Toilets(BaseModel) :
str: A formatted string with the toilets location.
"""
return f'Toilets @{self.location}'
class Config:
# This allows us to easily convert the model to and from dictionaries
orm_mode = True
"""
This allows us to easily convert the model to and from dictionaries
"""
from_attributes = True

View File

@@ -1,7 +1,7 @@
"""Linked and ordered list of Landmarks that represents the visiting order."""
from .landmark import Landmark
from ..utils.get_time_separation import get_time
from ..utils.get_time_distance import get_time
class LinkedLandmarks:
"""

View File

@@ -1,6 +1,6 @@
"""Definition of the Trip class."""
import uuid
from uuid import uuid4, UUID
from pydantic import BaseModel, Field
from pymemcache.client.base import Client
@@ -19,9 +19,9 @@ class Trip(BaseModel):
Methods:
from_linked_landmarks: create a Trip from LinkedLandmarks object.
"""
uuid: str = Field(default_factory=uuid.uuid4)
uuid: UUID = Field(default_factory=uuid4)
total_time: int
first_landmark_uuid: str
first_landmark_uuid: UUID
@classmethod
@@ -31,7 +31,7 @@ class Trip(BaseModel):
"""
trip = Trip(
total_time = landmarks.total_time,
first_landmark_uuid = str(landmarks[0].uuid)
first_landmark_uuid = landmarks[0].uuid
)
# Store the trip in the cache

View File

@@ -1,42 +0,0 @@
"""Collection of tests to ensure correct handling of invalid input."""
from fastapi.testclient import TestClient
import pytest
from .test_utils import load_trip_landmarks
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
def test_cache(client, request): # pylint: disable=redefined-outer-name
"""
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
Args:
client:
request:
"""
duration_minutes = 15
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.084588, 7.280405]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
landmarks_cached = load_trip_landmarks(client, result['first_landmark_uuid'], True)
# checks :
assert response.status_code == 200 # check for successful planning
assert landmarks_cached == landmarks

View File

@@ -1,9 +1,9 @@
"""Collection of tests to ensure correct implementation and track progress. """
import time
from fastapi.testclient import TestClient
import pytest
from .test_utils import landmarks_to_osmid, load_trip_landmarks, log_trip_details
from .test_utils import load_trip_landmarks, log_trip_details
from ..main import app
@pytest.fixture(scope="module")
@@ -20,7 +20,9 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
client:
request:
"""
duration_minutes = 15
start_time = time.time() # Start timer
duration_minutes = 20
response = client.post(
"/trip/new",
json={
@@ -35,14 +37,23 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert isinstance(landmarks, list) # check that the return type is a list
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert len(landmarks) > 2 # check that there is something to visit
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
# assert 2!= 3
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
@@ -53,7 +64,10 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
client:
request:
"""
duration_minutes = 30
start_time = time.time() # Start timer
duration_minutes = 120
response = client.post(
"/trip/new",
json={
@@ -67,15 +81,226 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
osm_ids = landmarks_to_osmid(landmarks)
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert 136200148 in osm_ids # check for Cathédrale St. Jean in trip
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 240
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [50.942352665, 6.957777972392]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 180
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.5846589226, 7.74078715721]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_zurich(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 180
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [47.377884227, 8.5395114066]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_paris(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 300
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.86248803298562, 2.346451131285925]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_new_york(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in New York (les Halles) centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 600
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [40.72592726802, -73.9920434795]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
@@ -86,7 +311,9 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
client:
request:
"""
duration_minutes = 600
start_time = time.time() # Start timer
duration_minutes = 240
response = client.post(
"/trip/new",
json={
@@ -100,29 +327,18 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# osm_ids = landmarks_to_osmid(landmarks)
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
for elem in landmarks :
print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
# def test_new_trip_single_prefs(client):
# response = client.post(
# "/trip/new",
# json={
# "preferences": {"sightseeing": {"type": "sightseeing", "score": 1},
# "nature": {"type": "nature", "score": 1},
# "shopping": {"type": "shopping", "score": 1},
# "max_time_minute": 360,
# "detour_tolerance_minute": 0},
# "start": [48.8566, 2.3522]
# }
# )
# assert response.status_code == 200
# def test_new_trip_matches_prefs(client):
# pass
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"

View File

@@ -6,11 +6,13 @@ import pytest
from ..structs.landmark import Toilets
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
@pytest.mark.parametrize(
"location,radius,status_code",
[
@@ -39,8 +41,6 @@ def test_invalid_input(client, location, radius, status_code): # pylint: disa
assert response.status_code == status_code
@pytest.mark.parametrize(
"location,status_code",
[
@@ -66,11 +66,10 @@ def test_no_toilets(client, location, status_code): # pylint: disable=redefin
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
# checks :
assert response.status_code == 200 # check for successful planning
assert response.status_code == status_code # check for successful planning
assert isinstance(toilets_list, list) # check that the return type is a list
@pytest.mark.parametrize(
"location,status_code",
[
@@ -97,6 +96,6 @@ def test_toilets(client, location, status_code): # pylint: disable=redefined-
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
# checks :
assert response.status_code == 200 # check for successful planning
assert response.status_code == status_code # check for successful planning
assert isinstance(toilets_list, list) # check that the return type is a list
assert len(toilets_list) > 0
assert len(toilets_list) > 0

View File

@@ -4,7 +4,7 @@ from fastapi import HTTPException
from pydantic import ValidationError
from ..structs.landmark import Landmark
from ..persistence import client as cache_client
from ..cache import client as cache_client
def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
@@ -23,45 +23,7 @@ def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
return ids
def fetch_landmark(client, landmark_uuid: str):
"""
Fetch landmark data from the API based on the landmark UUID.
Args:
landmark_uuid (str): The UUID of the landmark.
Returns:
dict: Landmark data fetched from the API.
"""
logger = logging.getLogger(__name__)
response = client.get(f"/landmark/{landmark_uuid}")
if response.status_code != 200:
raise HTTPException(status_code=500,
detail=f"Failed to fetch landmark with UUID {landmark_uuid}: {response.status_code}")
try:
json_data = response.json()
logger.info(f"API Response: {json_data}")
except ValueError as e:
logger.error(f"Failed to parse response as JSON: {response.text}")
raise HTTPException(status_code=500, detail="Invalid response format from API")
# Try validating against the Landmark model here to ensure consistency
try:
landmark = Landmark(**json_data)
except ValidationError as ve:
logging.error(f"Validation error: {ve}")
raise HTTPException(status_code=500, detail="Invalid data format received from API")
if "detail" in json_data:
raise HTTPException(status_code=500, detail=json_data["detail"])
return Landmark(**json_data)
def fetch_landmark_cache(landmark_uuid: str):
def fetch_landmark(landmark_uuid: str):
"""
Fetch landmark data from the cache based on the landmark UUID.
@@ -75,26 +37,24 @@ def fetch_landmark_cache(landmark_uuid: str):
# Try to fetch the landmark data from the cache
try:
landmark = cache_client.get(f"landmark_{landmark_uuid}")
landmark = cache_client.get(f'landmark_{landmark_uuid}')
if not landmark :
logger.warning(f"Cache miss for landmark UUID: {landmark_uuid}")
raise HTTPException(status_code=404, detail=f"Landmark with UUID {landmark_uuid} not found in cache.")
logger.warning(f'Cache miss for landmark UUID: {landmark_uuid}')
raise HTTPException(status_code=404, detail=f'Landmark with UUID {landmark_uuid} not found in cache.')
# Validate that the fetched data is a dictionary
if not isinstance(landmark, Landmark):
logger.error(f"Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.")
logger.error(f'Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.')
raise HTTPException(status_code=500, detail="Invalid cache data format.")
return landmark
except Exception as exc:
logger.error(f"Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}")
logger.error(f'Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}')
raise HTTPException(status_code=500, detail="An unexpected error occurred while fetching the landmark from the cache") from exc
def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landmark]:
def load_trip_landmarks(client, first_uuid: str) -> list[Landmark]:
"""
Load all landmarks for a trip using the response from the API.
@@ -108,10 +68,7 @@ def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landma
next_uuid = first_uuid
while next_uuid is not None:
if from_cache :
landmark = fetch_landmark_cache(next_uuid)
else :
landmark = fetch_landmark(client, next_uuid)
landmark = fetch_landmark(next_uuid)
landmarks.append(landmark)
next_uuid = landmark.next_uuid # Prepare for the next iteration
@@ -122,14 +79,14 @@ def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landma
def log_trip_details(request, landmarks: list[Landmark], duration: int, target_duration: int) :
"""
Allows to show the detailed trip in the html test report.
Args:
request:
landmarks (list): the ordered list of visited landmarks
duration (int): the total duration of this trip
target_duration(int): the target duration of this trip
"""
trip_string = [f"{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}" for landmark in landmarks]
trip_string = [f'{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}' for landmark in landmarks]
# Pass additional info to pytest for reporting
request.node.trip_details = trip_string

View File

View File

@@ -0,0 +1,308 @@
"""Find clusters of interest to add more general areas of visit to the tour."""
import logging
from typing import Literal
import numpy as np
from sklearn.cluster import DBSCAN
from pydantic import BaseModel
from ..overpass.overpass import Overpass, get_base_info
from ..structs.landmark import Landmark
from .get_time_distance import get_distance
from ..constants import OSM_CACHE_DIR
# silence the overpass logger
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
class Cluster(BaseModel):
""""
A class representing an interesting area for shopping or sightseeing.
It can represent either a general area or a specifc route with start and end point.
The importance represents the number of shops found in this cluster.
Attributes:
type : either a 'street' or 'area' (representing a denser field of shops).
importance : size of the cluster (number of points).
centroid : center of the cluster.
start : if the type is a street it goes from here...
end : ...to here
"""
type: Literal['street', 'area']
importance: int
centroid: tuple
# start: Optional[list] = None # for later use if we want to have streets as well
# end: Optional[list] = None
class ClusterManager:
"""
A manager responsible for clustering points of interest, such as shops or historic sites,
to identify areas worth visiting. It uses the DBSCAN algorithm to detect clusters
based on a set of points retrieved from OpenStreetMap (OSM).
Attributes:
logger (logging.Logger): Logger for capturing relevant events and errors.
valid (bool): Indicates whether clusters were successfully identified.
all_points (list): All points retrieved from OSM, representing locations of interest.
cluster_points (list): Points identified as part of a cluster.
cluster_labels (list): Labels corresponding to the clusters each point belongs to.
cluster_type (Literal['sightseeing', 'shopping']): Type of clustering, either for sightseeing
landmarks or shopping areas.
"""
logger = logging.getLogger(__name__)
# NOTE: all points are in (lat, lon) format
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
all_points: list
cluster_points: list
cluster_labels: list
cluster_type: Literal['sightseeing', 'shopping']
def __init__(self, bbox: tuple, cluster_type: Literal['sightseeing', 'shopping']) -> None:
"""
Upon intialization, generate the point cloud used for cluster detection.
The points represent bag/clothes shops and general boutiques.
If the first step is successful, it applies the DBSCAN clustering algorithm with different
parameters depending on the size of the city (number of points).
It filters out noise points and keeps only the largest clusters.
A successful initialization updates:
- `self.cluster_points`: The points belonging to clusters.
- `self.cluster_labels`: The labels for the points in clusters.
The method also calls `filter_clusters()` to retain only the largest clusters.
Args:
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
"""
# Setup the caching in the Overpass class.
self.overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
self.cluster_type = cluster_type
if cluster_type == 'shopping' :
osm_types = ['node']
sel = '"shop"~"^(bag|boutique|clothes)$"'
out = 'ids center'
elif cluster_type == 'sightseeing' :
osm_types = ['way']
sel = '"historic"~"^(monument|building|yes)$"'
out = 'ids center'
else :
raise NotImplementedError("Please choose only an available option for cluster detection")
# Initialize the points for cluster detection
query = self.overpass.build_query(
area = bbox,
osm_types = osm_types,
selector = sel,
out = out
)
self.logger.debug(f"Cluster query: {query}")
try:
result = self.overpass.send_query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
if result is None :
self.logger.error(f"Error fetching {cluster_type} clusters, overpass query returned None.")
self.valid = False
else :
points = []
for osm_type in osm_types :
for elem in result.findall(osm_type):
# Get coordinates and append them to the points list
_, coords = get_base_info(elem, osm_type)
if coords is not None :
points.append(coords)
if points :
self.all_points = np.array(points)
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
elif self.cluster_type == 'sightseeing' :
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(self.all_points)
# Check that there are is least 1 cluster
if len(set(labels)) > 1 :
self.logger.debug(f"Found {len(set(labels))} different clusters.")
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
self.valid = True
else :
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
self.valid = False
else :
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
self.valid = False
def generate_clusters(self) -> list[Landmark]:
"""
Generate a list of landmarks based on identified clusters.
This method iterates over the different clusters, calculates the centroid
(as the mean of the points within each cluster), and assigns an importance
based on the size of the cluster.
The generated shopping locations are stored in `self.clusters`
as a list of `Cluster` objects, each with:
- `type`: Set to 'area'.
- `centroid`: The calculated centroid of the cluster.
- `importance`: The number of points in the cluster.
"""
if not self.valid :
return [] # Return empty list if no clusters were found
locations = []
# loop through the different clusters
for label in set(self.cluster_labels):
# Extract points belonging to the current cluster
current_cluster = self.cluster_points[self.cluster_labels == label]
# Calculate the centroid as the mean of the points
centroid = np.mean(current_cluster, axis=0)
if self.cluster_type == 'shopping' :
score = len(current_cluster)*2
else :
score = len(current_cluster)*8
locations.append(Cluster(
type='area',
centroid=centroid,
importance = score
))
# Transform the locations in landmarks and return the list
cluster_landmarks = []
for cluster in locations :
cluster_landmarks.append(self.create_landmark(cluster))
return cluster_landmarks
def create_landmark(self, cluster: Cluster) -> Landmark:
"""
Create a Landmark object based on the given shopping location.
This method queries the Overpass API for nearby neighborhoods and shopping malls
within a 1000m radius around the shopping location centroid. It selects the closest
result and creates a landmark with the associated details such as name, type, and OSM ID.
Parameters:
shopping_location (Cluster): A Cluster object containing
the centroid and importance of the area.
Returns:
Landmark: A Landmark object containing details such as the name, type,
location, attractiveness, and OSM details.
"""
# Define the bounding box for a given radius around the coordinates
lat, lon = cluster.centroid
bbox = (1000, lat, lon)
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
if self.cluster_type == 'shopping' :
selectors.append('"shop"="mall"')
new_name = 'Shopping Area'
t = 40
else :
new_name = 'Neighborhood'
t = 15
min_dist = float('inf')
osm_id = 0
osm_type = 'node'
osm_types = ['node', 'way', 'relation']
for sel in selectors :
query = self.overpass.build_query(
area = bbox,
osm_types = osm_types,
selector = sel,
out = 'ids center'
)
try:
result = self.overpass.send_query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
continue
if result is None :
self.logger.error(f"Error fetching landmarks: {e}")
continue
for osm_type in osm_types :
for elem in result.findall(osm_type):
id, coords, name = get_base_info(elem, osm_type, with_name=True)
if name is None or coords is None :
continue
d = get_distance(cluster.centroid, coords)
if d < min_dist :
min_dist = d
new_name = name
osm_type = osm_type # Add type: 'way' or 'relation'
osm_id = id # Add OSM id
return Landmark(
name=new_name,
type=self.cluster_type,
location=cluster.centroid, # later: use the fact the we can also recognize streets.
attractiveness=cluster.importance,
n_tags=0,
osm_id=osm_id,
osm_type=osm_type,
duration=t
)
def filter_clusters(self):
"""
Filter clusters to retain only the 5 largest clusters by point count.
This method calculates the size of each cluster and filters out all but the
5 largest clusters. It then updates the cluster points and labels to reflect
only those from the top 5 clusters.
"""
label_counts = np.bincount(self.cluster_labels)
# Step 3: Get the indices (labels) of the 5 largest clusters
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
# Step 4: Filter points to keep only the points in the top 5 clusters
filtered_cluster_points = []
filtered_cluster_labels = []
for label in top_5_labels:
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
# update the cluster points and labels with the filtered data
self.cluster_points = np.vstack(filtered_cluster_points) # ValueError here
self.cluster_labels = np.concatenate(filtered_cluster_labels)

View File

@@ -1,283 +0,0 @@
import logging
from typing import Literal
import numpy as np
from sklearn.cluster import DBSCAN
from pydantic import BaseModel
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from ..structs.landmark import Landmark
from ..utils.get_time_separation import get_distance
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
class ShoppingLocation(BaseModel):
""""
A classe representing an interesting area for shopping.
It can represent either a general area or a specifc route with start and end point.
The importance represents the number of shops found in this cluster.
Attributes:
type : either a 'street' or 'area' (representing a denser field of shops).
importance : size of the cluster (number of points).
centroid : center of the cluster.
start : if the type is a street it goes from here...
end : ...to here
"""
type: Literal['street', 'area']
importance: int
centroid: tuple
# start: Optional[list] = None # for later use if we want to have streets as well
# end: Optional[list] = None
class ShoppingManager:
logger = logging.getLogger(__name__)
# NOTE: all points are in (lat, lon) format
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
all_points: list
cluster_points: list
cluster_labels: list
shopping_locations: list[ShoppingLocation]
def __init__(self, bbox: tuple) -> None:
"""
Upon intialization, generate the point cloud used for cluster detection.
The points represent bag/clothes shops and general boutiques.
Args:
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
"""
# Initialize overpass and cache
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
# Initialize the points for cluster detection
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node'],
selector = ['"shop"~"^(bag|boutique|clothes)$"'],
includeCenter = True,
out = 'skel'
)
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
if len(result.elements()) == 0 :
self.valid = False
else :
points = []
for elem in result.elements() :
points.append(tuple((elem.lat(), elem.lon())))
self.all_points = np.array(points)
self.valid = True
def generate_shopping_landmarks(self) -> list[Landmark]:
"""
Generate shopping landmarks based on clustered locations.
This method first generates clusters of locations and then extracts shopping-related
locations from these clusters. It transforms each shopping location into a `Landmark` object.
Returns:
list[Landmark]: A list of `Landmark` objects representing shopping locations.
Returns an empty list if no clusters are found.
"""
self.generate_clusters()
if len(set(self.cluster_labels)) == 0 :
return [] # Return empty list if no clusters were found
# Then generate the shopping locations
self.generate_shopping_locations()
# Transform the locations in landmarks and return the list
shopping_landmarks = []
for location in self.shopping_locations :
shopping_landmarks.append(self.create_landmark(location))
return shopping_landmarks
def generate_clusters(self) :
"""
Generate clusters of points using DBSCAN.
This method applies the DBSCAN clustering algorithm with different
parameters depending on the size of the city (number of points).
It filters out noise points and keeps only the largest clusters.
The method updates:
- `self.cluster_points`: The points belonging to clusters.
- `self.cluster_labels`: The labels for the points in clusters.
The method also calls `filter_clusters()` to retain only the largest clusters.
"""
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if len(self.all_points) > 200 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(self.all_points)
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
# filter the clusters to keep only the largest ones
self.filter_clusters()
def generate_shopping_locations(self) :
"""
Generate shopping locations based on clustered points.
This method iterates over the different clusters, calculates the centroid
(as the mean of the points within each cluster), and assigns an importance
based on the size of the cluster.
The generated shopping locations are stored in `self.shopping_locations`
as a list of `ShoppingLocation` objects, each with:
- `type`: Set to 'area'.
- `centroid`: The calculated centroid of the cluster.
- `importance`: The number of points in the cluster.
"""
locations = []
# loop through the different clusters
for label in set(self.cluster_labels):
# Extract points belonging to the current cluster
current_cluster = self.cluster_points[self.cluster_labels == label]
# Calculate the centroid as the mean of the points
centroid = np.mean(current_cluster, axis=0)
locations.append(ShoppingLocation(
type='area',
centroid=centroid,
importance = len(current_cluster)
))
self.shopping_locations = locations
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
"""
Create a Landmark object based on the given shopping location.
This method queries the Overpass API for nearby neighborhoods and shopping malls
within a 1000m radius around the shopping location centroid. It selects the closest
result and creates a landmark with the associated details such as name, type, and OSM ID.
Parameters:
shopping_location (ShoppingLocation): A ShoppingLocation object containing
the centroid and importance of the area.
Returns:
Landmark: A Landmark object containing details such as the name, type,
location, attractiveness, and OSM details.
"""
# Define the bounding box for a given radius around the coordinates
lat, lon = shopping_location.centroid
bbox = ("around:1000", str(lat), str(lon))
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
min_dist = float('inf')
new_name = 'Shopping Area'
new_name_en = None
osm_id = 0
osm_type = 'node'
for sel in selectors :
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node', 'way', 'relation'],
selector = sel,
includeCenter = True,
out = 'center'
)
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
continue
for elem in result.elements():
location = (elem.centerLat(), elem.centerLon())
if location[0] is None :
location = (elem.lat(), elem.lon())
if location[0] is None :
continue
d = get_distance(shopping_location.centroid, location)
if d < min_dist :
min_dist = d
new_name = elem.tag('name')
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
# Add english name if it exists
try :
new_name_en = elem.tag('name:en')
except:
pass
return Landmark(
name=new_name,
type='shopping',
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
attractiveness=shopping_location.importance,
n_tags=0,
osm_id=osm_id,
osm_type=osm_type,
name_en=new_name_en
)
def filter_clusters(self):
"""
Filter clusters to retain only the 5 largest clusters by point count.
This method calculates the size of each cluster and filters out all but the
5 largest clusters. It then updates the cluster points and labels to reflect
only those from the top 5 clusters.
"""
label_counts = np.bincount(self.cluster_labels)
# Step 3: Get the indices (labels) of the 5 largest clusters
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
# Step 4: Filter points to keep only the points in the top 5 clusters
filtered_cluster_points = []
filtered_cluster_labels = []
for label in top_5_labels:
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
# update the cluster points and labels with the filtered data
self.cluster_points = np.vstack(filtered_cluster_points)
self.cluster_labels = np.concatenate(filtered_cluster_labels)

View File

@@ -1,8 +1,10 @@
import yaml
"""Contains various helper functions to help with distance or score computations."""
from math import sin, cos, sqrt, atan2, radians
import yaml
from ..constants import OPTIMIZER_PARAMETERS_PATH
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
DETOUR_FACTOR = parameters['detour_factor']
@@ -10,6 +12,7 @@ with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
EARTH_RADIUS_KM = 6373
def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
Calculate the time in minutes to travel from one location to another.
@@ -21,25 +24,23 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
# if p1 == p2:
# return 0
# else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = EARTH_RADIUS_KM * c
distance = EARTH_RADIUS_KM * c
# Consider the detour factor for average an average city
walk_distance = distance * DETOUR_FACTOR
@@ -47,7 +48,7 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
# Time to walk this distance (in minutes)
walk_time = walk_distance / AVERAGE_WALKING_SPEED * 60
return round(walk_time)
return min(round(walk_time), 32765)
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
@@ -61,22 +62,19 @@ def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
return EARTH_RADIUS_KM * c
return EARTH_RADIUS_KM * c

View File

@@ -1,27 +1,33 @@
import math, yaml, logging
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
"""Module used to import data from OSM and arrange them in categories."""
import logging
import xml.etree.ElementTree as ET
import yaml
from ..structs.preferences import Preferences
from ..structs.landmark import Landmark
from .take_most_important import take_most_important
from .cluster_processing import ShoppingManager
from .cluster_manager import ClusterManager
from ..overpass.overpass import Overpass, get_base_info
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
# silence the overpass logger
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
class LandmarkManager:
"""
Use this to manage landmarks.
Uses the overpass api to fetch landmarks and classify them.
"""
logger = logging.getLogger(__name__)
radius_close_to: int # radius in meters
church_coeff: float # coeff to adjsut score of churches
nature_coeff: float # coeff to adjust score of parks
overall_coeff: float # coeff to adjust weight of tags
N_important: int # number of important landmarks to consider
n_important: int # number of important landmarks to consider
def __init__(self) -> None:
@@ -42,15 +48,17 @@ class LandmarkManager:
self.wikipedia_bonus = parameters['wikipedia_bonus']
self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus']
self.N_important = parameters['N_important']
self.n_important = parameters['N_important']
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.walking_speed = parameters['average_walking_speed']
self.detour_factor = parameters['detour_factor']
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
# Setup the caching in the Overpass class.
self.overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
self.logger.info('LandmakManager successfully initialized.')
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
@@ -70,117 +78,89 @@ class LandmarkManager:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
"""
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
self.logger.debug('Starting to fetch landmarks...')
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
all_landmarks = set()
# Create a bbox using the around technique
bbox = tuple((f"around:{reachable_bbox_side/2}", str(center_coordinates[0]), str(center_coordinates[1])))
# Create a bbox using the around technique, tuple of strings
bbox = tuple((min(2000, reachable_bbox_side/2), center_coordinates[0], center_coordinates[1]))
# list for sightseeing
if preferences.sightseeing.score != 0:
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
self.logger.debug('Fetching sightseeing landmarks...')
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
all_landmarks.update(current_landmarks)
self.logger.debug('Fetching sightseeing clusters...')
# special pipeline for historic neighborhoods
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
historic_clusters = neighborhood_manager.generate_clusters()
all_landmarks.update(historic_clusters)
self.logger.debug('Sightseeing clusters done')
# list for nature
if preferences.nature.score != 0:
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
self.logger.debug('Fetching nature landmarks...')
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
all_landmarks.update(current_landmarks)
# list for shopping
if preferences.shopping.score != 0:
score_function = lambda score: score * 10 * preferences.shopping.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
self.logger.debug('Fetching shopping landmarks...')
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
self.logger.debug('Fetching shopping clusters...')
# set time for all shopping activites :
for landmark in current_landmarks : landmark.duration = 30
for landmark in current_landmarks :
landmark.duration = 30
all_landmarks.update(current_landmarks)
# special pipeline for shopping malls
shopping_manager = ShoppingManager(bbox)
if shopping_manager.valid :
shopping_clusters = shopping_manager.generate_shopping_landmarks()
for landmark in shopping_clusters : landmark.duration = 45
all_landmarks.update(shopping_clusters)
shopping_manager = ClusterManager(bbox, 'shopping')
shopping_clusters = shopping_manager.generate_clusters()
all_landmarks.update(shopping_clusters)
self.logger.debug('Shopping clusters done')
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
landmarks_constrained = take_most_important(all_landmarks, self.n_important)
# self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
return all_landmarks, landmarks_constrained
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
"""
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
Calculate and set the attractiveness score for a given landmark.
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
OpenStreetMap data to count the number of elements within that bounding box.
This method evaluates the landmark's attractiveness based on its properties
(number of tags, presence of Wikipedia URL, image, website, and whether it's
a place of worship) and adjusts the score using the user's preference level.
Args:
coordinates (tuple[float, float]): The latitude and longitude of the location to search around.
Returns:
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
are found or if an error occurs during the query.
landmark (Landmark): The landmark object to score.
landmarktype (str): The type of the landmark (currently unused).
preference_level (int): The user's preference level for this landmark type.
"""
lat = coordinates[0]
lon = coordinates[1]
score = landmark.n_tags**self.tag_exponent
if landmark.wiki_url :
score *= self.wikipedia_bonus
if landmark.image_url :
score *= self.image_bonus
if landmark.website_url :
score *= self.wikipedia_bonus
if landmark.is_place_of_worship :
score *= self.church_coeff
if landmarktype == 'nature' :
score *= self.nature_coeff
radius = self.radius_close_to
alpha = (180 * radius) / (6371000 * math.pi)
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
# Build the query to find elements within the radius
radius_query = overpassQueryBuilder(
bbox=[bbox['latLower'],
bbox['lonLower'],
bbox['latHigher'],
bbox['lonHigher']],
elementType=['node', 'way', 'relation']
)
try:
radius_result = self.overpass.query(radius_query)
N_elem = radius_result.countWays() + radius_result.countRelations()
self.logger.debug(f"There are {N_elem} ways/relations within 50m")
if N_elem is None:
return 0
return N_elem
except:
return 0
landmark.attractiveness = int(score * preference_level * 2)
# def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
# """
# Create a bounding box around the given coordinates.
# Args:
# coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
# reachable_bbox_side (int): The side length of the bounding box in meters.
# Returns:
# tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
# defining the bounding box.
# """
# # Half the side length in m (since it's a square bbox)
# half_side_length_m = reachable_bbox_side / 2
# return tuple((f"around:{half_side_length_m}", str(coordinates[0]), str(coordinates[1])))
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]:
"""
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
@@ -188,7 +168,6 @@ class LandmarkManager:
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
score_function (callable): The function to compute the score of the landmark based on its attributes.
Returns:
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
@@ -197,7 +176,6 @@ class LandmarkManager:
- Landmarks are fetched using Overpass API queries.
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
- Landmarks are filtered based on various conditions including tags and type.
- Scores are assigned to landmarks based on their attributes and surrounding elements.
"""
return_list = []
@@ -207,163 +185,124 @@ class LandmarkManager:
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
# we need to split the selectors into separate queries and merge the results
for sel in dict_to_selector_list(amenity_selector):
self.logger.debug(f"Current selector: {sel}")
# self.logger.debug(f"Current selector: {sel}")
# query_conditions = ['count_tags()>5']
# if landmarktype == 'shopping' : # use this later for shopping clusters
# element_types = ['node']
element_types = ['way', 'relation']
osm_types = ['way', 'relation']
if 'viewpoint' in sel :
query_conditions = []
element_types.append('node')
osm_types.append('node')
query = overpassQueryBuilder(
bbox = bbox,
elementType = element_types,
# selector can in principle be a list already,
# but it generates the intersection of the queries
# we want the union
query = self.overpass.build_query(
area = bbox,
osm_types = osm_types,
selector = sel,
conditions = query_conditions, # except for nature....
includeCenter = True,
out = 'center'
)
self.logger.debug(f"Query: {query}")
try:
result = self.overpass.query(query)
result = self.overpass.send_query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
continue
for elem in result.elements():
return_list += self.xml_to_landmarks(result, landmarktype, preference_level)
name = elem.tag('name')
location = (elem.centerLat(), elem.centerLon())
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
# TODO: exclude these from the get go
# handle unprecise and no-name locations
if name is None or location[0] is None:
if osm_type == 'node' and 'viewpoint' in elem.tags().values():
name = 'Viewpoint'
name_en = 'Viewpoint'
location = (elem.lat(), elem.lon())
else :
continue
# skip if part of another building
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
continue
elem_type = landmarktype # Add the landmark type as 'sightseeing,
n_tags = len(elem.tags().keys()) # Add number of tags
score = n_tags**self.tag_exponent # Add score
website_url = None
image_url = None
name_en = None
# Adjust scoring, browse through tag keys
skip = False
for tag_key in elem.tags().keys():
if "pay" in tag_key:
# payment options are misleading and should not count for the scoring.
score += self.pay_bonus
if "disused" in tag_key:
# skip disused amenities
skip = True
break
if "boundary" in tag_key:
# skip "areas" like administrative boundaries and stuff
skip = True
break
if "historic" in tag_key and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']:
# skip useless amenities
skip = True
break
if "name" in tag_key :
score += self.name_bonus
if "wiki" in tag_key:
# wikipedia entries count more
score += self.wikipedia_bonus
if "image" in tag_key:
# images must count more
score += self.image_bonus
if elem_type != "nature":
if "leisure" in tag_key and elem.tag('leisure') == "park":
elem_type = "nature"
if landmarktype != "shopping":
if "shop" in tag_key:
skip = True
break
if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
skip = True
break
# Extract image, website and english name
if tag_key in ['website', 'contact:website']:
website_url = elem.tag(tag_key)
if tag_key == 'image':
image_url = elem.tag('image')
if tag_key =='name:en':
name_en = elem.tag('name:en')
if skip:
continue
# Don't visit random apartments
if 'apartments' in elem.tags().values():
continue
score = score_function(score)
if "place_of_worship" in elem.tags().values():
score = score * self.church_coeff
duration = 10
if 'viewpoint' in elem.tags().values() :
# viewpoints must count more
score += self.viewpoint_bonus
duration = 10
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
duration = 60
else:
duration = 5
# finally create our own landmark object
landmark = Landmark(
name = name,
type = elem_type,
location = location,
osm_type = osm_type,
osm_id = osm_id,
attractiveness = int(score),
must_do = False,
n_tags = int(n_tags),
duration = int(duration),
name_en = name_en,
image_url = image_url,
website_url = website_url
)
return_list.append(landmark)
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
return return_list
def xml_to_landmarks(self, root: ET.Element, landmarktype, preference_level) -> list[Landmark]:
"""
Parse the Overpass API result and extract landmarks.
This method processes the XML root element returned by the Overpass API and
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
relevant information such as name, coordinates, and tags, and converts them
into Landmark objects.
Args:
root (ET.Element): The root element of the XML response from Overpass API.
elem_type (str): The type of landmark (e.g., node, way, relation).
Returns:
list[Landmark]: A list of Landmark objects extracted from the XML data.
"""
if root is None :
return []
landmarks = []
for osm_type in ['node', 'way', 'relation'] :
for elem in root.findall(osm_type):
id, coords, name = get_base_info(elem, osm_type, with_name=True)
if name is None or coords is None :
continue
tags = elem.findall('tag')
# Convert this to Landmark object
landmark = Landmark(name=name,
type=landmarktype,
location=coords,
osm_id=id,
osm_type=osm_type,
attractiveness=0,
n_tags=len(tags))
# Browse through tags to add information to landmark.
for tag in tags:
key = tag.get('k')
value = tag.get('v')
# Skip this landmark if not suitable.
if key == 'building:part' and value == 'yes' :
break
if 'disused:' in key :
break
if 'boundary:' in key :
break
if 'shop' in key and landmarktype != 'shopping' :
break
# if value == 'apartments' :
# break
# Fill in the other attributes.
if key == 'image' :
landmark.image_url = value
if key == 'website' :
landmark.website_url = value
if key == 'place_of_worship' :
landmark.is_place_of_worship = True
if key == 'wikipedia' :
landmark.wiki_url = value
if key == 'name:en' :
landmark.name_en = value
if 'building:' in key or 'pay' in key :
landmark.n_tags -= 1
# Set the duration.
if value in ['museum', 'aquarium', 'planetarium'] :
landmark.duration = 60
elif value == 'viewpoint' :
landmark.is_viewpoint = True
landmark.duration = 10
elif value == 'cathedral' :
landmark.is_place_of_worship = False
landmark.duration = 10
else:
self.set_landmark_score(landmark, landmarktype, preference_level)
landmarks.append(landmark)
continue
return landmarks
def dict_to_selector_list(d: dict) -> list:
"""
Convert a dictionary of key-value pairs to a list of Overpass query strings.
@@ -376,10 +315,10 @@ def dict_to_selector_list(d: dict) -> list:
"""
return_list = []
for key, value in d.items():
if type(value) == list:
if isinstance(value, list):
val = '|'.join(value)
return_list.append(f'{key}~"^({val})$"')
elif type(value) == str and len(value) == 0:
elif isinstance(value, str) and len(value) == 0:
return_list.append(f'{key}')
else:
return_list.append(f'{key}={value}')

View File

@@ -1,524 +0,0 @@
import yaml, logging
import numpy as np
from scipy.optimize import linprog
from collections import defaultdict, deque
from ..structs.landmark import Landmark
from .get_time_separation import get_time
from ..constants import OPTIMIZER_PARAMETERS_PATH
class Optimizer:
logger = logging.getLogger(__name__)
detour: int = None # accepted max detour time (in minutes)
detour_factor: float # detour factor of straight line vs real distance in cities
average_walking_speed: float # average walking speed of adult
max_landmarks: int # max number of landmarks to visit
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
def __init__(self) :
# load parameters from file
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.detour_factor = parameters['detour_factor']
self.average_walking_speed = parameters['average_walking_speed']
self.max_landmarks = parameters['max_landmarks']
self.overshoot = parameters['overshoot']
# Prevent the use of a particular solution
def prevent_config(self, resx):
"""
Prevent the use of a particular solution by adding constraints to the optimization.
Args:
resx (list[float]): List of edge weights.
Returns:
tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # Number of edges
L = int(np.sqrt(N)) # Number of landmarks
nonzeroind = np.nonzero(resx)[0] # the return is a little funky so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
vertices_visited = ind_a
vertices_visited.remove(0)
ones = [1]*L
h = [0]*N
for i in range(L) :
if i in vertices_visited :
h[i*L:i*L+L] = ones
return h, [len(vertices_visited)-1]
# Prevents the creation of the same circle (both directions)
def prevent_circle(self, circle_vertices: list, L: int) :
"""
Prevent circular paths by by adding constraints to the optimization.
Args:
circle_vertices (list): List of vertices forming a circle.
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
l1 = [0]*L*L
l2 = [0]*L*L
for i, node in enumerate(circle_vertices[:-1]) :
next = circle_vertices[i+1]
l1[node*L + next] = 1
l2[next*L + node] = 1
s = circle_vertices[0]
g = circle_vertices[-1]
l1[g*L + s] = 1
l2[s*L + g] = 1
return np.vstack((l1, l2)), [0, 0]
def is_connected(self, resx) :
"""
Determine the order of visits and detect any circular paths in the given configuration.
Args:
resx (list): List of edge weights.
Returns:
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
# first round the results to have only 0-1 values
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
# Step 1: Create a graph representation
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
# Step 2: Function to perform BFS/DFS to extract journeys
def get_journey(start):
journey_nodes = []
visited = set()
stack = deque([start])
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
return journey_nodes
# Step 3: Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = get_journey(node)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
order = l
all_journeys_nodes.remove(l)
break
if len(all_journeys_nodes) == 0 :
return order, None
return order, all_journeys_nodes
def init_ub_dist(self, landmarks: list[Landmark], max_time: int):
"""
Initialize the objective function coefficients and inequality constraints for the optimization problem.
This function computes the distances between all landmarks and stores their attractiveness to maximize sightseeing.
The goal is to maximize the objective function subject to the constraints A*x < b and A_eq*x = b_eq.
Args:
landmarks (list[Landmark]): List of landmarks.
max_time (int): Maximum time of visit allowed.
Returns:
tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
"""
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = []
# Coefficients of inequality constraints (left-hand side)
A_ub = []
for spot1 in landmarks :
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
t = get_time(spot1.location, spot2.location) + spot1.duration
dist_table[j] = t
closest = sorted(dist_table)[:25]
for i, dist in enumerate(dist_table) :
if dist not in closest :
dist_table[i] = 32700
A_ub += dist_table
c = c*len(landmarks)
return c, A_ub, [max_time*self.overshoot]
def respect_number(self, L, max_landmarks: int):
"""
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
ones = [1]*L
zeros = [0]*L
A = ones + zeros*(L-1)
b = [1]
for i in range(L-1) :
h_new = zeros*i + ones + zeros*(L-1-i)
A = np.vstack((A, h_new))
b.append(1)
A = np.vstack((A, ones*L))
b.append(max_landmarks+1)
return A, b
# Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements
def break_sym(self, L):
"""
Generate constraints to prevent simultaneous travel between two landmarks in both directions.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
upper_ind = np.triu_indices(L,0,L)
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
A = [0]*L*L
b = [1]
for i, _ in enumerate(up_ind_x[1:]) :
l = [0]*L*L
if up_ind_x[i] != up_ind_y[i] :
l[up_ind_x[i]*L + up_ind_y[i]] = 1
l[up_ind_y[i]*L + up_ind_x[i]] = 1
A = np.vstack((A,l))
b.append(1)
return A, b
def init_eq_not_stay(self, L: int):
"""
Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.).
Args:
L (int): Number of landmarks.
Returns:
tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
"""
l = [0]*L*L
for i in range(L) :
for j in range(L) :
if j == i :
l[j + i*L] = 1
l = np.array(np.array(l), dtype=np.int8)
return [l], [0]
def respect_user_must_do(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_do is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
l[i*L:i*L+L] = [1]*L # set mandatory departures from landmarks tagged as 'must_do'
A = np.vstack((A,l))
b.append(1)
return A, b
def respect_user_must_avoid(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization.
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_avoid is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
l[i*L:i*L+L] = [1]*L
A = np.vstack((A,l))
b.append(0) # prevent departures from landmarks tagged as 'must_do'
return A, b
# Constraint to ensure start at start and finish at goal
def respect_start_finish(self, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
l_start[L-1] = 0 # prevents the jump from start to finish
l_goal = [0]*L*L # sets arrivals only for finish (vertical ones)
l_L = [0]*L*(L-1) + [1]*L # prevents arrivals at start and departures from goal
for k in range(L-1) : # sets only vertical ones for goal (go to)
l_L[k*L] = 1
if k != 0 :
l_goal[k*L+L-1] = 1
A = np.vstack((l_start, l_goal))
b = [1, 1]
A = np.vstack((A,l_L))
b.append(0)
return A, b
def respect_order(self, L: int):
"""
Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
A = [0]*L*L
b = [0]
for i in range(L-1) : # Prevent stacked ones
if i == 0 or i == L-1: # Don't touch start or finish
continue
else :
l = [0]*L
l[i] = -1
l = l*L
for j in range(L) :
l[i*L + j] = 1
A = np.vstack((A,l))
b.append(0)
return A, b
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
"""
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
Args:
order (list[int]): List of indices representing the order of landmarks to visit.
landmarks (list[Landmark]): List of all landmarks.
Returns:
list[Landmark]]: The updated linked list of landmarks with travel times
"""
L = []
j = 0
while j < len(order)-1 :
# get landmarks involved
elem = landmarks[order[j]]
next = landmarks[order[j+1]]
# get attributes
elem.time_to_reach_next = get_time(elem.location, next.location)
elem.must_do = True
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
elem.next_uuid = next.uuid
L.append(elem)
j += 1
next.location = (round(next.location[0], 5), round(next.location[1], 5))
next.must_do = True
L.append(next)
return L
# Main optimization pipeline
def solve_optimization(
self,
max_time: int,
landmarks: list[Landmark],
max_landmarks: int = None
) -> list[Landmark]:
"""
Main optimization pipeline to solve the landmark visiting problem.
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
Args:
max_time (int): Maximum time allowed for the tour in minutes.
landmarks (list[Landmark]): List of landmarks to visit.
max_landmarks (int): Maximum number of landmarks visited
Returns:
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
"""
if max_landmarks is None :
max_landmarks = self.max_landmarks
L = len(landmarks)
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time) # Add the distances from each landmark to the other
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
A_ub = np.vstack((A_ub, A), dtype=np.int16)
b_ub += b
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
A_ub = np.vstack((A_ub, A), dtype=np.int16)
b_ub += b
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = self.init_eq_not_stay(L) # Force solution not to stay in same place
A, b = self.respect_user_must_do(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_user_must_avoid(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_start_finish(L) # Force start and finish positions
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
# SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1)
x_bounds = [(0, 1)]*L*L
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
# Raise error if no solution is found
if not res.success :
raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).")
# If there is a solution, we're good to go, just check for connectiveness
order, circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
i = 0
timeout = 80
while circles is not None and i < timeout:
A, b = self.prevent_config(res.x)
A_ub = np.vstack((A_ub, A))
b_ub += b
#A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub)
for circle in circles :
A, b = self.prevent_circle(circle, L)
A_eq = np.vstack((A_eq, A))
b_eq += b
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
if not res.success :
raise ArithmeticError("Solving failed because of overconstrained problem")
return None
order, circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
if circles is None :
break
# print(i)
i += 1
if i == timeout :
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
#sort the landmarks in the order of the solution
tour = [landmarks[i] for i in order]
self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}")
return tour

View File

@@ -1,3 +1,4 @@
"""Helper function to return only the major landmarks from a large list."""
from ..structs.landmark import Landmark
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:

View File

@@ -1,16 +1,34 @@
import logging, yaml
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
"""Module for finding public toilets around given coordinates."""
import logging
import xml.etree.ElementTree as ET
from ..overpass.overpass import Overpass, get_base_info
from ..structs.landmark import Toilets
from ..constants import LANDMARK_PARAMETERS_PATH, OSM_CACHE_DIR
from ..constants import OSM_CACHE_DIR
# silence the overpass logger
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
class ToiletsManager:
"""
Manages the process of fetching and caching toilet information from
OpenStreetMap (OSM) based on a specified location and radius.
This class is responsible for:
- Fetching toilet data from OSM using Overpass API around a given set of
coordinates (latitude, longitude).
- Using a caching strategy to optimize requests by saving and retrieving
data from a local cache.
- Logging important events and errors related to data fetching.
Attributes:
logger (logging.Logger): Logger for the class to capture events.
location (tuple[float, float]): Latitude and longitude representing the
location to search around.
radius (int): The search radius in meters for finding nearby toilets.
overpass (Overpass): The Overpass API instance used to query OSM.
"""
logger = logging.getLogger(__name__)
location: tuple[float, float]
@@ -21,58 +39,87 @@ class ToiletsManager:
self.radius = radius
self.location = location
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
# Setup the caching in the Overpass class.
self.overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
def generate_toilet_list(self) -> list[Toilets] :
"""
Generates a list of toilet locations by fetching data from OpenStreetMap (OSM)
around the given coordinates stored in `self.location`.
# Create a bbox using the around technique
bbox = tuple((f"around:{self.radius}", str(self.location[0]), str(self.location[1])))
Returns:
list[Toilets]: A list of `Toilets` objects containing detailed information
about the toilets found around the given coordinates.
"""
bbox = tuple((self.radius, self.location[0], self.location[1]))
osm_types = ['node', 'way', 'relation']
toilets_list = []
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node', 'way', 'relation'],
# selector can in principle be a list already,
# but it generates the intersection of the queries
# we want the union
selector = ['"amenity"="toilets"'],
includeCenter = True,
out = 'center'
query = self.overpass.build_query(
area = bbox,
osm_types = osm_types,
selector = '"amenity"="toilets"',
out = 'ids center tags'
)
self.logger.debug(f"Query: {query}")
try:
result = self.overpass.query(query)
result = self.overpass.send_query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
return None
for elem in result.elements():
location = (elem.centerLat(), elem.centerLon())
# handle unprecise and no-name locations
if location[0] is None:
location = (elem.lat(), elem.lon())
else :
continue
toilets = Toilets(location=location)
if 'wheelchair' in elem.tags().keys() and elem.tag('wheelchair') == 'yes':
toilets.wheelchair = True
if 'changing_table' in elem.tags().keys() and elem.tag('changing_table') == 'yes':
toilets.changing_table = True
if 'fee' in elem.tags().keys() and elem.tag('fee') == 'yes':
toilets.fee = True
if 'opening_hours' in elem.tags().keys() :
toilets.opening_hours = elem.tag('opening_hours')
toilets_list.append(toilets)
toilets_list = self.xml_to_toilets(result)
return toilets_list
def xml_to_toilets(self, root: ET.Element) -> list[Toilets]:
"""
Parse the Overpass API result and extract landmarks.
This method processes the XML root element returned by the Overpass API and
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
relevant information such as name, coordinates, and tags, and converts them
into Landmark objects.
Args:
root (ET.Element): The root element of the XML response from Overpass API.
elem_type (str): The type of landmark (e.g., node, way, relation).
Returns:
list[Landmark]: A list of Landmark objects extracted from the XML data.
"""
if root is None :
return []
toilets_list = []
for osm_type in ['node', 'way', 'relation'] :
for elem in root.findall(osm_type):
# Get coordinates and append them to the points list
_, coords = get_base_info(elem, osm_type)
if coords is None :
continue
toilets = Toilets(location=coords)
# Extract tags as a dictionary
tags = {tag.get('k'): tag.get('v') for tag in elem.findall('tag')}
if 'wheelchair' in tags.keys() and tags['wheelchair'] == 'yes':
toilets.wheelchair = True
if 'changing_table' in tags.keys() and tags['changing_table'] == 'yes':
toilets.changing_table = True
if 'fee' in tags.keys() and tags['fee'] == 'yes':
toilets.fee = True
if 'opening_hours' in tags.keys() :
toilets.opening_hours = tags['opening_hours']
toilets_list.append(toilets)
return toilets_list

View File

@@ -39,7 +39,7 @@ jobs:
# remove the 'v' prefix from the tag name
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Load secrets from github
- name: Put selected secrets into files
run: |
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
@@ -51,8 +51,9 @@ jobs:
working-directory: android
- name: Run fastlane lane
run: bundle exec fastlane deploy_testing
run: bundle exec fastlane deploy_release
working-directory: android
env:
BUILD_NUMBER: ${{ github.run_number }}
# BUILD_NAME is implicitly available
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}

View File

@@ -0,0 +1,64 @@
on:
push:
tags:
- 'v*'
jobs:
build:
runs-on: macos-latest
env:
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
BUNDLE_GEMFILE: ${{ github.workspace }}/ios/Gemfile
steps:
- uses: actions/checkout@v4
- name: Set up ruby env
uses: ruby/setup-ruby@v1
with:
ruby-version: 3.3
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
- name: Install Flutter
uses: subosito/flutter-action@v2
with:
channel: stable
flutter-version: 3.22.0
cache: true
- name: Infer version number from git tag
id: version
env:
REF_NAME: ${{ github.ref_name }}
run:
# remove the 'v' prefix from the tag name
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Setup SSH key for match git repo
# and mark the host as known
run: |
echo $MATCH_REPO_SSH_KEY | base64 --decode > ~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
ssh-keyscan -p 2222 git.kluster.moll.re > ~/.ssh/known_hosts
env:
MATCH_REPO_SSH_KEY: ${{ secrets.IOS_MATCH_REPO_SSH_KEY_BASE64 }}
- name: Install dependencies and clean up
run: |
flutter pub get
bundle exec pod install
flutter clean
bundle exec pod cache clean --all
working-directory: ios
- name: Run fastlane lane
run: bundle exec fastlane deploy_release --verbose
working-directory: ios
env:
BUILD_NUMBER: ${{ github.run_number }}
# BUILD_NAME is implicitly available
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}
IOS_ASC_KEY_ID: ${{ secrets.IOS_ASC_KEY_ID }}
IOS_ASC_ISSUER_ID: ${{ secrets.IOS_ASC_ISSUER_ID }}
IOS_ASC_KEY: ${{ secrets.IOS_ASC_KEY }}
MATCH_PASSWORD: ${{ secrets.IOS_MATCH_PASSWORD }}
IOS_GOOGLE_MAPS_API_KEY: ${{ secrets.IOS_GOOGLE_MAPS_API_KEY }}

View File

@@ -46,12 +46,16 @@ bundle exec fastlane <lane>
```
This is reused in the CI/CD pipeline to automate the deployment process.
Fastlane assumes mutliple secrets to be present as files in the platform directories. These are:
- for android:
- `secrets.properties` used by gradle to load secrets needed at execution time
- `release.keystore` used by gradle to sign the apk
- `google-key.json` used by fastlane to authenticate with the Google Play Store
- for ios:
- TODO
Secrets used by fastlane are stored on hashicorp vault and are fetched by the CI/CD pipeline. See below.
These files are stored as secrets in the GitHub repository so that the CI pipeline can access them.
## Secrets
These are mostly used by the CI/CD pipeline to deploy the application. The main usage for github actions is documented under [https://github.com/hashicorp/vault-action](https://github.com/hashicorp/vault-action).
**Platform-specific secrets** are used by the CI/CD pipeline to deploy to the respective app stores.
- `GOOGLE_MAPS_API_KEY` is used to authenticate with the Google Maps API and is scoped to the android platform
- `ANDROID_KEYSTORE` is used to sign the android apk
- `ANDROID_GOOGLE_KEY` is used to authenticate with the Google Play Store api
- `IOS_GOOGLE_MAPS_API_KEY` is used to authenticate with the Google Maps API and is scoped to the ios platform
- `IOS_GOOGLE_...`
- `IOS_GOOGLE_...`
- `IOS_GOOGLE_...`

View File

@@ -63,11 +63,3 @@ Compared to the flutter template application, a few changes have to be made:
}
```
### Using the credentials in CI
- Add the secret files to the repository secrets (e.g. `ANDROID_SECRETS_PROPERTIES`).
- temporarily write them back to files during the CI execution:
```bash
echo {{ secrets.ANDROID_SECRETS }} >> android/secrets.properties
```

View File

@@ -65,7 +65,7 @@ android {
}
defaultConfig {
// TODO: Specify your own unique Application ID (https://developer.android.com/studio/build/application-id.html).
applicationId "com.anydev.anyway"
// You can update the following values to match your application needs.
// For more information, see: https://docs.flutter.dev/deployment/android#reviewing-the-gradle-build-configuration.
@@ -77,7 +77,7 @@ android {
versionCode flutterVersionCode.toInteger()
versionName flutterVersionName
// // Placeholders of keys that are replaced by the build system.
manifestPlaceholders += ['MAPS_API_KEY': secretProperties.getProperty('MAPS_API_KEY')]
manifestPlaceholders += ['MAPS_API_KEY': System.getenv('GOOGLE_MAPS_API_KEY')]
}

View File

@@ -1,3 +1,2 @@
# This file mirrors the state of secrets.properties as a reference for the developer.
# And as a fallback for build.gradle
MAPS_API_KEY=Key

View File

@@ -1,11 +1,8 @@
# Uncomment the line if you want fastlane to automatically update itself
# update_fastlane
default_platform(:android)
platform :android do
desc "Deploy a new version to closed testing"
desc "Deploy a new version to closed testing (play store)"
lane :deploy_testing do
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
@@ -30,24 +27,26 @@ platform :android do
)
end
desc "Deploy a new version as a full release"
lane :deploy_release do
gradle(
task: "clean assembleRelease",
# todo update to a flutter call
properties: {
# loaded from environment
"android.injected.version.name" => ENV["VERSION_NAME"],
}
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
sh(
"flutter",
"build",
"appbundle",
"--release",
"--build-name=#{build_name}",
"--build-number=#{build_number}",
)
upload_to_play_store(
track: "production",
track: 'production',
skip_upload_apk: true,
skip_upload_changelogs: true,
aab: "../build/app/outputs/bundle/release/app-release.aab",
# this is the default output of flutter build ... --release
# in particular this the build folder lies in the flutter root folder
# this is the parent folder for the android folder
)
)
end
end

View File

@@ -1,3 +1,9 @@
# fastlane secret
.env
secret.env
*.mobileprovision
report.xml
**/dgph
*.mode1v3
*.mode2v3

View File

@@ -1 +1,2 @@
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"
#include "Generated.xcconfig"

View File

@@ -1 +1,2 @@
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"
#include "Generated.xcconfig"

5
frontend/ios/Gemfile Normal file
View File

@@ -0,0 +1,5 @@
source "https://rubygems.org"
gem "fastlane"
gem "cocoapods"

288
frontend/ios/Gemfile.lock Normal file
View File

@@ -0,0 +1,288 @@
GEM
remote: https://rubygems.org/
specs:
CFPropertyList (3.0.7)
base64
nkf
rexml
activesupport (5.2.8.1)
concurrent-ruby (~> 1.0, >= 1.0.2)
i18n (>= 0.7, < 2)
minitest (~> 5.1)
tzinfo (~> 1.1)
addressable (2.8.7)
public_suffix (>= 2.0.2, < 7.0)
algoliasearch (1.27.5)
httpclient (~> 2.8, >= 2.8.3)
json (>= 1.5.1)
artifactory (3.0.17)
atomos (0.1.3)
aws-eventstream (1.3.0)
aws-partitions (1.1004.0)
aws-sdk-core (3.212.0)
aws-eventstream (~> 1, >= 1.3.0)
aws-partitions (~> 1, >= 1.992.0)
aws-sigv4 (~> 1.9)
jmespath (~> 1, >= 1.6.1)
aws-sdk-kms (1.95.0)
aws-sdk-core (~> 3, >= 3.210.0)
aws-sigv4 (~> 1.5)
aws-sdk-s3 (1.170.1)
aws-sdk-core (~> 3, >= 3.210.0)
aws-sdk-kms (~> 1)
aws-sigv4 (~> 1.5)
aws-sigv4 (1.10.1)
aws-eventstream (~> 1, >= 1.0.2)
babosa (1.0.4)
base64 (0.2.0)
claide (1.1.0)
cocoapods (1.10.2)
addressable (~> 2.6)
claide (>= 1.0.2, < 2.0)
cocoapods-core (= 1.10.2)
cocoapods-deintegrate (>= 1.0.3, < 2.0)
cocoapods-downloader (>= 1.4.0, < 2.0)
cocoapods-plugins (>= 1.0.0, < 2.0)
cocoapods-search (>= 1.0.0, < 2.0)
cocoapods-trunk (>= 1.4.0, < 2.0)
cocoapods-try (>= 1.1.0, < 2.0)
colored2 (~> 3.1)
escape (~> 0.0.4)
fourflusher (>= 2.3.0, < 3.0)
gh_inspector (~> 1.0)
molinillo (~> 0.6.6)
nap (~> 1.0)
ruby-macho (~> 1.4)
xcodeproj (>= 1.19.0, < 2.0)
cocoapods-core (1.10.2)
activesupport (> 5.0, < 6)
addressable (~> 2.6)
algoliasearch (~> 1.0)
concurrent-ruby (~> 1.1)
fuzzy_match (~> 2.0.4)
nap (~> 1.0)
netrc (~> 0.11)
public_suffix
typhoeus (~> 1.0)
cocoapods-deintegrate (1.0.5)
cocoapods-downloader (1.6.3)
cocoapods-plugins (1.0.0)
nap
cocoapods-search (1.0.1)
cocoapods-trunk (1.6.0)
nap (>= 0.8, < 2.0)
netrc (~> 0.11)
cocoapods-try (1.2.0)
colored (1.2)
colored2 (3.1.2)
commander (4.6.0)
highline (~> 2.0.0)
concurrent-ruby (1.3.4)
declarative (0.0.20)
digest-crc (0.6.5)
rake (>= 12.0.0, < 14.0.0)
domain_name (0.6.20240107)
dotenv (2.8.1)
emoji_regex (3.2.3)
escape (0.0.4)
ethon (0.16.0)
ffi (>= 1.15.0)
excon (0.112.0)
faraday (1.10.4)
faraday-em_http (~> 1.0)
faraday-em_synchrony (~> 1.0)
faraday-excon (~> 1.1)
faraday-httpclient (~> 1.0)
faraday-multipart (~> 1.0)
faraday-net_http (~> 1.0)
faraday-net_http_persistent (~> 1.0)
faraday-patron (~> 1.0)
faraday-rack (~> 1.0)
faraday-retry (~> 1.0)
ruby2_keywords (>= 0.0.4)
faraday-cookie_jar (0.0.7)
faraday (>= 0.8.0)
http-cookie (~> 1.0.0)
faraday-em_http (1.0.0)
faraday-em_synchrony (1.0.0)
faraday-excon (1.1.0)
faraday-httpclient (1.0.1)
faraday-multipart (1.0.4)
multipart-post (~> 2)
faraday-net_http (1.0.2)
faraday-net_http_persistent (1.2.0)
faraday-patron (1.0.0)
faraday-rack (1.0.0)
faraday-retry (1.0.3)
faraday_middleware (1.2.1)
faraday (~> 1.0)
fastimage (2.3.1)
fastlane (2.225.0)
CFPropertyList (>= 2.3, < 4.0.0)
addressable (>= 2.8, < 3.0.0)
artifactory (~> 3.0)
aws-sdk-s3 (~> 1.0)
babosa (>= 1.0.3, < 2.0.0)
bundler (>= 1.12.0, < 3.0.0)
colored (~> 1.2)
commander (~> 4.6)
dotenv (>= 2.1.1, < 3.0.0)
emoji_regex (>= 0.1, < 4.0)
excon (>= 0.71.0, < 1.0.0)
faraday (~> 1.0)
faraday-cookie_jar (~> 0.0.6)
faraday_middleware (~> 1.0)
fastimage (>= 2.1.0, < 3.0.0)
fastlane-sirp (>= 1.0.0)
gh_inspector (>= 1.1.2, < 2.0.0)
google-apis-androidpublisher_v3 (~> 0.3)
google-apis-playcustomapp_v1 (~> 0.1)
google-cloud-env (>= 1.6.0, < 2.0.0)
google-cloud-storage (~> 1.31)
highline (~> 2.0)
http-cookie (~> 1.0.5)
json (< 3.0.0)
jwt (>= 2.1.0, < 3)
mini_magick (>= 4.9.4, < 5.0.0)
multipart-post (>= 2.0.0, < 3.0.0)
naturally (~> 2.2)
optparse (>= 0.1.1, < 1.0.0)
plist (>= 3.1.0, < 4.0.0)
rubyzip (>= 2.0.0, < 3.0.0)
security (= 0.1.5)
simctl (~> 1.6.3)
terminal-notifier (>= 2.0.0, < 3.0.0)
terminal-table (~> 3)
tty-screen (>= 0.6.3, < 1.0.0)
tty-spinner (>= 0.8.0, < 1.0.0)
word_wrap (~> 1.0.0)
xcodeproj (>= 1.13.0, < 2.0.0)
xcpretty (~> 0.3.0)
xcpretty-travis-formatter (>= 0.0.3, < 2.0.0)
fastlane-sirp (1.0.0)
sysrandom (~> 1.0)
ffi (1.17.0)
ffi (1.17.0-x86_64-darwin)
fourflusher (2.3.1)
fuzzy_match (2.0.4)
gh_inspector (1.1.3)
google-apis-androidpublisher_v3 (0.54.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-core (0.11.3)
addressable (~> 2.5, >= 2.5.1)
googleauth (>= 0.16.2, < 2.a)
httpclient (>= 2.8.1, < 3.a)
mini_mime (~> 1.0)
representable (~> 3.0)
retriable (>= 2.0, < 4.a)
rexml
google-apis-iamcredentials_v1 (0.17.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-playcustomapp_v1 (0.13.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-storage_v1 (0.31.0)
google-apis-core (>= 0.11.0, < 2.a)
google-cloud-core (1.7.1)
google-cloud-env (>= 1.0, < 3.a)
google-cloud-errors (~> 1.0)
google-cloud-env (1.6.0)
faraday (>= 0.17.3, < 3.0)
google-cloud-errors (1.4.0)
google-cloud-storage (1.47.0)
addressable (~> 2.8)
digest-crc (~> 0.4)
google-apis-iamcredentials_v1 (~> 0.1)
google-apis-storage_v1 (~> 0.31.0)
google-cloud-core (~> 1.6)
googleauth (>= 0.16.2, < 2.a)
mini_mime (~> 1.0)
googleauth (1.8.1)
faraday (>= 0.17.3, < 3.a)
jwt (>= 1.4, < 3.0)
multi_json (~> 1.11)
os (>= 0.9, < 2.0)
signet (>= 0.16, < 2.a)
highline (2.0.3)
http-cookie (1.0.7)
domain_name (~> 0.5)
httpclient (2.8.3)
i18n (1.14.6)
concurrent-ruby (~> 1.0)
jmespath (1.6.2)
json (2.8.1)
jwt (2.9.3)
base64
mini_magick (4.13.2)
mini_mime (1.1.5)
minitest (5.25.1)
molinillo (0.6.6)
multi_json (1.15.0)
multipart-post (2.4.1)
nanaimo (0.4.0)
nap (1.1.0)
naturally (2.2.1)
netrc (0.11.0)
nkf (0.2.0)
optparse (0.6.0)
os (1.1.4)
plist (3.7.1)
public_suffix (6.0.1)
rake (13.2.1)
representable (3.2.0)
declarative (< 0.1.0)
trailblazer-option (>= 0.1.1, < 0.2.0)
uber (< 0.2.0)
retriable (3.1.2)
rexml (3.3.9)
rouge (2.0.7)
ruby-macho (1.4.0)
ruby2_keywords (0.0.5)
rubyzip (2.3.2)
security (0.1.5)
signet (0.19.0)
addressable (~> 2.8)
faraday (>= 0.17.5, < 3.a)
jwt (>= 1.5, < 3.0)
multi_json (~> 1.10)
simctl (1.6.10)
CFPropertyList
naturally
sysrandom (1.0.5)
terminal-notifier (2.0.0)
terminal-table (3.0.2)
unicode-display_width (>= 1.1.1, < 3)
thread_safe (0.3.6)
trailblazer-option (0.1.2)
tty-cursor (0.7.1)
tty-screen (0.8.2)
tty-spinner (0.9.3)
tty-cursor (~> 0.7)
typhoeus (1.4.1)
ethon (>= 0.9.0)
tzinfo (1.2.11)
thread_safe (~> 0.1)
uber (0.1.0)
unicode-display_width (2.6.0)
word_wrap (1.0.0)
xcodeproj (1.27.0)
CFPropertyList (>= 2.3.3, < 4.0)
atomos (~> 0.1.3)
claide (>= 1.0.2, < 2.0)
colored2 (~> 3.1)
nanaimo (~> 0.4.0)
rexml (>= 3.3.6, < 4.0)
xcpretty (0.3.0)
rouge (~> 2.0.7)
xcpretty-travis-formatter (1.0.1)
xcpretty (~> 0.2, >= 0.0.7)
PLATFORMS
ruby
x86_64-darwin-23
DEPENDENCIES
cocoapods
fastlane
BUNDLED WITH
2.5.23

59
frontend/ios/Podfile Normal file
View File

@@ -0,0 +1,59 @@
# Uncomment this line to define a global platform for your project
# platform :ios, '12.0'
# CocoaPods analytics sends network stats synchronously affecting flutter build latency.
ENV['COCOAPODS_DISABLE_STATS'] = 'true'
project 'Runner', {
'Debug' => :debug,
'Profile' => :release,
'Release' => :release,
}
def flutter_root
generated_xcode_build_settings_path = File.expand_path(File.join('..', 'Flutter', 'Generated.xcconfig'), __FILE__)
unless File.exist?(generated_xcode_build_settings_path)
raise "#{generated_xcode_build_settings_path} must exist. If you're running pod install manually, make sure flutter pub get is executed first"
end
File.foreach(generated_xcode_build_settings_path) do |line|
matches = line.match(/FLUTTER_ROOT\=(.*)/)
return matches[1].strip if matches
end
raise "FLUTTER_ROOT not found in #{generated_xcode_build_settings_path}. Try deleting Generated.xcconfig, then run flutter pub get"
end
require File.expand_path(File.join('packages', 'flutter_tools', 'bin', 'podhelper'), flutter_root)
flutter_ios_podfile_setup
target 'Runner' do
use_frameworks!
use_modular_headers!
flutter_install_all_ios_pods File.dirname(File.realpath(__FILE__))
target 'RunnerTests' do
inherit! :search_paths
end
end
post_install do |installer|
installer.pods_project.targets.each do |target|
flutter_additional_ios_build_settings(target)
target.build_configurations.each do |config|
# You can remove unused permissions here
# for more information: https://github.com/BaseflowIT/flutter-permission-handler/blob/master/permission_handler/ios/Classes/PermissionHandlerEnums.h
config.build_settings['GCC_PREPROCESSOR_DEFINITIONS'] ||= [
'$(inherited)',
## The 'PERMISSION_LOCATION' macro enables the `locationWhenInUse` and `locationAlways` permission. If
## the application only requires `locationWhenInUse`, only specify the `PERMISSION_LOCATION_WHENINUSE`
## macro.
##
## dart: [PermissionGroup.location, PermissionGroup.locationAlways, PermissionGroup.locationWhenInUse]
'PERMISSION_LOCATION=1',
'PERMISSION_LOCATION_WHENINUSE=0',
]
end
end
end

87
frontend/ios/Podfile.lock Normal file
View File

@@ -0,0 +1,87 @@
PODS:
- Flutter (1.0.0)
- geocoding_ios (1.0.5):
- Flutter
- geolocator_apple (1.2.0):
- Flutter
- Google-Maps-iOS-Utils (6.1.0):
- GoogleMaps (~> 9.0)
- google_maps_flutter_ios (0.0.1):
- Flutter
- Google-Maps-iOS-Utils (< 7.0, >= 5.0)
- GoogleMaps (< 10.0, >= 8.4)
- GoogleMaps (9.2.0):
- GoogleMaps/Maps (= 9.2.0)
- GoogleMaps/Maps (9.2.0)
- map_launcher (0.0.1):
- Flutter
- path_provider_foundation (0.0.1):
- Flutter
- FlutterMacOS
- permission_handler_apple (9.3.0):
- Flutter
- shared_preferences_foundation (0.0.1):
- Flutter
- FlutterMacOS
- sqflite (0.0.3):
- Flutter
- FlutterMacOS
- url_launcher_ios (0.0.1):
- Flutter
DEPENDENCIES:
- Flutter (from `Flutter`)
- geocoding_ios (from `.symlinks/plugins/geocoding_ios/ios`)
- geolocator_apple (from `.symlinks/plugins/geolocator_apple/ios`)
- google_maps_flutter_ios (from `.symlinks/plugins/google_maps_flutter_ios/ios`)
- map_launcher (from `.symlinks/plugins/map_launcher/ios`)
- path_provider_foundation (from `.symlinks/plugins/path_provider_foundation/darwin`)
- permission_handler_apple (from `.symlinks/plugins/permission_handler_apple/ios`)
- shared_preferences_foundation (from `.symlinks/plugins/shared_preferences_foundation/darwin`)
- sqflite (from `.symlinks/plugins/sqflite/darwin`)
- url_launcher_ios (from `.symlinks/plugins/url_launcher_ios/ios`)
SPEC REPOS:
trunk:
- Google-Maps-iOS-Utils
- GoogleMaps
EXTERNAL SOURCES:
Flutter:
:path: Flutter
geocoding_ios:
:path: ".symlinks/plugins/geocoding_ios/ios"
geolocator_apple:
:path: ".symlinks/plugins/geolocator_apple/ios"
google_maps_flutter_ios:
:path: ".symlinks/plugins/google_maps_flutter_ios/ios"
map_launcher:
:path: ".symlinks/plugins/map_launcher/ios"
path_provider_foundation:
:path: ".symlinks/plugins/path_provider_foundation/darwin"
permission_handler_apple:
:path: ".symlinks/plugins/permission_handler_apple/ios"
shared_preferences_foundation:
:path: ".symlinks/plugins/shared_preferences_foundation/darwin"
sqflite:
:path: ".symlinks/plugins/sqflite/darwin"
url_launcher_ios:
:path: ".symlinks/plugins/url_launcher_ios/ios"
SPEC CHECKSUMS:
Flutter: e0871f40cf51350855a761d2e70bf5af5b9b5de7
geocoding_ios: bcbdaa6bddd7d3129c9bcb8acddc5d8778689768
geolocator_apple: d981750b9f47dbdb02427e1476d9a04397beb8d9
Google-Maps-iOS-Utils: 0a484b05ed21d88c9f9ebbacb007956edd508a96
google_maps_flutter_ios: 0291eb2aa252298a769b04d075e4a9d747ff7264
GoogleMaps: 634ec3ca99698b31ca2253d64f017217d70cfb38
map_launcher: fe43bda6720bb73c12fcc1bdd86123ff49a4d4d6
path_provider_foundation: 080d55be775b7414fd5a5ef3ac137b97b097e564
permission_handler_apple: 4ed2196e43d0651e8ff7ca3483a069d469701f2d
shared_preferences_foundation: 9e1978ff2562383bd5676f64ec4e9aa8fa06a6f7
sqflite: c35dad70033b8862124f8337cc994a809fcd9fa3
url_launcher_ios: 694010445543906933d732453a59da0a173ae33d
PODFILE CHECKSUM: bd1a78910c05ac1e3a220e80f392c61ab2cc8789
COCOAPODS: 1.10.2

View File

@@ -11,9 +11,11 @@
331C808B294A63AB00263BE5 /* RunnerTests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 331C807B294A618700263BE5 /* RunnerTests.swift */; };
3B3967161E833CAA004F5970 /* AppFrameworkInfo.plist in Resources */ = {isa = PBXBuildFile; fileRef = 3B3967151E833CAA004F5970 /* AppFrameworkInfo.plist */; };
74858FAF1ED2DC5600515810 /* AppDelegate.swift in Sources */ = {isa = PBXBuildFile; fileRef = 74858FAE1ED2DC5600515810 /* AppDelegate.swift */; };
8F724AF5AC92A8A68D89C67E /* Pods_Runner.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */; };
97C146FC1CF9000F007C117D /* Main.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FA1CF9000F007C117D /* Main.storyboard */; };
97C146FE1CF9000F007C117D /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FD1CF9000F007C117D /* Assets.xcassets */; };
97C147011CF9000F007C117D /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FF1CF9000F007C117D /* LaunchScreen.storyboard */; };
CDD1C9EB82AEC89C2181F722 /* Pods_RunnerTests.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */; };
/* End PBXBuildFile section */
/* Begin PBXContainerItemProxy section */
@@ -40,14 +42,20 @@
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_Runner.framework; sourceTree = BUILT_PRODUCTS_DIR; };
1498D2321E8E86230040F4C2 /* GeneratedPluginRegistrant.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = GeneratedPluginRegistrant.h; sourceTree = "<group>"; };
1498D2331E8E89220040F4C2 /* GeneratedPluginRegistrant.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = GeneratedPluginRegistrant.m; sourceTree = "<group>"; };
282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.profile.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.profile.xcconfig"; sourceTree = "<group>"; };
3023467726A2A8275ED51C3E /* Pods-Runner.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.debug.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"; sourceTree = "<group>"; };
331C807B294A618700263BE5 /* RunnerTests.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = RunnerTests.swift; sourceTree = "<group>"; };
331C8081294A63A400263BE5 /* RunnerTests.xctest */ = {isa = PBXFileReference; explicitFileType = wrapper.cfbundle; includeInIndex = 0; path = RunnerTests.xctest; sourceTree = BUILT_PRODUCTS_DIR; };
3B3967151E833CAA004F5970 /* AppFrameworkInfo.plist */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.plist.xml; name = AppFrameworkInfo.plist; path = Flutter/AppFrameworkInfo.plist; sourceTree = "<group>"; };
4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_RunnerTests.framework; sourceTree = BUILT_PRODUCTS_DIR; };
5F8BB7E700693DEAB89BBE69 /* Pods-Runner.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.release.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"; sourceTree = "<group>"; };
74858FAD1ED2DC5600515810 /* Runner-Bridging-Header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "Runner-Bridging-Header.h"; sourceTree = "<group>"; };
74858FAE1ED2DC5600515810 /* AppDelegate.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = AppDelegate.swift; sourceTree = "<group>"; };
7AFA3C8E1D35360C0083082E /* Release.xcconfig */ = {isa = PBXFileReference; lastKnownFileType = text.xcconfig; name = Release.xcconfig; path = Flutter/Release.xcconfig; sourceTree = "<group>"; };
7B8A81C772249160491754F9 /* Pods-Runner.profile.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.profile.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.profile.xcconfig"; sourceTree = "<group>"; };
9740EEB21CF90195004384FC /* Debug.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = Debug.xcconfig; path = Flutter/Debug.xcconfig; sourceTree = "<group>"; };
9740EEB31CF90195004384FC /* Generated.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = Generated.xcconfig; path = Flutter/Generated.xcconfig; sourceTree = "<group>"; };
97C146EE1CF9000F007C117D /* Runner.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = Runner.app; sourceTree = BUILT_PRODUCTS_DIR; };
@@ -55,19 +63,43 @@
97C146FD1CF9000F007C117D /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
97C147001CF9000F007C117D /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/LaunchScreen.storyboard; sourceTree = "<group>"; };
97C147021CF9000F007C117D /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.release.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.release.xcconfig"; sourceTree = "<group>"; };
DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.debug.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.debug.xcconfig"; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
03EC59CC2AABC9D86B4ABFD7 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
CDD1C9EB82AEC89C2181F722 /* Pods_RunnerTests.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
97C146EB1CF9000F007C117D /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
8F724AF5AC92A8A68D89C67E /* Pods_Runner.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
1C946B8D83A95663C2489C91 /* Pods */ = {
isa = PBXGroup;
children = (
3023467726A2A8275ED51C3E /* Pods-Runner.debug.xcconfig */,
5F8BB7E700693DEAB89BBE69 /* Pods-Runner.release.xcconfig */,
7B8A81C772249160491754F9 /* Pods-Runner.profile.xcconfig */,
DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */,
A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */,
282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */,
);
path = Pods;
sourceTree = "<group>";
};
331C8082294A63A400263BE5 /* RunnerTests */ = {
isa = PBXGroup;
children = (
@@ -76,6 +108,15 @@
path = RunnerTests;
sourceTree = "<group>";
};
3ECCC9BD7D0792871219624C /* Frameworks */ = {
isa = PBXGroup;
children = (
03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */,
4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
9740EEB11CF90186004384FC /* Flutter */ = {
isa = PBXGroup;
children = (
@@ -94,6 +135,8 @@
97C146F01CF9000F007C117D /* Runner */,
97C146EF1CF9000F007C117D /* Products */,
331C8082294A63A400263BE5 /* RunnerTests */,
1C946B8D83A95663C2489C91 /* Pods */,
3ECCC9BD7D0792871219624C /* Frameworks */,
);
sourceTree = "<group>";
};
@@ -128,8 +171,10 @@
isa = PBXNativeTarget;
buildConfigurationList = 331C8087294A63A400263BE5 /* Build configuration list for PBXNativeTarget "RunnerTests" */;
buildPhases = (
F27C1B361CA1B045C8D36B3B /* [CP] Check Pods Manifest.lock */,
331C807D294A63A400263BE5 /* Sources */,
331C807F294A63A400263BE5 /* Resources */,
03EC59CC2AABC9D86B4ABFD7 /* Frameworks */,
);
buildRules = (
);
@@ -145,12 +190,15 @@
isa = PBXNativeTarget;
buildConfigurationList = 97C147051CF9000F007C117D /* Build configuration list for PBXNativeTarget "Runner" */;
buildPhases = (
2116AEE9DABFBBDED304ABEB /* [CP] Check Pods Manifest.lock */,
9740EEB61CF901F6004384FC /* Run Script */,
97C146EA1CF9000F007C117D /* Sources */,
97C146EB1CF9000F007C117D /* Frameworks */,
97C146EC1CF9000F007C117D /* Resources */,
9705A1C41CF9048500538489 /* Embed Frameworks */,
3B06AD1E1E4923F5004D2608 /* Thin Binary */,
FE4BAF74959AF0624BA808EE /* [CP] Embed Pods Frameworks */,
EE58653D94051600FD646EBE /* [CP] Copy Pods Resources */,
);
buildRules = (
);
@@ -222,6 +270,28 @@
/* End PBXResourcesBuildPhase section */
/* Begin PBXShellScriptBuildPhase section */
2116AEE9DABFBBDED304ABEB /* [CP] Check Pods Manifest.lock */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
);
inputPaths = (
"${PODS_PODFILE_DIR_PATH}/Podfile.lock",
"${PODS_ROOT}/Manifest.lock",
);
name = "[CP] Check Pods Manifest.lock";
outputFileListPaths = (
);
outputPaths = (
"$(DERIVED_FILE_DIR)/Pods-Runner-checkManifestLockResult.txt",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "diff \"${PODS_PODFILE_DIR_PATH}/Podfile.lock\" \"${PODS_ROOT}/Manifest.lock\" > /dev/null\nif [ $? != 0 ] ; then\n # print error to STDERR\n echo \"error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or update your CocoaPods installation.\" >&2\n exit 1\nfi\n# This output is used by Xcode 'outputs' to avoid re-running this script phase.\necho \"SUCCESS\" > \"${SCRIPT_OUTPUT_FILE_0}\"\n";
showEnvVarsInLog = 0;
};
3B06AD1E1E4923F5004D2608 /* Thin Binary */ = {
isa = PBXShellScriptBuildPhase;
alwaysOutOfDate = 1;
@@ -253,6 +323,62 @@
shellPath = /bin/sh;
shellScript = "/bin/sh \"$FLUTTER_ROOT/packages/flutter_tools/bin/xcode_backend.sh\" build";
};
EE58653D94051600FD646EBE /* [CP] Copy Pods Resources */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources-${CONFIGURATION}-input-files.xcfilelist",
);
name = "[CP] Copy Pods Resources";
outputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources-${CONFIGURATION}-output-files.xcfilelist",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "\"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources.sh\"\n";
showEnvVarsInLog = 0;
};
F27C1B361CA1B045C8D36B3B /* [CP] Check Pods Manifest.lock */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
);
inputPaths = (
"${PODS_PODFILE_DIR_PATH}/Podfile.lock",
"${PODS_ROOT}/Manifest.lock",
);
name = "[CP] Check Pods Manifest.lock";
outputFileListPaths = (
);
outputPaths = (
"$(DERIVED_FILE_DIR)/Pods-RunnerTests-checkManifestLockResult.txt",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "diff \"${PODS_PODFILE_DIR_PATH}/Podfile.lock\" \"${PODS_ROOT}/Manifest.lock\" > /dev/null\nif [ $? != 0 ] ; then\n # print error to STDERR\n echo \"error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or update your CocoaPods installation.\" >&2\n exit 1\nfi\n# This output is used by Xcode 'outputs' to avoid re-running this script phase.\necho \"SUCCESS\" > \"${SCRIPT_OUTPUT_FILE_0}\"\n";
showEnvVarsInLog = 0;
};
FE4BAF74959AF0624BA808EE /* [CP] Embed Pods Frameworks */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks-${CONFIGURATION}-input-files.xcfilelist",
);
name = "[CP] Embed Pods Frameworks";
outputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks-${CONFIGURATION}-output-files.xcfilelist",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "\"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks.sh\"\n";
showEnvVarsInLog = 0;
};
/* End PBXShellScriptBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
@@ -327,6 +453,7 @@
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
@@ -361,27 +488,45 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
CODE_SIGN_IDENTITY = "Apple Development";
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
CODE_SIGN_STYLE = Manual;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = "";
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
MARKETING_VERSION = 1.0.0;
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
PRODUCT_NAME = "$(TARGET_NAME)";
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
SUPPORTS_MACCATALYST = NO;
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
VERSIONING_SYSTEM = "apple-generic";
};
name = Profile;
};
331C8088294A63A400263BE5 /* Debug */ = {
isa = XCBuildConfiguration;
baseConfigurationReference = DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */;
buildSettings = {
BUNDLE_LOADER = "$(TEST_HOST)";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = L32Y3D8V83;
GENERATE_INFOPLIST_FILE = YES;
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
@@ -395,10 +540,12 @@
};
331C8089294A63A400263BE5 /* Release */ = {
isa = XCBuildConfiguration;
baseConfigurationReference = A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */;
buildSettings = {
BUNDLE_LOADER = "$(TEST_HOST)";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = L32Y3D8V83;
GENERATE_INFOPLIST_FILE = YES;
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
@@ -410,10 +557,12 @@
};
331C808A294A63A400263BE5 /* Profile */ = {
isa = XCBuildConfiguration;
baseConfigurationReference = 282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */;
buildSettings = {
BUNDLE_LOADER = "$(TEST_HOST)";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = L32Y3D8V83;
GENERATE_INFOPLIST_FILE = YES;
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
@@ -447,6 +596,7 @@
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
@@ -504,6 +654,7 @@
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
@@ -540,18 +691,34 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
CODE_SIGN_IDENTITY = "Apple Development";
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
CODE_SIGN_STYLE = Manual;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = "";
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
MARKETING_VERSION = 1.0.0;
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
PRODUCT_NAME = "$(TARGET_NAME)";
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
SUPPORTS_MACCATALYST = NO;
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
VERSIONING_SYSTEM = "apple-generic";
};
name = Debug;
@@ -562,17 +729,33 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
CODE_SIGN_IDENTITY = "Apple Development";
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
CODE_SIGN_STYLE = Manual;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = "";
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
MARKETING_VERSION = 1.0.0;
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
PRODUCT_NAME = "$(TARGET_NAME)";
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
SUPPORTS_MACCATALYST = NO;
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
VERSIONING_SYSTEM = "apple-generic";
};
name = Release;

View File

@@ -4,4 +4,7 @@
<FileRef
location = "group:Runner.xcodeproj">
</FileRef>
<FileRef
location = "group:Pods/Pods.xcodeproj">
</FileRef>
</Workspace>

View File

@@ -1,12 +1,14 @@
import UIKit
import Flutter
import GoogleMaps
@UIApplicationMain
@main
@objc class AppDelegate: FlutterAppDelegate {
override func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey: Any]?
) -> Bool {
GMSServices.provideAPIKey("IOS_GOOGLE_MAPS_API_KEY")
GeneratedPluginRegistrant.register(with: self)
return super.application(application, didFinishLaunchingWithOptions: launchOptions)
}

View File

@@ -2,10 +2,12 @@
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CADisableMinimumFrameDurationOnPhone</key>
<true/>
<key>CFBundleDevelopmentRegion</key>
<string>$(DEVELOPMENT_LANGUAGE)</string>
<key>CFBundleDisplayName</key>
<string>Fast Network Navigation</string>
<string>anyway</string>
<key>CFBundleExecutable</key>
<string>$(EXECUTABLE_NAME)</string>
<key>CFBundleIdentifier</key>
@@ -24,6 +26,8 @@
<string>$(FLUTTER_BUILD_NUMBER)</string>
<key>LSRequiresIPhoneOS</key>
<true/>
<key>UIApplicationSupportsIndirectInputEvents</key>
<true/>
<key>UILaunchStoryboardName</key>
<string>LaunchScreen</string>
<key>UIMainStoryboardFile</key>
@@ -41,9 +45,38 @@
<string>UIInterfaceOrientationLandscapeLeft</string>
<string>UIInterfaceOrientationLandscapeRight</string>
</array>
<key>CADisableMinimumFrameDurationOnPhone</key>
<true/>
<key>UIApplicationSupportsIndirectInputEvents</key>
<true/>
<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>$(PRODUCT_NAME) optionally uses your location to plan trips directly from your current location.</string>
<key>NSLocationWhenInUseUsageDescription</key>
<string>$(PRODUCT_NAME) optionally uses your location to plan trips directly from your current location.</string>
<key>LSApplicationQueriesSchemes</key>
<array>
<!-- set by maps launcher -->
<string>comgooglemaps</string>
<string>baidumap</string>
<string>iosamap</string>
<string>waze</string>
<string>yandexmaps</string>
<string>yandexnavi</string>
<string>citymapper</string>
<string>mapswithme</string>
<string>osmandmaps</string>
<string>dgis</string>
<string>qqmap</string>
<string>here-location</string>
<string>tomtomgo</string>
<string>copilot</string>
<string>com.sygic.aura</string>
<string>nmap</string>
<string>kakaomap</string>
<string>tmap</string>
<string>szn-mapy</string>
<string>mappls</string>
<!-- used by url launcher to open web browser -->
<string>http</string>
<string>https</string>
</array>
<key>ITSAppUsesNonExemptEncryption</key>
<false/>
</dict>
</plist>

View File

@@ -0,0 +1,13 @@
# SAMPLE env file that replicates the env in the CI/CD pipeline
# DO NOT EDIT THIS FILE
# Copy this file to local.env and edit the values to match your local environment
BUILD_NAME="sample"
BUILD_NUMBER="sample"
IOS_ASC_KEY_ID="sample"
IOS_ASC_KEY="sample"
IOS_ASC_ISSUER_ID="sample"
SIGNING_KEY_FILE_PATH="sample"
SIGNING_KEY_PASSWORD="sample"
IOS_GOOGLE_MAPS_API_KEY="sample"

View File

@@ -0,0 +1,8 @@
app_identifier("info.anydev.testing") # The bundle identifier of your app
apple_id("me@moll.re") # Your Apple Developer Portal username
itc_team_id("127439860") # App Store Connect Team ID
team_id("L32Y3D8V83") # Developer Portal Team ID
# For more information about the Appfile, see:
# https://docs.fastlane.tools/advanced/#appfile

View File

@@ -0,0 +1,102 @@
default_platform(:ios)
platform :ios do
desc "Load the App Store Connect API token"
lane :load_asc_api_token do
app_store_connect_api_key(
key_id: ENV["IOS_ASC_KEY_ID"],
issuer_id: ENV["IOS_ASC_ISSUER_ID"],
key_content: ENV["IOS_ASC_KEY"],
is_key_content_base64: true,
in_house: false
)
end
desc "Deploy a new version to closed testing (testflight)"
lane :deploy_testing do
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
load_asc_api_token
api_key = lane_context[SharedValues::APP_STORE_CONNECT_API_KEY]
sync_code_signing(
api_key: api_key,
type: "appstore",
readonly: true,
)
sh(
"flutter",
"build",
"ipa",
"--debug",
"--build-name=#{build_name}",
"--build-number=#{build_number}",
)
# sign the app (whithout rebuilding it)
build_app(
skip_build_archive: true,
archive_path: "../build/ios/archive/Runner.xcarchive"
)
upload_to_testflight(
skip_waiting_for_build_processing: true,
)
end
desc "Deploy a new version as a full release"
lane :deploy_release do
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
load_asc_api_token
api_key = lane_context[SharedValues::APP_STORE_CONNECT_API_KEY]
sync_code_signing(
api_key: api_key,
type: "appstore",
readonly: true,
)
# replace secrets by real values, the stupid way
sh(
"sed",
"-i",
"",
"s/IOS_GOOGLE_MAPS_API_KEY/#{ENV["IOS_GOOGLE_MAPS_API_KEY"]}/g",
"../Runner/AppDelegate.swift"
)
sh(
"flutter",
"build",
"ipa",
"--release",
"--build-name=#{build_name}",
"--build-number=#{build_number}",
)
# sign the app (whithout rebuilding it)
build_app(
skip_build_archive: true,
archive_path: "../build/ios/archive/Runner.xcarchive"
)
upload_to_app_store(
skip_screenshots: true,
skip_metadata: true,
precheck_include_in_app_purchases: false,
submit_for_review: true,
automatic_release: true,
# automatically release the app after review
)
end
end

View File

@@ -0,0 +1,8 @@
git_url("ssh://git@git.kluster.moll.re:2222/anydev/anyway-app-secrets.git")
storage_mode("git")
type("appstore") # The default type, can be: appstore, adhoc, enterprise or development
app_identifier(["info.anydev.anyway"])
username("me@moll.re") # Your Apple Developer Portal username

View File

@@ -0,0 +1,48 @@
fastlane documentation
----
# Installation
Make sure you have the latest version of the Xcode command line tools installed:
```sh
xcode-select --install
```
For _fastlane_ installation instructions, see [Installing _fastlane_](https://docs.fastlane.tools/#installing-fastlane)
# Available Actions
## iOS
### ios load_asc_api_token
```sh
[bundle exec] fastlane ios load_asc_api_token
```
Load the App Store Connect API token
### ios deploy_testing
```sh
[bundle exec] fastlane ios deploy_testing
```
Deploy a new version to closed testing (testflight)
### ios deploy_release
```sh
[bundle exec] fastlane ios deploy_release
```
Deploy a new version as a full release
----
This README.md is auto-generated and will be re-generated every time [_fastlane_](https://fastlane.tools) is run.
More information about _fastlane_ can be found on [fastlane.tools](https://fastlane.tools).
The documentation of _fastlane_ can be found on [docs.fastlane.tools](https://docs.fastlane.tools).

View File

@@ -1 +1,2 @@
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"
#include "ephemeral/Flutter-Generated.xcconfig"

View File

@@ -1 +1,2 @@
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"
#include "ephemeral/Flutter-Generated.xcconfig"

43
frontend/macos/Podfile Normal file
View File

@@ -0,0 +1,43 @@
platform :osx, '10.14'
# CocoaPods analytics sends network stats synchronously affecting flutter build latency.
ENV['COCOAPODS_DISABLE_STATS'] = 'true'
project 'Runner', {
'Debug' => :debug,
'Profile' => :release,
'Release' => :release,
}
def flutter_root
generated_xcode_build_settings_path = File.expand_path(File.join('..', 'Flutter', 'ephemeral', 'Flutter-Generated.xcconfig'), __FILE__)
unless File.exist?(generated_xcode_build_settings_path)
raise "#{generated_xcode_build_settings_path} must exist. If you're running pod install manually, make sure \"flutter pub get\" is executed first"
end
File.foreach(generated_xcode_build_settings_path) do |line|
matches = line.match(/FLUTTER_ROOT\=(.*)/)
return matches[1].strip if matches
end
raise "FLUTTER_ROOT not found in #{generated_xcode_build_settings_path}. Try deleting Flutter-Generated.xcconfig, then run \"flutter pub get\""
end
require File.expand_path(File.join('packages', 'flutter_tools', 'bin', 'podhelper'), flutter_root)
flutter_macos_podfile_setup
target 'Runner' do
use_frameworks!
use_modular_headers!
flutter_install_all_macos_pods File.dirname(File.realpath(__FILE__))
target 'RunnerTests' do
inherit! :search_paths
end
end
post_install do |installer|
installer.pods_project.targets.each do |target|
flutter_additional_macos_build_settings(target)
end
end