114 Commits

Author SHA1 Message Date
1e54ff45d5 remove gradle again
Some checks failed
Build and deploy the backend to production / Deploy to production (push) Has been cancelled
Build and deploy the backend to production / Build and push image (push) Has been cancelled
/ push-to-remote (push) Successful in 12s
2024-09-25 17:39:08 +02:00
55f8c938fb cleanup 2024-09-25 16:50:34 +02:00
59f3f0d454 update screenshots
Some checks failed
Build and deploy the backend to production / Deploy to production (push) Has been cancelled
Build and deploy the backend to production / Build and push image (push) Has been cancelled
/ push-to-remote (push) Successful in 41s
2024-09-25 16:20:33 +02:00
06dc0c7c3b Merge pull request 'Usability and styling' (#24) from feature/frontend-usability-and-styling into main
Some checks failed
Build and deploy the backend to production / Deploy to production (push) Has been cancelled
Build and deploy the backend to production / Build and push image (push) Has been cancelled
/ push-to-remote (push) Successful in 12s
Reviewed-on: #24
2024-09-25 13:26:19 +00:00
d37fb09d62 trip destination from current location
Some checks failed
Build and release APK / Build APK (pull_request) Failing after 5m54s
2024-09-25 15:10:49 +02:00
88b825ea31 better visual coherence 2024-09-25 14:48:33 +02:00
d323194ea7 Better location handling on map 2024-09-24 23:48:07 +02:00
ed60fcba06 revamp new trip flow 2024-09-24 22:58:28 +02:00
eaa2334942 ensure new images are pulled upon redeployment 2024-09-22 15:13:32 +02:00
f71aab22dc Merge branch 'feature/adding-timed-visits'
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 2m3s
/ push-to-remote (push) Failing after 22s
Build and deploy the backend to production / Deploy to production (push) Successful in 12s
2024-09-22 15:04:56 +02:00
1f7b006a64 Merge pull request 'Fix deployment configuration' (#23) from test/backend-deploy-pipeline into main
All checks were successful
Build and deploy the backend to production / Build and push image (push) Successful in 1m49s
/ push-to-remote (push) Successful in 12s
Build and deploy the backend to production / Deploy to production (push) Successful in 12s
Reviewed-on: #23
2024-09-22 12:31:20 +00:00
e5ea6e64e7 fix ingress
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m13s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 13s
2024-09-21 16:04:35 +02:00
9deb461925 a bit of documentation
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m43s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 13s
2024-09-21 15:10:48 +02:00
7414f7109d updated deployment config
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m38s
Build and deploy the backend to staging / Deploy to staging (pull_request) Failing after 12s
2024-09-21 14:56:40 +02:00
94d12f2983 even more fixes
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m38s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 9s
2024-09-21 14:22:28 +02:00
0e3f56a131 must be this format?
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 39s
Build and deploy the backend to staging / Deploy to production (pull_request) Failing after 8s
2024-09-21 13:14:11 +02:00
2f901e008e slight workflow test
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 0s
Build and deploy the backend to staging / Deploy to production (pull_request) Failing after 0s
2024-09-21 13:12:56 +02:00
f45dccff97 just a test
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 0s
Build and deploy the backend to staging / Deploy to production (pull_request) Failing after 0s
2024-09-21 13:09:27 +02:00
da85b91975 a better backend deployment workflow 2024-09-21 13:07:18 +02:00
156661bfba fix remote repo pushing 2024-09-20 14:56:08 +02:00
205ec37764 Merge branch 'feature/frontend/deploy-to-stores'
Some checks failed
/ push-to-remote (push) Failing after 3s
2024-09-18 16:11:56 +02:00
db821b4856 cleanup and documentation
Some checks failed
Build and release APK / Build APK (pull_request) Failing after 9m4s
2024-09-18 16:07:20 +02:00
b63c50ebd0 Merge pull request 'display more landmark information' (#21) from feature/frontend-more-landmark-information into main
Reviewed-on: #21
2024-09-18 13:07:53 +00:00
d4066a1726 cleanup of application to satisfy google requirements 2024-09-18 15:06:13 +02:00
7617c5788c launcher icon handling 2024-09-18 14:04:16 +02:00
1ade92aed3 better timing
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m49s
Build and release APK / Build APK (pull_request) Successful in 5m3s
2024-09-10 18:12:17 +02:00
d1c53e08bb improved tour length
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m39s
Build and release APK / Build APK (pull_request) Successful in 5m14s
2024-09-10 17:23:01 +02:00
797db5c1da set start and finish as primary
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m34s
Build and release APK / Build APK (pull_request) Successful in 5m3s
2024-09-10 17:11:36 +02:00
055089bf76 better landmarks log
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m5s
Build and release APK / Build APK (pull_request) Successful in 4m46s
2024-09-10 17:07:26 +02:00
3475990e5f fixed timing and optimizer speed
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m49s
Build and release APK / Build APK (pull_request) Successful in 5m40s
2024-09-10 16:53:16 +02:00
7cbf5a037c display more landmark information
All checks were successful
Build and release APK / Build APK (pull_request) Successful in 5m49s
2024-09-10 16:15:08 +02:00
20f20da9c5 fixed int score
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m43s
Build and release APK / Build APK (pull_request) Successful in 6m36s
2024-09-10 10:16:01 +02:00
b11f082803 more automation 2024-09-10 10:12:53 +02:00
0ae20e4995 use fastlane to deploy android app 2024-09-06 08:26:44 +02:00
728b954643 added image and website urls
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m15s
Build and release APK / Build APK (pull_request) Successful in 6m40s
2024-08-28 18:08:09 +02:00
83d83b03a9 Merge pull request 'fix memcache usage' (#18) from fix/backend-usable-memcached into main
Reviewed-on: #18
2024-08-24 15:45:47 +00:00
87ef37f0a9 Merge branch 'feature/frontend-onboarding' 2024-08-24 17:45:07 +02:00
5912f562c3 Merge pull request 'location picker and ui fixes' (#17) from feature/frontend/location-picker into main
Reviewed-on: #17
2024-08-24 15:36:10 +00:00
eaecc27305 onboarding screen proof of concept
All checks were successful
Build and release APK / Build APK (pull_request) Successful in 5m47s
2024-08-17 13:12:46 +02:00
003b8d0f9c better time management for optimizer 2024-08-12 18:52:01 +02:00
a1fcc8d23b added duration
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m30s
2024-08-12 16:07:53 +02:00
da921171e9 more balanced scores
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m41s
2024-08-12 15:58:30 +02:00
d24bc2470b navigation intent gets opened correctly
All checks were successful
Build and release APK / Build APK (pull_request) Successful in 5m50s
2024-08-11 16:06:20 +02:00
6d3399640e use more fitting floating action button, cleanup
All checks were successful
Build and release APK / Build APK (pull_request) Successful in 5m24s
2024-08-10 17:14:56 +02:00
e951032f11 fix memcache usage
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m37s
2024-08-10 15:12:39 +02:00
22ca038017 trip loading (from device storage) much improved
All checks were successful
Build and release APK / Build APK (pull_request) Successful in 5m18s
2024-08-09 11:39:11 +02:00
311b1c2218 location picker and ui fixes
All checks were successful
Build and release APK / Build APK (pull_request) Successful in 5m25s
2024-08-09 00:48:45 +02:00
bea3a65fec Merge pull request 'Tentatively enable communication between front + backend' (#15) from feature/frontend-backend-interoperability into main
Reviewed-on: #15
2024-08-06 13:51:31 +00:00
f71b9b19a6 show correct landmark types when fetching from api
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m42s
Build and release APK / Build APK (pull_request) Successful in 5m22s
2024-08-06 14:34:12 +02:00
89511f39cb better errorhandling, slimmed down optimizer
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m40s
Build and release APK / Build APK (pull_request) Successful in 5m26s
2024-08-05 16:03:29 +02:00
71d9554d97 ui improvements for trips and landmarks
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m48s
Build and release APK / Build APK (pull_request) Successful in 4m51s
2024-08-05 10:18:00 +02:00
c87a01b2e8 overhaul using a trip struct that notifies its ui dependencies
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m54s
Build and release APK / Build APK (pull_request) Successful in 5m32s
2024-08-03 17:17:48 +02:00
5748630b99 bare implementation of comuncation with the api
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m6s
Build and release APK / Build APK (pull_request) Successful in 4m32s
2024-08-01 22:48:28 +02:00
016622c7af frontend compliant with backend
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m38s
Build and release APK / Build APK (pull_request) Successful in 5m11s
2024-08-01 19:35:25 +02:00
bf129b201d more straightforward logging 2024-08-01 19:34:48 +02:00
86bcec6b29 frontend groundwork
Some checks failed
Build and release APK / Build APK (pull_request) Has been cancelled
Build and push docker image / Build (pull_request) Successful in 1m33s
2024-08-01 17:56:06 +02:00
07dde5ab58 persistence for recurring api calls
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m48s
2024-07-31 12:54:25 +02:00
db82495f11 rename frontend components to anyway 2024-07-30 22:49:28 +02:00
889b6c2096 added wikidata throttle to gitignore 2024-07-27 21:05:13 +02:00
35e0f3c400 Merge pull request 'Add readmes' (#12) from feature/documentation into main
Reviewed-on: remoll/fast-network-navigation#12
2024-07-27 12:10:12 +00:00
de5f1ec3d3 Merge pull request 'cleanup-backend' (#13) from cleanup-backend into main
Reviewed-on: remoll/fast-network-navigation#13
2024-07-27 12:09:54 +00:00
81c763587d Merge pull request 'style corrections, documentation, duplicate removal, flow improvement' (#11) from feature/backend-refactoring into cleanup-backend
Some checks failed
Build and push docker image / Build (pull_request) Failing after 10s
Reviewed-on: remoll/fast-network-navigation#11
2024-07-27 12:09:10 +00:00
3fa689fd16 a few docker-related fixes 2024-07-26 19:11:26 +02:00
2736a89f70 cleanup in view of docker builds 2024-07-26 13:13:36 +02:00
e50eedf099 add readmes with first pointers
Some checks failed
Build and push docker image / Build (pull_request) Failing after 2m15s
Build and release APK / Build APK (pull_request) Successful in 6m46s
Build web / Build Web (pull_request) Successful in 2m33s
2024-07-25 17:22:29 +02:00
2863c99d7c style corrections, documentation, duplicate removal, flow improvement 2024-07-25 17:15:18 +02:00
80b3d5b012 refactored landmark manager and clean up 2024-07-25 09:37:37 +02:00
d23050b811 fixed parameters folder 2024-07-24 10:34:34 +02:00
127ba8c028 fixed log 2024-07-21 10:16:13 +02:00
94fa735d54 cleaned up backend to use classes and yaml files 2024-07-20 23:16:35 +02:00
14a7f555df more coherent base types 2024-07-17 13:22:43 +02:00
4a291a69c9 Merge branch 'feature/backend/initial-deployment' 2024-07-17 12:47:20 +02:00
7d7a25e2f3 stage changes as reference implementation
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m50s
Build and release APK / Build APK (pull_request) Successful in 4m11s
Build web / Build Web (pull_request) Successful in 1m28s
2024-07-17 12:35:08 +02:00
f590ebb5ed Merge pull request 'Permafix-optimization-refiner' (#9) from Permafix-optimization-refiner into main
Reviewed-on: remoll/fast-network-navigation#9
2024-07-17 10:32:32 +00:00
b09ec2b083 changed bbox to meters
All checks were successful
Build and push docker image / Build (pull_request) Successful in 3m45s
Build and release APK / Build APK (pull_request) Successful in 6m57s
Build web / Build Web (pull_request) Successful in 2m33s
2024-07-17 12:30:47 +02:00
8d71cab8d5 osmnx does not behave 2024-07-17 12:00:40 +02:00
87df2f70e9 cleanup files 2024-07-17 11:59:42 +02:00
50bc8150c8 permafixed ? 2024-07-16 09:01:58 +02:00
4466f29a3d better map style 2024-07-08 12:21:22 +02:00
25cc0fa300 (theoretically) functional deployment 2024-07-08 11:55:27 +02:00
8f23a4747d further cleanup 2024-07-08 11:55:00 +02:00
4896e95617 cleaned up 2024-07-08 02:13:13 +02:00
30ed2bb9ed permafixed the optimizer ??? 2024-07-08 02:01:42 +02:00
568e7bfbc4 upgraded optimizer 2024-07-08 01:20:17 +02:00
d4e964c5d4 fixed the optimizer_v4 2024-07-07 16:24:15 +02:00
f9c86261cb switch to osmnx 2024-07-07 14:49:10 +02:00
e71c92da40 added some ideas 2024-07-07 10:17:50 +02:00
006b80018a Added 2024-07-05 17:21:47 +02:00
49ce8527a3 cleanup path handling for easier dockerization 2024-06-30 18:42:59 +02:00
bec1827891 Corrected optimizer and landmark attributes in backend 2024-06-26 14:23:51 +02:00
8e33bd1b3f base structs as agreed upon 2024-06-26 12:27:54 +02:00
c26d9222bd Merge branch 'feature/backend/unify-api-communication' 2024-06-26 11:05:57 +02:00
09bcd95cab space
Some checks failed
Build web / Build Web (pull_request) Has been cancelled
Build and release APK / Build APK (pull_request) Has been cancelled
Build and push docker image / Build (pull_request) Has been cancelled
2024-06-26 10:52:51 +02:00
fdcaaf8c16 updated refiner
Some checks failed
Build and push docker image / Build (pull_request) Successful in 3m17s
Build and release APK / Build APK (pull_request) Has been cancelled
Build web / Build Web (pull_request) Has been cancelled
2024-06-26 10:52:24 +02:00
8d068c80a7 Upgraded refiner
All checks were successful
Build and push docker image / Build (pull_request) Successful in 3m8s
Build and release APK / Build APK (pull_request) Successful in 5m0s
Build web / Build Web (pull_request) Successful in 1m41s
2024-06-24 11:06:01 +02:00
b6c9e61be9 Merge pull request 'UI elements using the new structs' (#8) from feature/unify-api-frontend into main
Reviewed-on: remoll/fast-network-navigation#8
2024-06-23 19:21:48 +00:00
eede94add4 working save and load functionality with custom datastructures
Some checks failed
Build and push docker image / Build (pull_request) Failing after 2m8s
Build and release APK / Build APK (pull_request) Successful in 5m15s
Build web / Build Web (pull_request) Successful in 1m13s
2024-06-23 21:19:06 +02:00
813c83a81d removed amentiy=arts_centre
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m10s
Build and release APK / Build APK (pull_request) Successful in 5m16s
Build web / Build Web (pull_request) Successful in 1m39s
2024-06-23 18:22:14 +02:00
fd378d6289 fixed refiner
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m36s
Build and release APK / Build APK (pull_request) Successful in 5m31s
Build web / Build Web (pull_request) Successful in 1m15s
2024-06-23 12:08:51 +02:00
34922a2645 Added refiner (for minor landmarks)
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m17s
Build and release APK / Build APK (pull_request) Successful in 5m13s
Build web / Build Web (pull_request) Successful in 1m14s
2024-06-23 10:50:44 +02:00
db41528702 functional datastructure. Needs to be able to write to storage as well
Some checks failed
Build and push docker image / Build (pull_request) Failing after 3m5s
Build and release APK / Build APK (pull_request) Successful in 7m24s
Build web / Build Web (pull_request) Successful in 3m36s
2024-06-21 19:30:40 +02:00
1f5bd92895 added pep8 example
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m59s
Build and release APK / Build APK (pull_request) Successful in 4m47s
Build web / Build Web (pull_request) Successful in 1m42s
2024-06-19 14:58:11 +02:00
111e6836f6 reviewed code structure, cleaned comments, now pep8 conform
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m17s
Build and release APK / Build APK (pull_request) Successful in 6m53s
Build web / Build Web (pull_request) Successful in 1m31s
2024-06-11 20:14:12 +02:00
af4d68f36f fixed optimizer and added a member to Landmark class
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m16s
Build and release APK / Build APK (pull_request) Successful in 5m28s
Build web / Build Web (pull_request) Successful in 1m23s
2024-06-11 10:46:09 +02:00
53a5a9e873 fixed duplicate landmarks
All checks were successful
Build and push docker image / Build (pull_request) Successful in 3m4s
Build and release APK / Build APK (pull_request) Successful in 5m44s
Build web / Build Web (pull_request) Successful in 2m14s
2024-06-10 22:52:08 +02:00
adbb6466d9 fixed optimizer. works fine now
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m17s
Build and release APK / Build APK (pull_request) Successful in 5m56s
Build web / Build Web (pull_request) Successful in 1m15s
2024-06-10 14:24:37 +02:00
9a5ae95d97 landmark styling
Some checks failed
Build and push docker image / Build (pull_request) Failing after 2m47s
Build and release APK / Build APK (pull_request) Successful in 4m39s
Build web / Build Web (pull_request) Successful in 1m21s
2024-06-07 15:09:18 +02:00
40943c5c5b finally use correct api key 2024-06-07 15:06:33 +02:00
040e5c9f83 cleaner ci
Some checks failed
Build and push docker image / Build (pull_request) Failing after 2m10s
Build and release APK / Build APK (pull_request) Successful in 6m34s
Build web / Build Web (pull_request) Successful in 1m42s
2024-06-07 10:44:37 +02:00
c58c10b057 fixed input as coordinates
Some checks failed
Build and push docker image / Build (pull_request) Failing after 36s
Build and release APK / Build APK (pull_request) Successful in 5m20s
Build web / Build Web (pull_request) Successful in 1m13s
2024-06-04 00:20:54 +02:00
bcc91c638d Merge branch 'feature/backend/unify-api-communication' of ssh://git.kluster.moll.re:2222/remoll/fast-network-navigation into feature/backend/unify-api-communication
All checks were successful
Build and push docker image / Build (pull_request) Successful in 2m8s
Build and release APK / Build APK (pull_request) Successful in 5m14s
Build web / Build Web (pull_request) Successful in 1m34s
2024-05-30 00:50:56 +02:00
d88f22121e started to implement overpass queries 2024-05-30 00:48:38 +02:00
beee9614c5 Update .gitea/workflows/backed_build-image.yaml
All checks were successful
Build and push docker image / Build (pull_request) Successful in 3m4s
Build and release APK / Build APK (pull_request) Successful in 4m49s
Build web / Build Web (pull_request) Successful in 1m51s
2024-05-29 22:37:22 +00:00
03da8441f2 cleaned up folders and defined proper structs
Some checks failed
Build and push docker image / Build (pull_request) Failing after 2m14s
Build and release APK / Build APK (pull_request) Successful in 5m15s
Build web / Build Web (pull_request) Successful in 2m32s
2024-05-29 22:57:11 +02:00
179 changed files with 6920 additions and 1740 deletions

View File

@@ -0,0 +1,24 @@
on:
push:
tags:
- v*
name: Build and deploy the backend to production
jobs:
build-and-push:
name: Build and push image
uses: ./.gitea/workflows/workflow_build-image.yaml
with:
tag: stable
secrets:
PACKAGE_REGISTRY_ACCESS: ${{ secrets.PACKAGE_REGISTRY_ACCESS }}
deploy-prod:
name: Deploy to production
uses: ./.gitea/workflows/workflow_deploy-container.yaml
with:
overlay: prod
secrets:
KUBE_CONFIG: ${{ secrets.KUBE_CONFIG }}
needs: build-and-push

View File

@@ -0,0 +1,26 @@
on:
pull_request:
branches:
- main
paths:
- backend/**
name: Build and deploy the backend to staging
jobs:
build-and-push:
name: Build and push image
uses: ./.gitea/workflows/workflow_build-image.yaml
with:
tag: unstable
secrets:
PACKAGE_REGISTRY_ACCESS: ${{ secrets.PACKAGE_REGISTRY_ACCESS }}
deploy-prod:
name: Deploy to staging
uses: ./.gitea/workflows/workflow_deploy-container.yaml
with:
overlay: stg
secrets:
KUBE_CONFIG: ${{ secrets.KUBE_CONFIG }}
needs: build-and-push

View File

@@ -42,20 +42,26 @@ jobs:
- run: flutter pub get
working-directory: ./frontend
- run: flutter build apk --release --split-per-abi
- name: Add required secrets
env:
ANDROID_SECRETS_PROPERTIES: ${{ secrets.ANDROID_SECRETS_PROPERTIES }}
run: |
echo "$ANDROID_SECRETS_PROPERTIES" >> ./android/secrets.properties
working-directory: ./frontend
- name: Release APK
uses: https://gitea.com/akkuman/gitea-release-action@v1
with:
files: ./frontend/build/app/outputs/flutter-apk/*.apk
name: Testing release
release_name: testing
tag: testing
tag_name: testing
release_body: "This is a testing release."
prerelease: true
token: ${{ secrets.GITEA_TOKEN }}
env:
NODE_OPTIONS: '--experimental-fetch'
- name: Sanity check
run: |
ls
ls -lah android
working-directory: ./frontend
- run: flutter build apk --release --split-per-abi --build-number=${{ gitea.run_number }}
working-directory: ./frontend
- name: Upload APKs to artifacts
uses: https://gitea.com/actions/upload-artifact@v3
with:
name: app-release
path: frontend/build/app/outputs/flutter-apk/
if-no-files-found: error
retention-days: 15

View File

@@ -1,34 +1,34 @@
on:
pull_request:
branches:
- main
paths:
- frontend/**
# on:
# pull_request:
# branches:
# - main
# paths:
# - frontend/**
name: Build web
# name: Build web
jobs:
build:
name: Build Web
runs-on: ubuntu-latest
steps:
# jobs:
# build:
# name: Build Web
# runs-on: ubuntu-latest
# steps:
- name: Install prerequisites
run: |
sudo apt-get update
sudo apt-get install -y xz-utils
# - name: Install prerequisites
# run: |
# sudo apt-get update
# sudo apt-get install -y xz-utils
- uses: actions/checkout@v4
# - uses: actions/checkout@v4
- uses: https://github.com/subosito/flutter-action@v2
with:
channel: stable
flutter-version: 3.19.6
cache: true
# - uses: https://github.com/subosito/flutter-action@v2
# with:
# channel: stable
# flutter-version: 3.19.6
# cache: true
- run: flutter pub get
working-directory: ./frontend
# - run: flutter pub get
# working-directory: ./frontend
- run: flutter build web
working-directory: ./frontend
# - run: flutter build web
# working-directory: ./frontend

View File

@@ -0,0 +1,39 @@
on:
push:
tags:
- v*
jobs:
push-to-remote:
# We want to use the macos runner provided by github actions. This requires to push to a remote first.
# After the push we can use the action under frontend/.github/actions/ to deploy properly using fastlane on macos.
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
path: 'src'
- name: Checkout remote repository
uses: actions/checkout@v3
with:
path: 'dest'
ref: 'main'
github-server-url: 'https://github.com'
repository: 'moll-re/anyway-frontend-builder'
token: ${{ secrets.PUSH_GITHUB_API_TOKEN }}
fetch-depth: 0
persist-credentials: true
- name: Copy files to remote repository
run: cp -r src/frontend/. dest/
- name: Commit and push changes
run: |
cd dest
git config --global user.email "me@moll.re"
git config --global user.name "[bot]"
git add .
git commit -m "Automatic code update for tag"
git tag -a ${{ github.ref_name }} -m "mirrored tag"
git push origin main --tags

View File

@@ -1,10 +1,17 @@
on:
pull_request:
branches:
- main
workflow_call:
inputs:
tag:
required: true
type: string
secrets:
PACKAGE_REGISTRY_ACCESS:
required: true
name: Build and push docker image
jobs:
build:
name: Build
@@ -18,7 +25,7 @@ jobs:
with:
registry: git.kluster.moll.re
username: ${{ gitea.repository_owner }}
password: ${{ secrets.GITEA_TOKEN}}
password: ${{ secrets.PACKAGE_REGISTRY_ACCESS }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -27,5 +34,5 @@ jobs:
uses: docker/build-push-action@v5
with:
context: backend
tags: git.kluster.moll.re/remoll/fast_network_navigation/backend:latest
tags: git.kluster.moll.re/anydev/anyway-backend:${{ inputs.tag }}
push: true

View File

@@ -0,0 +1,35 @@
on:
workflow_call:
inputs:
overlay:
required: true
type: string
secrets:
KUBE_CONFIG:
required: true
name: Deploy the newly built container
jobs:
deploy:
name: Deploy
runs-on: ubuntu-latest
steps:
- uses: https://gitea.com/actions/checkout@v4
with:
submodules: true
- name: setup kubectl
uses: https://github.com/azure/setup-kubectl@v4
- name: Set kubeconfig
run: |
echo "${{ secrets.KUBE_CONFIG }}" > kubeconfig
- name: Deploy to k8s
run: |
kubectl apply -k backend/deployment/overlays/${{ inputs.overlay }} --kubeconfig=kubeconfig
kubectl -n anyway-backend rollout restart deployment/anyway-backend-${{ inputs.overlay }}

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
cache/

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "backend/deployment"]
path = backend/deployment
url = https://git.kluster.moll.re/anydev/anyway-backend-deployment

46
.vscode/launch.json vendored
View File

@@ -4,25 +4,49 @@
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
// backend - python using fastapi
{
"name": "frontend",
"cwd": "frontend",
"name": "Backend - debug",
"type": "debugpy",
"request": "launch",
"type": "dart"
"module": "uvicorn",
"env": {
"DEBUG": "true"
},
"args": [
"--app-dir",
"src",
"main:app",
"--reload",
],
"jinja": true,
"cwd": "${workspaceFolder}/backend"
},
{
"name": "frontend (profile mode)",
"cwd": "frontend",
"name": "Backend - tester",
"type": "debugpy",
"request": "launch",
"program": "src/tester.py",
"env": {
"DEBUG": "true"
},
"cwd": "${workspaceFolder}/backend"
},
// frontend - flutter app
{
"name": "Frontend - debug",
"type": "dart",
"flutterMode": "profile"
"request": "launch",
"program": "lib/main.dart",
"cwd": "${workspaceFolder}/frontend"
},
{
"name": "frontend (release mode)",
"cwd": "frontend",
"request": "launch",
"name": "Frontend - profile",
"type": "dart",
"flutterMode": "release"
},
"request": "launch",
"program": "lib/main.dart",
"flutterMode": "profile",
"cwd": "${workspaceFolder}/frontend"
}
]
}

View File

@@ -1,16 +1,40 @@
# fast_network_navigation
# AnyWay - plan city trips your way
AnyWay is a mobile application that helps users plan city trips. The app allows users to specify their preferences and constraints, and then generates a personalized itinerary for them. The planning follows some guiding principles:
- **Personalization**:The user's preferences should be reflected in the choice of destinations.
- **Efficiency**:The itinerary should be optimized for the user's constraints.
- **Flexibility**: We aknowledge that tourism is a dynamic activity, and that users may want to change their plans on the go.
- **Discoverability**: Tourism is an inherently exploratory activity. Once a rough itinerary is generated, detours and spontaneous decisions should be encouraged.
## Architecture
This project is divided into two main components: a frontend and a backend. The frontend is a Flutter application that runs on Android and iOS. The backend is a python server that runs on a cloud provider. The two components communicate via a REST API. Since both components are very interdependent and share many data structures, we opted for a monorepo approach.
### Frontend
See the [frontend README](frontend/README.md) for more information. The application is centered around its map view, which displays the user's itinerary. This is based on the Google Maps API.
### Backend
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap API, which is much more flexible.
A new Flutter project.
## Getting Started
Refer to the READMEs in the `frontend` and `backend` directories for instructions on how to run the application locally. Notable prerequisites include:
- Flutter SDK
- `google_maps_flutter` plugin
- Python 3
- `fastapi`
- `OSMPythonTools`
- `numpy, scipy`
- Docker
This project is a starting point for a Flutter application.
A few resources to get you started if this is your first Flutter project:
## Releases
The project is still in its early stages. We are currently working on a prototype that demonstrates the core functionality of the application.
- [Lab: Write your first Flutter app](https://docs.flutter.dev/get-started/codelab)
- [Cookbook: Useful Flutter samples](https://docs.flutter.dev/cookbook)
Official releases will be made available on the Google Play Store and the Apple App Store.
For help getting started with Flutter development, view the
[online documentation](https://docs.flutter.dev/), which offers tutorials,
samples, guidance on mobile development, and a full API reference.
## Roadmap
See the [project board](https://todos.kluster.moll.re/share/L8vZJGU45Vx9RzzVqTzyCPrpRybXm1OAqaW7YkWb/auth?view=list):
<iframe src="https://todos.kluster.moll.re/share/L8vZJGU45Vx9RzzVqTzyCPrpRybXm1OAqaW7YkWb/auth?view=list" title="Todos" width="100%">

7
backend/.gitignore vendored
View File

@@ -1,5 +1,10 @@
# osm-cache
# osm-cache and wikidata cache
cache/
apicache/
# wikidata throttle
*.ctrl
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

View File

@@ -1,4 +1,4 @@
FROM python:3
FROM python:3.11-slim
WORKDIR /app
COPY Pipfile Pipfile.lock .
@@ -6,6 +6,13 @@ COPY Pipfile Pipfile.lock .
RUN pip install pipenv
RUN pipenv install --deploy --system
COPY . /src
COPY src src
CMD ["pipenv", "run", "python", "/app/src/main.py"]
EXPOSE 8000
# Set environment variables used by the deployment. These can be overridden by the user using this image.
ENV NUM_WORKERS=1
ENV OSM_CACHE_DIR=/cache
ENV MEMCACHED_HOST_PATH=none
CMD fastapi run src/main.py --port 8000 --workers $NUM_WORKERS

View File

@@ -3,10 +3,15 @@ url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"
[dev-packages]
[packages]
numpy = "*"
scipy = "*"
fastapi = "*"
pydantic = "*"
geopy = "*"
shapely = "*"
scipy = "*"
osmpythontools = "*"
[dev-packages]
pywikibot = "*"
pymemcache = "*"

941
backend/Pipfile.lock generated

File diff suppressed because it is too large Load Diff

19
backend/README.md Normal file
View File

@@ -0,0 +1,19 @@
# Backend
This repository contains the backend code for the application. It utilizes FastAPI that allows to quickly create a RESTful API that exposes the endpoints of the route optimizer.
## Getting Started
- The code of the python application is located in the `src` directory.
- Package management is handled with `pipenv` and the dependencies are listed in the `Pipfile`.
- Since the application is aimed to be deployed in a container, the `Dockerfile` is provided to build the image.
### Deployment
To deploy the backend docker container, we use kubernetes. Modifications to the backend are automatically pushed to a two-stage environment through the CI pipeline. See [deployment/README](deployment/README.md] for further information.
The deployment configuration is included as a submodule in the `deployment` directory. The standalone repository is under [https://git.kluster.moll.re/anydev/anyway-backend-deployment/](https://git.kluster.moll.re/anydev/anyway-backend-deployment/).
## Development
TBD

View File

@@ -1 +0,0 @@
import app.src

View File

@@ -1,34 +0,0 @@
from .src.optimizer import solve_optimization
from .src.landmarks_manager import Landmark
from fastapi import FastAPI
app = FastAPI()
@app.get("/optimize/{max_steps}/{print_details}")
def main(max_steps: int, print_details: bool):
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
#max_steps = 16
# Initialize all landmarks (+ start and goal). Order matters here
landmarks = []
landmarks.append(Landmark("départ", -1, (0, 0)))
landmarks.append(Landmark("tour eiffel", 99, (0,2))) # PUT IN JSON
landmarks.append(Landmark("arc de triomphe", 99, (0,4)))
landmarks.append(Landmark("louvre", 99, (0,6)))
landmarks.append(Landmark("montmartre", 99, (0,10)))
landmarks.append(Landmark("concorde", 99, (0,8)))
landmarks.append(Landmark("arrivée", -1, (0, 0)))
visiting_order = solve_optimization(landmarks, max_steps, print_details)
#return visiting_order
return("max steps :", max_steps, "\n", visiting_order)
"""if __name__ == "__main__":
main()"""

View File

@@ -1,57 +0,0 @@
from OSMPythonTools.api import Api
from OSMPythonTools.overpass import Overpass
from dataclasses import dataclass
# Defines the landmark class (aka some place there is to visit)
@dataclass
class Landmarkkkk :
name : str
attractiveness : int
id : int
@dataclass
class Landmark :
name : str
attractiveness : int
loc : tuple
# Converts a OSM id to a landmark
def add_from_id(id: int, score: int) :
try :
s = 'way/' + str(id) # prepare string for query
obj = api.query(s) # object to add
except :
s = 'relation/' + str(id) # prepare string for query
obj = api.query(s) # object to add
return Landmarkkkk(obj.tag('name:fr'), score, id) # create Landmark out of it
# take a lsit of tuples (id, score) to generate a list of landmarks
def generate_landmarks(ids_and_scores: list) :
L = []
for tup in ids_and_scores :
L.append(add_from_id(tup[0], tup[1]))
return L
api = Api()
l = (7515426, 70)
t = (5013364, 100)
n = (201611261, 99)
a = (226413508, 50)
m = (23762981, 30)
ids_and_scores = [t, l, n, a, m]
landmarks = generate_landmarks(ids_and_scores)
for obj in landmarks :
print(obj)

View File

@@ -1,23 +0,0 @@
import fastapi
from dataclasses import dataclass
@dataclass
class Destination:
name: str
location: tuple
attractiveness: int
d = Destination()
def get_route() -> list[Destination]:
return {"route": "Hello World"}
endpoint = ("/get_route", get_route)
end
if __name__ == "__main__":
fastapi.run()

View File

@@ -1,323 +0,0 @@
from scipy.optimize import linprog
import numpy as np
from scipy.linalg import block_diag
# landmarks = [Landmark_1, Landmark_2, ...]
# Convert the solution of the optimization into the list of edges to follow. Order is taken into account
def untangle(resx: list) :
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_edges = resx.sum() # number of edges
order = []
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
indx = nonzero_tup[0].tolist()
indy = nonzero_tup[1].tolist()
vert = (indx[0], indy[0])
order.append(vert[0])
order.append(vert[1])
while len(order) < n_edges + 1 :
ind = indx.index(vert[1])
vert = (indx[ind], indy[ind])
order.append(vert[1])
return order
# Just to print the result
def print_res(res, landmarks: list, P) :
X = abs(res.x)
order = untangle(X)
things = []
"""N = int(np.sqrt(len(X)))
for i in range(N):
print(X[i*N:i*N+N])
print("Optimal value:", -res.fun) # Minimization, so we negate to get the maximum
print("Optimal point:", res.x)
for i,x in enumerate(X) : X[i] = round(x,0)
print(order)"""
if (X.sum()+1)**2 == len(X) :
print('\nAll landmarks can be visited within max_steps, the following order is suggested : ')
else :
print('Could not visit all the landmarks, the following order is suggested : ')
for idx in order :
print('- ' + landmarks[idx].name)
things.append(landmarks[idx].name)
steps = path_length(P, abs(res.x))
print("\nSteps walked : " + str(steps))
return things
# Checks for cases of circular symmetry in the result
def has_circle(resx: list) :
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_edges = resx.sum() # number of edges
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
indx = nonzero_tup[0].tolist()
indy = nonzero_tup[1].tolist()
verts = []
for i, x in enumerate(indx) :
verts.append((x, indy[i]))
for vert in verts :
visited = []
visited.append(vert)
while len(visited) < n_edges + 1 :
try :
ind = indx.index(vert[1])
vert = (indx[ind], indy[ind])
if vert in visited :
return visited
else :
visited.append(vert)
except :
break
return []
# Constraint to not have d14 and d41 simultaneously. Does not prevent circular symmetry with more elements
def break_sym(landmarks, A_ub, b_ub):
L = len(landmarks)
upper_ind = np.triu_indices(L,0,L)
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
for i, _ in enumerate(up_ind_x) :
l = [0]*L*L
if up_ind_x[i] != up_ind_y[i] :
l[up_ind_x[i]*L + up_ind_y[i]] = 1
l[up_ind_y[i]*L + up_ind_x[i]] = 1
A_ub = np.vstack((A_ub,l))
b_ub.append(1)
"""for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
return A_ub, b_ub
# Constraint to not have circular paths. Want to go from start -> finish without unconnected loops
def break_circle(landmarks, A_ub, b_ub, circle) :
N = len(landmarks)
l = [0]*N*N
for index in circle :
x = index[0]
y = index[1]
l[x*N+y] = 1
A_ub = np.vstack((A_ub,l))
b_ub.append(len(circle)-1)
"""print("\n\nPREVENT CIRCLE")
for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
return A_ub, b_ub
# Constraint to respect max number of travels
def respect_number(landmarks, A_ub, b_ub):
h = []
for i in range(len(landmarks)) : h.append([1]*len(landmarks))
T = block_diag(*h)
"""for l in T :
for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks)
# Constraint to tie the problem together. Necessary but not sufficient to avoid circles
def respect_order(landmarks: list, A_eq, b_eq):
N = len(landmarks)
for i in range(N-1) : # Prevent stacked ones
if i == 0 :
continue
else :
l = [0]*N
l[i] = -1
l = l*N
for j in range(N) :
l[i*N + j] = 1
A_eq = np.vstack((A_eq,l))
b_eq.append(0)
"""for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
return A_eq, b_eq
# Compute manhattan distance between 2 locations
def manhattan_distance(loc1: tuple, loc2: tuple):
x1, y1 = loc1
x2, y2 = loc2
return abs(x1 - x2) + abs(y1 - y2)
# Constraint to not stay in position
def init_eq_not_stay(landmarks):
L = len(landmarks)
l = [0]*L*L
for i in range(L) :
for j in range(L) :
if j == i :
l[j + i*L] = 1
l[L-1] = 1 # cannot skip from start to finish
#A_eq = np.array([np.array(xi) for xi in A_eq]) # Must convert A_eq into an np array
l = np.array(np.array(l))
"""for i in range(7):
print(l[i*7:i*7+7])"""
return [l], [0]
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
# We want to maximize the sightseeing : max(c) st. A*x < b and A_eq*x = b_eq
def init_ub_dist(landmarks: list, max_steps: int):
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = []
# Coefficients of inequality constraints (left-hand side)
A = []
for i, spot1 in enumerate(landmarks) :
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
dist_table[j] = manhattan_distance(spot1.loc, spot2.loc)
A.append(dist_table)
c = c*len(landmarks)
A_ub = []
for line in A :
#print(line)
A_ub += line
return c, A_ub, [max_steps]
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
L = len(landmarks)
H = 0 # sort of heuristic to get an idea of the number of steps needed
for i in landmarks :
if i.name == "départ" : elem_prev = i # list of all matches
for i, elem in enumerate(landmarks) :
if elem.attractiveness == -1 :
l = [0]*L*L
if elem.name != "arrivée" :
for j in range(L) :
l[j +i*L] = 1
else : # This ensures we go to goal
for k in range(L-1) :
l[k*L+L-1] = 1
H += manhattan_distance(elem.loc, elem_prev.loc)
elem_prev = elem
"""for i in range(7):
print(l[i*7:i*7+7])
print("\n")"""
A_eq = np.vstack((A_eq,l))
b_eq.append(1)
return A_eq, b_eq, H
# Computes the path length given path matrix (dist_table) and a result
def path_length(P: list, resx: list) :
return np.dot(P, resx)
# Main optimization pipeline
def solve_optimization (landmarks, max_steps, printing_details) :
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
P = A_ub # store the paths for later. Needed to compute path length
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub) # Respect max number of visits.
# TODO : Problems with circular symmetry
A_ub, b_ub = break_sym(landmarks, A_ub, b_ub) # break the symmetry. Only use the upper diagonal values
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = init_eq_not_stay(landmarks) # Force solution not to stay in same place
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
# Bounds for variables (x can only be 0 or 1)
x_bounds = [(0, 1)] * len(c)
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
# Raise error if no solution is found
if not res.success :
# Override the max_steps using the heuristic
for i, val in enumerate(b_ub) :
if val == max_steps : b_ub[i] = H
# Solve problem again :
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
if not res.success :
s = "No solution could be found, even when increasing max_steps using the heuristic"
return s
#raise ValueError("No solution could be found, even when increasing max_steps using the heuristic")
# If there is a solution, we're good to go, just check for
else :
circle = has_circle(res.x)
i = 0
# Break the circular symmetry if needed
while len(circle) != 0 :
A_ub, b_ub = break_circle(landmarks, A_ub, b_ub, circle)
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
circle = has_circle(res.x)
i += 1
if printing_details is True :
if i != 0 :
print(f"Neded to recompute paths {i} times because of unconnected loops...")
X = print_res(res, landmarks, P)
return X
else :
return untangle(res.x)

1
backend/deployment Submodule

Submodule backend/deployment added at 8927f278f3

35
backend/src/constants.py Normal file
View File

@@ -0,0 +1,35 @@
import logging.config
from pathlib import Path
import os
LOCATION_PREFIX = Path('src')
PARAMETERS_DIR = LOCATION_PREFIX / 'parameters'
AMENITY_SELECTORS_PATH = PARAMETERS_DIR / 'amenity_selectors.yaml'
LANDMARK_PARAMETERS_PATH = PARAMETERS_DIR / 'landmark_parameters.yaml'
OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
OSM_CACHE_DIR = Path(cache_dir_string)
import logging
# if we are in a debug session, set verbose and rich logging
if os.getenv('DEBUG', False):
from rich.logging import RichHandler
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[RichHandler()]
)
else:
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
MEMCACHED_HOST_PATH = os.getenv('MEMCACHED_HOST_PATH', None)
if MEMCACHED_HOST_PATH == "none":
MEMCACHED_HOST_PATH = None

87
backend/src/main.py Normal file
View File

@@ -0,0 +1,87 @@
import logging
from fastapi import FastAPI, Query, Body, HTTPException
from structs.landmark import Landmark
from structs.preferences import Preferences
from structs.linked_landmarks import LinkedLandmarks
from structs.trip import Trip
from utils.landmarks_manager import LandmarkManager
from utils.optimizer import Optimizer
from utils.refiner import Refiner
from persistence import client as cache_client
logger = logging.getLogger(__name__)
app = FastAPI()
manager = LandmarkManager()
optimizer = Optimizer()
refiner = Refiner(optimizer=optimizer)
@app.post("/trip/new")
def new_trip(preferences: Preferences, start: tuple[float, float], end: tuple[float, float] | None = None) -> Trip:
'''
Main function to call the optimizer.
:param preferences: the preferences specified by the user as the post body
:param start: the coordinates of the starting point as a tuple of floats (as url query parameters)
:param end: the coordinates of the finishing point as a tuple of floats (as url query parameters)
:return: the uuid of the first landmark in the optimized route
'''
if preferences is None:
raise HTTPException(status_code=406, detail="Preferences not provided")
if preferences.shopping.score == 0 and preferences.sightseeing.score == 0 and preferences.nature.score == 0:
raise HTTPException(status_code=406, detail="All preferences are 0.")
if start is None:
raise HTTPException(status_code=406, detail="Start coordinates not provided")
if end is None:
end = start
logger.info("No end coordinates provided. Using start=end.")
start_landmark = Landmark(name='start', type='start', location=(start[0], start[1]), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
end_landmark = Landmark(name='finish', type='finish', location=(end[0], end[1]), osm_type='end', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
# Generate the landmarks from the start location
landmarks, landmarks_short = manager.generate_landmarks_list(
center_coordinates = start,
preferences = preferences
)
# insert start and finish to the landmarks list
landmarks_short.insert(0, start_landmark)
landmarks_short.append(end_landmark)
# First stage optimization
try:
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
except ArithmeticError:
raise HTTPException(status_code=500, detail="No solution found")
except TimeoutError:
raise HTTPException(status_code=500, detail="Optimzation took too long")
# Second stage optimization
refined_tour = refiner.refine_optimization(landmarks, base_tour, preferences.max_time_minute, preferences.detour_tolerance_minute)
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured. Ca
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
return trip
#### For already existing trips/landmarks
@app.get("/trip/{trip_uuid}")
def get_trip(trip_uuid: str) -> Trip:
try:
trip = cache_client.get(f"trip_{trip_uuid}")
return trip
except KeyError:
raise HTTPException(status_code=404, detail="Trip not found")
@app.get("/landmark/{landmark_uuid}")
def get_landmark(landmark_uuid: str) -> Landmark:
try:
landmark = cache_client.get(f"landmark_{landmark_uuid}")
return landmark
except KeyError:
raise HTTPException(status_code=404, detail="Landmark not found")

View File

@@ -0,0 +1,32 @@
nature:
leisure: park
geological: ''
natural:
- geyser
- hot_spring
- arch
- volcano
- stone
tourism:
- alpine_hut
- viewpoint
- zoo
waterway: waterfall
shopping:
shop:
- department_store
- mall
sightseeing:
tourism:
- museum
- attraction
- gallery
historic: ''
amenity:
- planetarium
- place_of_worship
- fountain
water:
- reflecting_pool

View File

@@ -0,0 +1,11 @@
city_bbox_side: 7500 #m
radius_close_to: 50
church_coeff: 0.75
nature_coeff: 1.25
overall_coeff: 10
tag_exponent: 1.15
image_bonus: 10
viewpoint_bonus: 15
wikipedia_bonus: 6
N_important: 40
pay_bonus: -1

View File

@@ -0,0 +1,6 @@
detour_factor: 1.4
detour_corridor_width: 300
average_walking_speed: 4.8
max_landmarks: 10
max_landmarks_refiner: 30
overshoot: 1.8

View File

@@ -0,0 +1,28 @@
from pymemcache.client.base import Client
from pymemcache import serde
import constants
class DummyClient:
_data = {}
def set(self, key, value, **kwargs):
self._data[key] = value
def set_many(self, data, **kwargs):
self._data.update(data)
def get(self, key, **kwargs):
return self._data[key]
if constants.MEMCACHED_HOST_PATH is None:
client = DummyClient()
else:
client = Client(
constants.MEMCACHED_HOST_PATH,
timeout=1,
allow_unicode_keys=True,
encoding='utf-8',
serde=serde.pickle_serde
)

View File

@@ -0,0 +1,44 @@
from typing import Optional, Literal
from pydantic import BaseModel, Field
from uuid import uuid4
# Output to frontend
class Landmark(BaseModel) :
# Properties of the landmark
name : str
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
location : tuple
osm_type : str
osm_id : int
attractiveness : int
n_tags : int
image_url : Optional[str] = None # TODO future
website_url : Optional[str] = None
wikipedia_url : Optional[str] = None
description : Optional[str] = None # TODO future
duration : Optional[int] = 0 # TODO future
name_en : Optional[str] = None
# Unique ID of a given landmark
uuid: str = Field(default_factory=uuid4) # TODO implement this ASAP
# Additional properties depending on specific tour
must_do : Optional[bool] = False
must_avoid : Optional[bool] = False
is_secondary : Optional[bool] = False # TODO future
time_to_reach_next : Optional[int] = 0 # TODO fix this in existing code
next_uuid : Optional[str] = None # TODO implement this ASAP
def __hash__(self) -> int:
return self.uuid.int
def __str__(self) -> str:
time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else ""
is_secondary_str = f", secondary" if self.is_secondary else ""
type_str = '(' + self.type + ')'
if self.type in ["start", "finish", "nature", "shopping"] : type_str += '\t '
return f'Landmark{type_str}: [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}{is_secondary_str}]'

View File

@@ -0,0 +1,64 @@
from .landmark import Landmark
from utils.get_time_separation import get_time
class LinkedLandmarks:
"""
A list of landmarks that are linked together, e.g. in a route.
Each landmark serves as a node in the linked list, but since we expect these to be consumed through the rest API, a pythonic reference to the next landmark is not well suited. Instead we use the uuid of the next landmark to reference the next landmark in the list. This is not very efficient, but appropriate for the expected use case ("short" trips with onyl few landmarks).
"""
_landmarks = list[Landmark]
total_time: int = 0
def __init__(self, data: list[Landmark] = None) -> None:
"""
Initialize a new LinkedLandmarks object. This expects an ORDERED list of landmarks, where the first landmark is the starting point and the last landmark is the end point.
Args:
data (list[Landmark], optional): The list of landmarks that are linked together. Defaults to None.
"""
self._landmarks = data if data else []
self._link_landmarks()
def _link_landmarks(self) -> None:
"""
Create the links between the landmarks in the list by setting their .next_uuid and the .time_to_next attributes.
"""
# Mark secondary landmarks as such
self.update_secondary_landmarks()
for i, landmark in enumerate(self._landmarks[:-1]):
landmark.next_uuid = self._landmarks[i + 1].uuid
time_to_next = get_time(landmark.location, self._landmarks[i + 1].location)
landmark.time_to_reach_next = time_to_next
self.total_time += time_to_next
self._landmarks[-1].next_uuid = None
self._landmarks[-1].time_to_reach_next = 0
def update_secondary_landmarks(self) -> None:
# Extract the attractiveness scores and sort them in descending order
scores = sorted([landmark.attractiveness for landmark in self._landmarks], reverse=True)
# Determine the 10th highest score
if len(scores) >= 10:
threshold_score = scores[9]
else:
# If there are fewer than 10 landmarks, use the lowest score in the list as the threshold
threshold_score = min(scores) if scores else 0
# Update 'is_secondary' for landmarks with attractiveness below the threshold score
for landmark in self._landmarks:
if landmark.attractiveness < threshold_score and landmark.type not in ["start", "finish"]:
landmark.is_secondary = True
def __getitem__(self, index: int) -> Landmark:
return self._landmarks[index]
def __str__(self) -> str:
return f"LinkedLandmarks [{' ->'.join([str(landmark) for landmark in self._landmarks])}]"

View File

@@ -0,0 +1,20 @@
from pydantic import BaseModel
from typing import Optional, Literal
class Preference(BaseModel) :
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
score: int # score could be from 1 to 5
# Input for optimization
class Preferences(BaseModel) :
# Sightseeing / History & Culture (Musées, bâtiments historiques, opéras, églises)
sightseeing : Preference
# Nature (parcs, jardins, rivières, plages)
nature: Preference
# Shopping (diriger plutôt vers des zones / rues commerçantes)
shopping : Preference
max_time_minute: Optional[int] = 6*60
detour_tolerance_minute: Optional[int] = 0

View File

@@ -0,0 +1,30 @@
from pydantic import BaseModel, Field
from pymemcache.client.base import Client
from .linked_landmarks import LinkedLandmarks
import uuid
class Trip(BaseModel):
uuid: str = Field(default_factory=uuid.uuid4)
total_time: int
first_landmark_uuid: str
@classmethod
def from_linked_landmarks(self, landmarks: LinkedLandmarks, cache_client: Client) -> "Trip":
"""
Initialize a new Trip object and ensure it is stored in the cache.
"""
trip = Trip(
total_time = landmarks.total_time,
first_landmark_uuid = str(landmarks[0].uuid)
)
# Store the trip in the cache
cache_client.set(f"trip_{trip.uuid}", trip)
cache_client.set_many({f"landmark_{landmark.uuid}": landmark for landmark in landmarks}, expire=3600)
# is equivalent to:
# for landmark in landmarks:
# cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600)
return trip

79
backend/src/tester.py Normal file
View File

@@ -0,0 +1,79 @@
import logging
import yaml
from utils.landmarks_manager import LandmarkManager
from utils.optimizer import Optimizer
from utils.refiner import Refiner
from structs.landmark import Landmark
from structs.linked_landmarks import LinkedLandmarks
from structs.preferences import Preferences, Preference
logger = logging.getLogger(__name__)
def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] = None) -> list[Landmark]:
manager = LandmarkManager()
optimizer = Optimizer()
refiner = Refiner(optimizer=optimizer)
preferences = Preferences(
sightseeing=Preference(type='sightseeing', score = 5),
nature=Preference(type='nature', score = 5),
shopping=Preference(type='shopping', score = 5),
max_time_minute=100,
detour_tolerance_minute=0
)
# Create start and finish
if finish_coords is None :
finish_coords = start_coords
start = Landmark(name='start', type='start', location=start_coords, osm_type='', osm_id=0, attractiveness=0, n_tags = 0)
finish = Landmark(name='finish', type='finish', location=finish_coords, osm_type='', osm_id=0, attractiveness=0, n_tags = 0)
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.8777055, 2.3640967), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
#start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.847132, 2.312359), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.843185, 2.344533), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.847132, 2.312359), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
# Generate the landmarks from the start location
landmarks, landmarks_short = manager.generate_landmarks_list(
center_coordinates = start_coords,
preferences = preferences
)
# Store data to file for debug purposes
# write_data(landmarks, "landmarks_Strasbourg.txt")
# Insert start and finish to the landmarks list
landmarks_short.insert(0, start)
landmarks_short.append(finish)
# First stage optimization
base_tour = optimizer.solve_optimization(max_time=preferences.max_time_minute, landmarks=landmarks_short)
# Second stage using linear optimization
refined_tour = refiner.refine_optimization(all_landmarks=landmarks, base_tour=base_tour, max_time = preferences.max_time_minute, detour = preferences.detour_tolerance_minute)
linked_tour = LinkedLandmarks(refined_tour)
total_time = 0
logger.info("Optimized route : ")
for l in linked_tour :
logger.info(f"{l}")
logger.info(f"Estimated length of tour : {linked_tour.total_time} mintutes and visiting {len(linked_tour._landmarks)} landmarks.")
# with open('linked_tour.yaml', 'w') as f:
# yaml.dump(linked_tour.asdict(), f)
return linked_tour
# test(tuple((48.8344400, 2.3220540))) # Café Chez César
# test(tuple((48.8375946, 2.2949904))) # Point random
# test(tuple((47.377859, 8.540585))) # Zurich HB
# test(tuple((45.758217, 4.831814))) # Lyon Bellecour
test(tuple((48.5848435, 7.7332974))) # Strasbourg Gare
# test(tuple((48.2067858, 16.3692340))) # Vienne

View File

@@ -0,0 +1,39 @@
import yaml
from geopy.distance import geodesic
import constants
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
DETOUR_FACTOR = parameters['detour_factor']
AVERAGE_WALKING_SPEED = parameters['average_walking_speed']
def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
Calculate the time in minutes to travel from one location to another.
Args:
p1 (Tuple[float, float]): Coordinates of the starting location.
p2 (Tuple[float, float]): Coordinates of the destination.
detour (float): Detour factor affecting the distance.
speed (float): Walking speed in kilometers per hour.
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
# Compute the straight-line distance in km
if p1 == p2 :
return 0
else:
dist = geodesic(p1, p2).kilometers
# Consider the detour factor for average cityto deterline walking distance (in km)
walk_dist = dist*DETOUR_FACTOR
# Time to walk this distance (in minutes)
walk_time = walk_dist/AVERAGE_WALKING_SPEED*60
return round(walk_time)

View File

@@ -0,0 +1,407 @@
import math as m
import yaml
import logging
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from pywikibot import ItemPage, Site
from pywikibot import config
config.put_throttle = 0
config.maxlag = 0
from structs.preferences import Preferences, Preference
from structs.landmark import Landmark
from .take_most_important import take_most_important
import constants
class LandmarkManager:
logger = logging.getLogger(__name__)
radius_close_to: int # radius in meters
church_coeff: float # coeff to adjsut score of churches
nature_coeff: float # coeff to adjust score of parks
overall_coeff: float # coeff to adjust weight of tags
N_important: int # number of important landmarks to consider
def __init__(self) -> None:
with constants.AMENITY_SELECTORS_PATH.open('r') as f:
self.amenity_selectors = yaml.safe_load(f)
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.max_bbox_side = parameters['city_bbox_side']
self.radius_close_to = parameters['radius_close_to']
self.church_coeff = parameters['church_coeff']
self.nature_coeff = parameters['nature_coeff']
self.overall_coeff = parameters['overall_coeff']
self.tag_exponent = parameters['tag_exponent']
self.image_bonus = parameters['image_bonus']
self.wikipedia_bonus = parameters['wikipedia_bonus']
self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus']
self.N_important = parameters['N_important']
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.walking_speed = parameters['average_walking_speed']
self.detour_factor = parameters['detour_factor']
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=constants.OSM_CACHE_DIR)
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
"""
Generate and prioritize a list of landmarks based on user preferences.
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
landmarks based on a predefined criterion.
Parameters:
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
preferences (Preferences): The user's preference settings that influence the landmark selection.
Returns:
tuple[list[Landmark], list[Landmark]]:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
"""
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
L = []
bbox = self.create_bbox(center_coordinates, reachable_bbox_side)
# list for sightseeing
if preferences.sightseeing.score != 0:
score_function = lambda score: int(score*10*preferences.sightseeing.score/5) # self.count_elements_close_to(loc) +
L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
L += L1
# list for nature
if preferences.nature.score != 0:
score_function = lambda score: int(score*10*self.nature_coeff*preferences.nature.score/5) # self.count_elements_close_to(loc) +
L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
L += L2
# list for shopping
if preferences.shopping.score != 0:
score_function = lambda score: int(score*10*preferences.shopping.score/5) # self.count_elements_close_to(loc) +
L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
L += L3
L = self.remove_duplicates(L)
# self.correct_score(L, preferences)
L_constrained = take_most_important(L, self.N_important)
self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.')
return L, L_constrained
def remove_duplicates(self, landmarks: list[Landmark]) -> list[Landmark]:
"""
Removes duplicate landmarks based on their names from the given list. Only retains the landmark with highest score
Parameters:
landmarks (list[Landmark]): A list of Landmark objects.
Returns:
list[Landmark]: A list of unique Landmark objects based on their names.
"""
L_clean = []
names = []
for landmark in landmarks:
if landmark.name in names:
continue
else:
names.append(landmark.name)
L_clean.append(landmark)
return L_clean
def correct_score(self, landmarks: list[Landmark], preferences: Preferences) -> None:
"""
Adjust the attractiveness score of each landmark in the list based on user preferences.
This method updates the attractiveness of each landmark by scaling it according to the user's preference score.
The score adjustment is computed using a simple linear transformation based on the preference score.
Args:
landmarks (list[Landmark]): A list of landmarks whose scores need to be corrected.
preferences (Preferences): The user's preference settings that influence the attractiveness score adjustment.
"""
score_dict = {
preferences.sightseeing.type: preferences.sightseeing.score,
preferences.nature.type: preferences.nature.score,
preferences.shopping.type: preferences.shopping.score
}
for landmark in landmarks:
landmark.attractiveness = int(landmark.attractiveness * score_dict[landmark.type] / 5)
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
"""
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
OpenStreetMap data to count the number of elements within that bounding box.
Args:
coordinates (tuple[float, float]): The latitude and longitude of the location to search around.
Returns:
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
are found or if an error occurs during the query.
"""
lat = coordinates[0]
lon = coordinates[1]
radius = self.radius_close_to
alpha = (180*radius) / (6371000*m.pi)
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
# Build the query to find elements within the radius
radius_query = overpassQueryBuilder(
bbox=[bbox['latLower'],
bbox['lonLower'],
bbox['latHigher'],
bbox['lonHigher']],
elementType=['node', 'way', 'relation']
)
try:
radius_result = self.overpass.query(radius_query)
N_elem = radius_result.countWays() + radius_result.countRelations()
self.logger.debug(f"There are {N_elem} ways/relations within 50m")
if N_elem is None:
return 0
return N_elem
except:
return 0
def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
"""
Create a bounding box around the given coordinates.
Args:
coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
reachable_bbox_side (int): The side length of the bounding box in meters.
Returns:
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
defining the bounding box.
"""
lat = coordinates[0]
lon = coordinates[1]
# Half the side length in km (since it's a square bbox)
half_side_length_km = reachable_bbox_side / 2 / 1000
# Convert distance to degrees
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
# Calculate bbox
min_lat = lat - lat_diff
max_lat = lat + lat_diff
min_lon = lon - lon_diff
max_lon = lon + lon_diff
return min_lat, min_lon, max_lat, max_lon
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
"""
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
Args:
bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon).
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
score_function (callable): The function to compute the score of the landmark based on its attributes.
Returns:
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
Notes:
- Landmarks are fetched using Overpass API queries.
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
- Landmarks are filtered based on various conditions including tags and type.
- Scores are assigned to landmarks based on their attributes and surrounding elements.
"""
return_list = []
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
# we need to split the selectors into separate queries and merge the results
for sel in dict_to_selector_list(amenity_selector):
self.logger.debug(f"Current selector: {sel}")
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['way', 'relation'],
selector = sel,
# conditions = [],
includeCenter = True,
out = 'body'
)
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
return
for elem in result.elements():
name = elem.tag('name') # Add name
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
# TODO: exclude these from the get go
# skip if unprecise location
if name is None or location[0] is None:
continue
# skip if unused
# if 'disused:leisure' in elem.tags().keys():
# continue
# skip if part of another building
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
continue
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
elem_type = landmarktype # Add the landmark type as 'sightseeing,
n_tags = len(elem.tags().keys()) # Add number of tags
score = n_tags**self.tag_exponent # Add score
website_url = None
wikpedia_url = None
image_url = None
name_en = None
# remove specific tags
skip = False
for tag in elem.tags().keys():
if "pay" in tag:
score += self.pay_bonus # discard payment options for tags
if "disused" in tag:
skip = True # skip disused amenities
break
if "wiki" in tag:
score += self.wikipedia_bonus # wikipedia entries count more
# if tag == "wikidata":
# Q = elem.tag('wikidata')
# site = Site("wikidata", "wikidata")
# item = ItemPage(site, Q)
# item.get()
# n_languages = len(item.labels)
# n_tags += n_languages/10
if "viewpoint" in tag:
score += self.viewpoint_bonus
duration = 10
if "image" in tag:
score += self.image_bonus
if elem_type != "nature":
if "leisure" in tag and elem.tag('leisure') == "park":
elem_type = "nature"
if landmarktype != "shopping":
if "shop" in tag:
skip = True
break
if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
skip = True
break
# Get additional information
# if tag == 'wikipedia' :
# wikpedia_url = elem.tag('wikipedia')
if tag in ['website', 'contact:website'] :
website_url = elem.tag(tag)
if tag == 'image' :
image_url = elem.tag('image')
if tag =='name:en' :
name_en = elem.tag('name:en')
if skip:
continue
score = score_function(score)
if "place_of_worship" in elem.tags().values() :
score = int(score*self.church_coeff)
duration = 15
elif "museum" in elem.tags().values() :
score = int(score*self.church_coeff)
duration = 60
else :
duration = 5
# Generate the landmark and append it to the list
landmark = Landmark(
name=name,
type=elem_type,
location=location,
osm_type=osm_type,
osm_id=osm_id,
attractiveness=score,
must_do=False,
n_tags=int(n_tags),
duration = duration,
name_en=name_en,
image_url=image_url,
# wikipedia_url=wikpedia_url,
website_url=website_url
)
return_list.append(landmark)
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
return return_list
def dict_to_selector_list(d: dict) -> list:
"""
Convert a dictionary of key-value pairs to a list of Overpass query strings.
Args:
d (dict): A dictionary of key-value pairs representing the selector.
Returns:
list: A list of strings representing the Overpass query selectors.
"""
return_list = []
for key, value in d.items():
if type(value) == list:
val = '|'.join(value)
return_list.append(f'{key}~"{val}"')
elif type(value) == str and len(value) == 0:
return_list.append(f'{key}')
else:
return_list.append(f'{key}={value}')
return return_list

View File

@@ -0,0 +1,525 @@
import yaml, logging
import numpy as np
from scipy.optimize import linprog
from collections import defaultdict, deque
from geopy.distance import geodesic
from structs.landmark import Landmark
from .get_time_separation import get_time
import constants
class Optimizer:
logger = logging.getLogger(__name__)
detour: int = None # accepted max detour time (in minutes)
detour_factor: float # detour factor of straight line vs real distance in cities
average_walking_speed: float # average walking speed of adult
max_landmarks: int # max number of landmarks to visit
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
def __init__(self) :
# load parameters from file
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.detour_factor = parameters['detour_factor']
self.average_walking_speed = parameters['average_walking_speed']
self.max_landmarks = parameters['max_landmarks']
self.overshoot = parameters['overshoot']
# Prevent the use of a particular solution
def prevent_config(self, resx):
"""
Prevent the use of a particular solution by adding constraints to the optimization.
Args:
resx (list[float]): List of edge weights.
Returns:
Tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # Number of edges
L = int(np.sqrt(N)) # Number of landmarks
nonzeroind = np.nonzero(resx)[0] # the return is a little funky so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
vertices_visited = ind_a
vertices_visited.remove(0)
ones = [1]*L
h = [0]*N
for i in range(L) :
if i in vertices_visited :
h[i*L:i*L+L] = ones
return h, [len(vertices_visited)-1]
# Prevents the creation of the same circle (both directions)
def prevent_circle(self, circle_vertices: list, L: int) :
"""
Prevent circular paths by by adding constraints to the optimization.
Args:
circle_vertices (list): List of vertices forming a circle.
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
l1 = [0]*L*L
l2 = [0]*L*L
for i, node in enumerate(circle_vertices[:-1]) :
next = circle_vertices[i+1]
l1[node*L + next] = 1
l2[next*L + node] = 1
s = circle_vertices[0]
g = circle_vertices[-1]
l1[g*L + s] = 1
l2[s*L + g] = 1
return np.vstack((l1, l2)), [0, 0]
def is_connected(self, resx) :
"""
Determine the order of visits and detect any circular paths in the given configuration.
Args:
resx (list): List of edge weights.
Returns:
Tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
# first round the results to have only 0-1 values
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
# Step 1: Create a graph representation
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
# Step 2: Function to perform BFS/DFS to extract journeys
def get_journey(start):
journey_nodes = []
visited = set()
stack = deque([start])
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
return journey_nodes
# Step 3: Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = get_journey(node)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
order = l
all_journeys_nodes.remove(l)
break
if len(all_journeys_nodes) == 0 :
return order, None
return order, all_journeys_nodes
def init_ub_dist(self, landmarks: list[Landmark], max_time: int):
"""
Initialize the objective function coefficients and inequality constraints for the optimization problem.
This function computes the distances between all landmarks and stores their attractiveness to maximize sightseeing.
The goal is to maximize the objective function subject to the constraints A*x < b and A_eq*x = b_eq.
Args:
landmarks (list[Landmark]): List of landmarks.
max_time (int): Maximum time of visit allowed.
Returns:
Tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
"""
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = []
# Coefficients of inequality constraints (left-hand side)
A_ub = []
for spot1 in landmarks :
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
t = get_time(spot1.location, spot2.location) + spot1.duration
dist_table[j] = t
closest = sorted(dist_table)[:25]
for i, dist in enumerate(dist_table) :
if dist not in closest :
dist_table[i] = 32700
A_ub += dist_table
c = c*len(landmarks)
return c, A_ub, [max_time*self.overshoot]
def respect_number(self, L, max_landmarks: int):
"""
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
Args:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
ones = [1]*L
zeros = [0]*L
A = ones + zeros*(L-1)
b = [1]
for i in range(L-1) :
h_new = zeros*i + ones + zeros*(L-1-i)
A = np.vstack((A, h_new))
b.append(1)
A = np.vstack((A, ones*L))
b.append(max_landmarks+1)
return A, b
# Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements
def break_sym(self, L):
"""
Generate constraints to prevent simultaneous travel between two landmarks in both directions.
Args:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
upper_ind = np.triu_indices(L,0,L)
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
A = [0]*L*L
b = [1]
for i, _ in enumerate(up_ind_x[1:]) :
l = [0]*L*L
if up_ind_x[i] != up_ind_y[i] :
l[up_ind_x[i]*L + up_ind_y[i]] = 1
l[up_ind_y[i]*L + up_ind_x[i]] = 1
A = np.vstack((A,l))
b.append(1)
return A, b
def init_eq_not_stay(self, L: int):
"""
Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.).
Args:
L (int): Number of landmarks.
Returns:
Tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
"""
l = [0]*L*L
for i in range(L) :
for j in range(L) :
if j == i :
l[j + i*L] = 1
l = np.array(np.array(l), dtype=np.int8)
return [l], [0]
def respect_user_must_do(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_do is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
l[i*L:i*L+L] = [1]*L # set mandatory departures from landmarks tagged as 'must_do'
A = np.vstack((A,l))
b.append(1)
return A, b
def respect_user_must_avoid(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization.
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_avoid is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
l[i*L:i*L+L] = [1]*L
A = np.vstack((A,l))
b.append(0) # prevent departures from landmarks tagged as 'must_do'
return A, b
# Constraint to ensure start at start and finish at goal
def respect_start_finish(self, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark.
Args:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
l_start[L-1] = 0 # prevents the jump from start to finish
l_goal = [0]*L*L # sets arrivals only for finish (vertical ones)
l_L = [0]*L*(L-1) + [1]*L # prevents arrivals at start and departures from goal
for k in range(L-1) : # sets only vertical ones for goal (go to)
l_L[k*L] = 1
if k != 0 :
l_goal[k*L+L-1] = 1
A = np.vstack((l_start, l_goal))
b = [1, 1]
A = np.vstack((A,l_L))
b.append(0)
return A, b
def respect_order(self, L: int):
"""
Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles.
Args:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
A = [0]*L*L
b = [0]
for i in range(L-1) : # Prevent stacked ones
if i == 0 or i == L-1: # Don't touch start or finish
continue
else :
l = [0]*L
l[i] = -1
l = l*L
for j in range(L) :
l[i*L + j] = 1
A = np.vstack((A,l))
b.append(0)
return A, b
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
"""
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
Args:
order (list[int]): List of indices representing the order of landmarks to visit.
landmarks (list[Landmark]): List of all landmarks.
Returns:
list[Landmark]]: The updated linked list of landmarks with travel times
"""
L = []
j = 0
while j < len(order)-1 :
# get landmarks involved
elem = landmarks[order[j]]
next = landmarks[order[j+1]]
# get attributes
elem.time_to_reach_next = get_time(elem.location, next.location)
elem.must_do = True
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
elem.next_uuid = next.uuid
L.append(elem)
j += 1
next.location = (round(next.location[0], 5), round(next.location[1], 5))
next.must_do = True
L.append(next)
return L
# Main optimization pipeline
def solve_optimization(
self,
max_time: int,
landmarks: list[Landmark],
max_landmarks: int = None
) -> list[Landmark]:
"""
Main optimization pipeline to solve the landmark visiting problem.
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
Args:
max_time (int): Maximum time allowed for the tour in minutes.
landmarks (list[Landmark]): List of landmarks to visit.
max_landmarks (int): Maximum number of landmarks visited
Returns:
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
"""
if max_landmarks is None :
max_landmarks = self.max_landmarks
L = len(landmarks)
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time) # Add the distances from each landmark to the other
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
A_ub = np.vstack((A_ub, A), dtype=np.int16)
b_ub += b
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
A_ub = np.vstack((A_ub, A), dtype=np.int16)
b_ub += b
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = self.init_eq_not_stay(L) # Force solution not to stay in same place
A, b = self.respect_user_must_do(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_user_must_avoid(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_start_finish(L) # Force start and finish positions
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
# SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1)
x_bounds = [(0, 1)]*L*L
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
# Raise error if no solution is found
if not res.success :
raise ArithmeticError("No solution could be found, the problem is overconstrained. Please adapt your must_dos")
# If there is a solution, we're good to go, just check for connectiveness
order, circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
i = 0
timeout = 80
while circles is not None and i < timeout:
A, b = self.prevent_config(res.x)
A_ub = np.vstack((A_ub, A))
b_ub += b
#A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub)
for circle in circles :
A, b = self.prevent_circle(circle, L)
A_eq = np.vstack((A_eq, A))
b_eq += b
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
if not res.success :
raise ArithmeticError("Solving failed because of overconstrained problem")
return None
order, circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
if circles is None :
break
# print(i)
i += 1
if i == timeout :
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
#sort the landmarks in the order of the solution
tour = [landmarks[i] for i in order]
self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}")
return tour

View File

@@ -0,0 +1,341 @@
import yaml, logging
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
from math import pi
from structs.landmark import Landmark
from . import take_most_important, get_time_separation
from .optimizer import Optimizer
import constants
class Refiner :
logger = logging.getLogger(__name__)
detour_factor: float # detour factor of straight line vs real distance in cities
detour_corridor_width: float # width of the corridor around the path
average_walking_speed: float # average walking speed of adult
max_landmarks_refiner: int # max number of landmarks to visit
optimizer: Optimizer # optimizer object
def __init__(self, optimizer: Optimizer) :
self.optimizer = optimizer
# load parameters from file
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.detour_factor = parameters['detour_factor']
self.detour_corridor_width = parameters['detour_corridor_width']
self.average_walking_speed = parameters['average_walking_speed']
self.max_landmarks_refiner = parameters['max_landmarks_refiner']
def create_corridor(self, landmarks: list[Landmark], width: float) :
"""
Create a corridor around the path connecting the landmarks.
Args:
landmarks (list[Landmark]): the landmark path around which to create the corridor
width (float): Width of the corridor in meters.
Returns:
Geometry: A buffered geometry object representing the corridor around the path.
"""
corrected_width = (180*width)/(6371000*pi)
path = self.create_linestring(landmarks)
obj = buffer(path, corrected_width, join_style="mitre", cap_style="square", mitre_limit=2)
return obj
def create_linestring(self, tour: list[Landmark]) -> LineString :
"""
Create a `LineString` object from a tour.
Args:
tour (list[Landmark]): An ordered sequence of landmarks that represents the visiting order.
Returns:
LineString: A `LineString` object representing the path through the landmarks.
"""
points = []
for landmark in tour :
points.append(Point(landmark.location))
return LineString(points)
# Check if some coordinates are in area. Used for the corridor
def is_in_area(self, area: Polygon, coordinates) -> bool :
"""
Check if a given point is within a specified area.
Args:
area (Polygon): The polygon defining the area.
coordinates (tuple[float, float]): The coordinates of the point to check.
Returns:
bool: True if the point is within the area, otherwise False.
"""
point = Point(coordinates)
return point.within(area)
# Function to determine if two landmarks are close to each other
def is_close_to(self, location1: tuple[float], location2: tuple[float]):
"""
Determine if two locations are close to each other by rounding their coordinates to 3 decimal places.
Args:
location1 (tuple[float, float]): The coordinates of the first location.
location2 (tuple[float, float]): The coordinates of the second location.
Returns:
bool: True if the locations are within 0.001 degrees of each other, otherwise False.
"""
absx = abs(location1[0] - location2[0])
absy = abs(location1[1] - location2[1])
return absx < 0.001 and absy < 0.001
#return (round(location1[0], 3), round(location1[1], 3)) == (round(location2[0], 3), round(location2[1], 3))
def rearrange(self, tour: list[Landmark]) -> list[Landmark]:
"""
Rearrange landmarks to group nearby visits together.
This function reorders landmarks so that nearby landmarks are adjacent to each other in the list,
while keeping 'start' and 'finish' landmarks in their original positions.
Args:
tour (list[Landmark]): Ordered list of landmarks to be rearranged.
Returns:
list[Landmark]: The rearranged list of landmarks with grouped nearby visits.
"""
i = 1
while i < len(tour):
j = i+1
while j < len(tour):
if self.is_close_to(tour[i].location, tour[j].location) and tour[i].name not in ['start', 'finish'] and tour[j].name not in ['start', 'finish']:
# If they are not adjacent, move the j-th element to be adjacent to the i-th element
if j != i + 1:
tour.insert(i + 1, tour.pop(j))
break # Move to the next i-th element after rearrangement
j += 1
i += 1
return tour
def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]:
"""
Find the shortest path through all landmarks using a nearest neighbor heuristic.
This function constructs a path that starts from the 'start' landmark, visits all other landmarks in the order
of their proximity, and ends at the 'finish' landmark. It returns both the ordered list of landmarks and a
polygon representing the path.
Args:
landmarks (list[Landmark]): list of all landmarks including 'start' and 'finish'.
Returns:
tuple[list[Landmark], Polygon]: A tuple where the first element is the list of landmarks in the order they
should be visited, and the second element is a `Polygon` representing
the path connecting all landmarks.
"""
# Step 1: Find 'start' and 'finish' landmarks
start_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'start')
finish_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'finish')
start_landmark = landmarks[start_idx]
finish_landmark = landmarks[finish_idx]
# Step 2: Create a list of unvisited landmarks excluding 'start' and 'finish'
unvisited_landmarks = [lm for i, lm in enumerate(landmarks) if i not in [start_idx, finish_idx]]
# Step 3: Initialize the path with the 'start' landmark
path = [start_landmark]
coordinates = [landmarks[start_idx].location]
current_landmark = start_landmark
# Step 4: Use nearest neighbor heuristic to visit all landmarks
while unvisited_landmarks:
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_separation.get_time(current_landmark.location, lm.location))
path.append(nearest_landmark)
coordinates.append(nearest_landmark.location)
current_landmark = nearest_landmark
unvisited_landmarks.remove(nearest_landmark)
# Step 5: Finally add the 'finish' landmark to the path
path.append(finish_landmark)
coordinates.append(landmarks[finish_idx].location)
path_poly = Polygon(coordinates)
return path, path_poly
# Returns a list of minor landmarks around the planned path to enhance experience
def get_minor_landmarks(self, all_landmarks: list[Landmark], visited_landmarks: list[Landmark], width: float) -> list[Landmark] :
"""
Identify landmarks within a specified corridor that have not been visited yet.
This function creates a corridor around the path defined by visited landmarks and then finds landmarks that fall
within this corridor. It returns a list of these landmarks, excluding those already visited, sorted by their importance.
Args:
all_landmarks (list[Landmark]): list of all available landmarks.
visited_landmarks (list[Landmark]): list of landmarks that have already been visited.
width (float): Width of the corridor around the visited landmarks.
Returns:
list[Landmark]: list of important landmarks within the corridor that have not been visited yet.
"""
second_order_landmarks = []
visited_names = []
area = self.create_corridor(visited_landmarks, width)
for visited in visited_landmarks :
visited_names.append(visited.name)
for landmark in all_landmarks :
if self.is_in_area(area, landmark.location) and landmark.name not in visited_names:
second_order_landmarks.append(landmark)
return take_most_important.take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
# Try fix the shortest path using shapely
def fix_using_polygon(self, tour: list[Landmark])-> list[Landmark] :
"""
Improve the tour path using geometric methods to ensure it follows a more optimal shape.
This function creates a polygon from the given tour and attempts to refine it using a concave hull. It reorders
the landmarks to fit within this refined polygon and adjusts the tour to ensure the 'start' landmark is at the
beginning. It also checks if the final polygon is simple and rearranges the tour if necessary.
Args:
tour (list[Landmark]): list of landmarks representing the current tour path.
Returns:
list[Landmark]: Refined list of landmarks in the order of visit to produce a better tour path.
"""
coords = []
coords_dict = {}
for landmark in tour :
coords.append(landmark.location)
if landmark.name != 'finish' :
coords_dict[landmark.location] = landmark
tour_poly = Polygon(coords)
better_tour_poly = tour_poly.buffer(0)
try :
xs, ys = better_tour_poly.exterior.xy
if len(xs) != len(tour) :
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
xs, ys = better_tour_poly.exterior.xy
except :
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
xs, ys = better_tour_poly.exterior.xy
# reverse the xs and ys
xs.reverse()
ys.reverse()
better_tour = [] # list of ordered visit
name_index = {} # Maps the name of a landmark to its index in the concave polygon
# Loop through the polygon and generate the better (ordered) tour
for i,x in enumerate(xs[:-1]) :
y = ys[i]
better_tour.append(coords_dict[tuple((x,y))])
name_index[coords_dict[tuple((x,y))].name] = i
# Scroll the list to have start in front again
start_index = name_index['start']
better_tour = better_tour[start_index:] + better_tour[:start_index]
# Append the finish back and correct the time to reach
better_tour.append(tour[-1])
# Rearrange only if polygon still not simple
if not better_tour_poly.is_simple :
better_tour = self.rearrange(better_tour)
return better_tour
def refine_optimization(
self,
all_landmarks: list[Landmark],
base_tour: list[Landmark],
max_time: int,
detour: int
) -> list[Landmark]:
"""
This is the second stage of the optimization. It refines the initial tour path by considering additional minor landmarks and optimizes the path.
This method evaluates the need for further optimization based on the initial tour. If a detour is required
it adds minor landmarks around the initial predicted path and solves a new optimization problem to find a potentially better
tour. It then links the new tour and adjusts it using a nearest neighbor heuristic and polygon-based methods to
ensure a valid path. The final tour is chosen based on the shortest distance.
Args:
all_landmarks (list[Landmark]): The full list of landmarks available for the optimization.
base_tour (list[Landmark]): The initial tour path to be refined.
max_time (int): The maximum time available for the tour in minutes.
detour (int): The maximum detour time allowed for the tour in minutes.
Returns:
list[Landmark]: The refined list of landmarks representing the optimized tour path.
"""
# No need to refine if no detour is taken
# if detour == 0:
# return base_tour
minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width)
self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
# full set of visitable landmarks
full_set = base_tour[:-1] + minor_landmarks # create full set of possible landmarks (without finish)
full_set.append(base_tour[-1]) # add finish back
# get a new tour
new_tour = self.optimizer.solve_optimization(
max_time = max_time + detour,
landmarks = full_set,
max_landmarks = self.max_landmarks_refiner
)
if new_tour is None:
self.logger.warning("No solution found for the refined tour. Returning the initial tour.")
new_tour = base_tour
# Find shortest path using the nearest neighbor heuristic
better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour)
# Fix the tour using Polygons if the path looks weird
if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid :
better_tour = self.fix_using_polygon(better_tour)
return better_tour

View File

@@ -0,0 +1,38 @@
from structs.landmark import Landmark
def take_most_important(landmarks: list[Landmark], N_important) -> list[Landmark] :
L = len(landmarks)
L_copy = []
L_clean = []
scores = [0]*len(landmarks)
names = []
name_id = {}
for i, elem in enumerate(landmarks) :
if elem.name not in names :
names.append(elem.name)
name_id[elem.name] = [i]
L_copy.append(elem)
else :
name_id[elem.name] += [i]
scores = []
for j in name_id[elem.name] :
scores.append(L[j].attractiveness)
best_id = max(range(len(scores)), key=scores.__getitem__)
t = name_id[elem.name][best_id]
if t == i :
for old in L_copy :
if old.name == elem.name :
old.attractiveness = L[t].attractiveness
scores = [0]*len(L_copy)
for i, elem in enumerate(L_copy) :
scores[i] = elem.attractiveness
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-L):]
for i, elem in enumerate(L_copy) :
if i in res :
L_clean.append(elem)
return L_clean

View File

@@ -0,0 +1,57 @@
on:
push:
tags:
- 'v*'
jobs:
build:
runs-on: macos-latest
steps:
- uses: actions/checkout@v4
- name: Set up ruby env
uses: ruby/setup-ruby@v1
with:
ruby-version: 3.2.1
bundler-cache: true
- name: Setup java for android build
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'zulu'
- name: Setup android SDK
uses: android-actions/setup-android@v3
- name: Install Flutter
uses: subosito/flutter-action@v2
with:
channel: stable
flutter-version: 3.22.0
cache: true
- name: Infer version number from git tag
id: version
env:
REF_NAME: ${{ github.ref_name }}
run:
# remove the 'v' prefix from the tag name
echo "VERSION_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Load secrets from github
run: |
echo "${{ secrets.ANDROID_SECRET_PROPERTIES }}" > secrets.properties
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON }}" > google-key.json
# decode the base64 encoded google key
base64 -d ${{ secrets.ANDROID_KEYSTORE_BASE64 }} > release.keystore
working-directory: android
- name: Install fastlane
run: bundle install
working-directory: android
- name: Run fastlane lane
run: bundle exec fastlane deploy_testing
working-directory: android
# the environment variable VERSION_NAME is implicitly available

57
frontend/README.md Normal file
View File

@@ -0,0 +1,57 @@
# Frontend
The frontend of this project is a Flutter application designed to run on both Android and iOS devices (and possibly as a PWA). The frontend is responsible for displaying the user interface and handling user input. It communicates with the backend via a REST-api to retrieve and send data.
## Getting Started
The flutter application is divided into multiple chunks of code.
- the `lib` directory contains the main code of the application.
- the `android` and `ios` directories contain platform-specific code.
- the root directory contains configuration files and metadata.
To run the application, you need to have the Flutter SDK installed. You can find instructions on how to do this [here](https://flutter.dev/docs/get-started/install).
Once you have the Flutter SDK installed, you can locally install the dependencies by running:
```bash
flutter pub get
```
## Development
### ...
### Icons and logos
The application uses a custom launcher icon and splash screen. These are managed platform-independently using the `flutter_launcher_icons` package.
To update the icons, change the `flutter_launcher_icons.yaml` configuration file. Especially the `image_path` is relevant. Then run
```bash
dart run flutter_launcher_icons
```
### Deploying a new version
To truly deploy a new version of the application, i.e. to the official app stores, a special CI step is required. This listens for new tags. To create a new tag position yourself on the main branch and run
```bash
git tag -a v<name> -m "Release <name>"
git push origin v<name>
```
We adhere to the [Semantic Versioning](https://semver.org/) standard, so the tag should be of the form `v0.1.8` for example.
## Fastlane - in depth
The application is deployed to the Google Play Store and the Apple App Store using fastlane: [https://docs.fastlane.tools/](https://docs.fastlane.tools/)
Fastlane is installed as a Ruby gem. Since the bundler-gemfile is scoped to a single directory, a `Gemfile` is included in both the `android` and `ios` directories. Once installed, the usage is
```bash
cd frontend/android # or ios
bundle install
bundle exec fastlane <lane>
```
This is reused in the CI/CD pipeline to automate the deployment process.
Fastlane assumes mutliple secrets to be present as files in the platform directories. These are:
- for android:
- `secrets.properties` used by gradle to load secrets needed at execution time
- `release.keystore` used by gradle to sign the apk
- `google-key.json` used by fastlane to authenticate with the Google Play Store
- for ios:
- TODO
These files are stored as secrets in the GitHub repository so that the CI pipeline can access them.

View File

@@ -1,9 +1,10 @@
gradle-wrapper.jar
gradlew
gradlew.bat
gradle/
/.gradle
/captures/
/gradlew
/gradlew.bat
/local.properties
/secrets.properties
GeneratedPluginRegistrant.java
# Remember to never publicly share your keystore.
@@ -11,3 +12,6 @@ GeneratedPluginRegistrant.java
key.properties
**/*.keystore
**/*.jks
# Fastlane google cloud access
google-key.json

3
frontend/android/Gemfile Normal file
View File

@@ -0,0 +1,3 @@
source "https://rubygems.org"
gem "fastlane"

View File

@@ -0,0 +1,220 @@
GEM
remote: https://rubygems.org/
specs:
CFPropertyList (3.0.7)
base64
nkf
rexml
addressable (2.8.7)
public_suffix (>= 2.0.2, < 7.0)
artifactory (3.0.17)
atomos (0.1.3)
aws-eventstream (1.3.0)
aws-partitions (1.970.0)
aws-sdk-core (3.202.2)
aws-eventstream (~> 1, >= 1.3.0)
aws-partitions (~> 1, >= 1.651.0)
aws-sigv4 (~> 1.9)
jmespath (~> 1, >= 1.6.1)
aws-sdk-kms (1.88.0)
aws-sdk-core (~> 3, >= 3.201.0)
aws-sigv4 (~> 1.5)
aws-sdk-s3 (1.159.0)
aws-sdk-core (~> 3, >= 3.201.0)
aws-sdk-kms (~> 1)
aws-sigv4 (~> 1.5)
aws-sigv4 (1.9.1)
aws-eventstream (~> 1, >= 1.0.2)
babosa (1.0.4)
base64 (0.2.0)
claide (1.1.0)
colored (1.2)
colored2 (3.1.2)
commander (4.6.0)
highline (~> 2.0.0)
declarative (0.0.20)
digest-crc (0.6.5)
rake (>= 12.0.0, < 14.0.0)
domain_name (0.6.20240107)
dotenv (2.8.1)
emoji_regex (3.2.3)
excon (0.111.0)
faraday (1.10.3)
faraday-em_http (~> 1.0)
faraday-em_synchrony (~> 1.0)
faraday-excon (~> 1.1)
faraday-httpclient (~> 1.0)
faraday-multipart (~> 1.0)
faraday-net_http (~> 1.0)
faraday-net_http_persistent (~> 1.0)
faraday-patron (~> 1.0)
faraday-rack (~> 1.0)
faraday-retry (~> 1.0)
ruby2_keywords (>= 0.0.4)
faraday-cookie_jar (0.0.7)
faraday (>= 0.8.0)
http-cookie (~> 1.0.0)
faraday-em_http (1.0.0)
faraday-em_synchrony (1.0.0)
faraday-excon (1.1.0)
faraday-httpclient (1.0.1)
faraday-multipart (1.0.4)
multipart-post (~> 2)
faraday-net_http (1.0.2)
faraday-net_http_persistent (1.2.0)
faraday-patron (1.0.0)
faraday-rack (1.0.0)
faraday-retry (1.0.3)
faraday_middleware (1.2.0)
faraday (~> 1.0)
fastimage (2.3.1)
fastlane (2.222.0)
CFPropertyList (>= 2.3, < 4.0.0)
addressable (>= 2.8, < 3.0.0)
artifactory (~> 3.0)
aws-sdk-s3 (~> 1.0)
babosa (>= 1.0.3, < 2.0.0)
bundler (>= 1.12.0, < 3.0.0)
colored (~> 1.2)
commander (~> 4.6)
dotenv (>= 2.1.1, < 3.0.0)
emoji_regex (>= 0.1, < 4.0)
excon (>= 0.71.0, < 1.0.0)
faraday (~> 1.0)
faraday-cookie_jar (~> 0.0.6)
faraday_middleware (~> 1.0)
fastimage (>= 2.1.0, < 3.0.0)
gh_inspector (>= 1.1.2, < 2.0.0)
google-apis-androidpublisher_v3 (~> 0.3)
google-apis-playcustomapp_v1 (~> 0.1)
google-cloud-env (>= 1.6.0, < 2.0.0)
google-cloud-storage (~> 1.31)
highline (~> 2.0)
http-cookie (~> 1.0.5)
json (< 3.0.0)
jwt (>= 2.1.0, < 3)
mini_magick (>= 4.9.4, < 5.0.0)
multipart-post (>= 2.0.0, < 3.0.0)
naturally (~> 2.2)
optparse (>= 0.1.1, < 1.0.0)
plist (>= 3.1.0, < 4.0.0)
rubyzip (>= 2.0.0, < 3.0.0)
security (= 0.1.5)
simctl (~> 1.6.3)
terminal-notifier (>= 2.0.0, < 3.0.0)
terminal-table (~> 3)
tty-screen (>= 0.6.3, < 1.0.0)
tty-spinner (>= 0.8.0, < 1.0.0)
word_wrap (~> 1.0.0)
xcodeproj (>= 1.13.0, < 2.0.0)
xcpretty (~> 0.3.0)
xcpretty-travis-formatter (>= 0.0.3, < 2.0.0)
gh_inspector (1.1.3)
google-apis-androidpublisher_v3 (0.54.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-core (0.11.3)
addressable (~> 2.5, >= 2.5.1)
googleauth (>= 0.16.2, < 2.a)
httpclient (>= 2.8.1, < 3.a)
mini_mime (~> 1.0)
representable (~> 3.0)
retriable (>= 2.0, < 4.a)
rexml
google-apis-iamcredentials_v1 (0.17.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-playcustomapp_v1 (0.13.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-storage_v1 (0.31.0)
google-apis-core (>= 0.11.0, < 2.a)
google-cloud-core (1.7.1)
google-cloud-env (>= 1.0, < 3.a)
google-cloud-errors (~> 1.0)
google-cloud-env (1.6.0)
faraday (>= 0.17.3, < 3.0)
google-cloud-errors (1.4.0)
google-cloud-storage (1.47.0)
addressable (~> 2.8)
digest-crc (~> 0.4)
google-apis-iamcredentials_v1 (~> 0.1)
google-apis-storage_v1 (~> 0.31.0)
google-cloud-core (~> 1.6)
googleauth (>= 0.16.2, < 2.a)
mini_mime (~> 1.0)
googleauth (1.8.1)
faraday (>= 0.17.3, < 3.a)
jwt (>= 1.4, < 3.0)
multi_json (~> 1.11)
os (>= 0.9, < 2.0)
signet (>= 0.16, < 2.a)
highline (2.0.3)
http-cookie (1.0.7)
domain_name (~> 0.5)
httpclient (2.8.3)
jmespath (1.6.2)
json (2.7.2)
jwt (2.8.2)
base64
mini_magick (4.13.2)
mini_mime (1.1.5)
multi_json (1.15.0)
multipart-post (2.4.1)
nanaimo (0.3.0)
naturally (2.2.1)
nkf (0.2.0)
optparse (0.5.0)
os (1.1.4)
plist (3.7.1)
public_suffix (6.0.1)
rake (13.2.1)
representable (3.2.0)
declarative (< 0.1.0)
trailblazer-option (>= 0.1.1, < 0.2.0)
uber (< 0.2.0)
retriable (3.1.2)
rexml (3.3.6)
strscan
rouge (2.0.7)
ruby2_keywords (0.0.5)
rubyzip (2.3.2)
security (0.1.5)
signet (0.19.0)
addressable (~> 2.8)
faraday (>= 0.17.5, < 3.a)
jwt (>= 1.5, < 3.0)
multi_json (~> 1.10)
simctl (1.6.10)
CFPropertyList
naturally
strscan (3.1.0)
terminal-notifier (2.0.0)
terminal-table (3.0.2)
unicode-display_width (>= 1.1.1, < 3)
trailblazer-option (0.1.2)
tty-cursor (0.7.1)
tty-screen (0.8.2)
tty-spinner (0.9.3)
tty-cursor (~> 0.7)
uber (0.1.0)
unicode-display_width (2.5.0)
word_wrap (1.0.0)
xcodeproj (1.25.0)
CFPropertyList (>= 2.3.3, < 4.0)
atomos (~> 0.1.3)
claide (>= 1.0.2, < 2.0)
colored2 (~> 3.1)
nanaimo (~> 0.3.0)
rexml (>= 3.3.2, < 4.0)
xcpretty (0.3.0)
rouge (~> 2.0.7)
xcpretty-travis-formatter (1.0.1)
xcpretty (~> 0.2, >= 0.0.7)
PLATFORMS
ruby
x86_64-linux
DEPENDENCIES
fastlane
BUNDLED WITH
2.5.18

View File

@@ -0,0 +1,73 @@
## Android Setup
### Keystore setup
```bash
keytool -genkey -v -keystore release.keystore -keyalg RSA -keysize 2048 -validity 10000 -alias upload
```
- This is required to store local credentials securely and more importantly to sign the app for google play store distribution.
### Using secret credentials during build
Following the guide under [https://developers.google.com/maps/flutter-package/config#android_1](https://developers.google.com/maps/flutter-package/config#android_1).
- Add the following to `android/build.gradle`:
```gradle
buildscript {
dependencies {
classpath "com.google.android.libraries.mapsplatform.secrets-gradle-plugin:secrets-gradle-plugin:2.0.1"
}
}
```
- Add the following to `android/app/build.gradle`:
```gradle
plugins {
// ...
id 'com.google.android.libraries.mapsplatform.secrets-gradle-plugin'
}
```
- Add the credentials to `android/secrets.properties`:
```properties
MAPS_API_KEY=YOUR_API_KEY
```
- Reference the credentials in `android/app/src/main/AndroidManifest.xml`:
```xml
<meta-data
android:name="com.google.android.geo.API_KEY"
android:value="${MAPS_API_KEY}" />
```
### Signing the app
Compared to the flutter template application, a few changes have to be made:
- Added to `android/app/build.gradle`:
```gradle
signingConfigs {
release {
keyAlias = secretProperties['keyAlias']
keyPassword = secretProperties['keyPassword']
storeFile = secretProperties['storeFile'] ? file(secretProperties['storeFile']) : null
storePassword = secretProperties['storePassword']
}
}
```
- Changed the `buildTypes` to use the `release` signing config:
```gradle
buildTypes {
release {
signingConfig signingConfigs.release
}
}
```
This makes use of the `secretProperties` defined previously:
```gradle
secretPropertiesFile.withReader('UTF-8') { reader ->
secretProperties.load(reader)
}
```
### Using the credentials in CI
- Add the secret files to the repository secrets (e.g. `ANDROID_SECRETS_PROPERTIES`).
- temporarily write them back to files during the CI execution:
```bash
echo {{ secrets.ANDROID_SECRETS }} >> android/secrets.properties
```

View File

@@ -2,14 +2,19 @@ plugins {
id "com.android.application"
id "kotlin-android"
id "dev.flutter.flutter-gradle-plugin"
id 'com.google.android.libraries.mapsplatform.secrets-gradle-plugin'
// last is probably not needed
}
def localProperties = new Properties()
def localPropertiesFile = rootProject.file('local.properties')
def localProperties = new Properties()
if (localPropertiesFile.exists()) {
localPropertiesFile.withReader('UTF-8') { reader ->
localProperties.load(reader)
}
} else {
throw new GradleException("local.properties not found")
}
def flutterVersionCode = localProperties.getProperty('flutter.versionCode')
@@ -22,8 +27,22 @@ if (flutterVersionName == null) {
flutterVersionName = '1.0'
}
def secretPropertiesFile = rootProject.file('secrets.properties')
def secretProperties = new Properties()
if (secretPropertiesFile.exists()) {
secretPropertiesFile.withReader('UTF-8') { reader ->
secretProperties.load(reader)
}
} else {
throw new GradleException("Secrets file secrets.properties not found")
}
android {
namespace "com.example.fast_network_navigation"
namespace "com.anydev.anyway"
compileSdk flutter.compileSdkVersion
ndkVersion flutter.ndkVersion
@@ -42,7 +61,7 @@ android {
defaultConfig {
// TODO: Specify your own unique Application ID (https://developer.android.com/studio/build/application-id.html).
applicationId "com.example.fast_network_navigation"
applicationId "com.anydev.anyway"
// You can update the following values to match your application needs.
// For more information, see: https://docs.flutter.dev/deployment/android#reviewing-the-gradle-build-configuration.
// Minimum Android version for Google Maps SDK
@@ -52,13 +71,23 @@ android {
targetSdkVersion flutter.targetSdkVersion
versionCode flutterVersionCode.toInteger()
versionName flutterVersionName
// // Placeholders of keys that are replaced by the build system.
manifestPlaceholders += ['MAPS_API_KEY': secretProperties.getProperty('MAPS_API_KEY')]
}
signingConfigs {
release {
keyAlias = secretProperties['keyAlias']
keyPassword = secretProperties['keyPassword']
storeFile = secretProperties['storeFile'] ? file(secretProperties['storeFile']) : null
storePassword = secretProperties['storePassword']
}
}
buildTypes {
release {
// TODO: Add your own signing config for the release build.
// Signing with the debug keys for now, so `flutter run --release` works.
signingConfig signingConfigs.debug
signingConfig = signingConfigs.release
}
}
}

View File

@@ -1,6 +1,12 @@
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<!-- Required to fetch data from the internet. -->
<uses-permission android:name="android.permission.INTERNET"/>
<!-- Required to show user location -->
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<application
android:label="fast_network_navigation"
android:label="anyway"
android:name="${applicationName}"
android:icon="@mipmap/ic_launcher">
<activity
@@ -32,11 +38,10 @@
/>
<meta-data
android:name="com.google.android.geo.API_KEY"
android:value="AIzaSyCeWk_D2xvfOHLidvV56EZeQCUybypEntw"
android:value="${MAPS_API_KEY}"
/>
</application>
<!-- Required to query activities that can process text, see:
https://developer.android.com/training/package-visibility?hl=en and
https://developer.android.com/reference/android/content/Intent#ACTION_PROCESS_TEXT.
@@ -48,7 +53,4 @@
<data android:mimeType="text/plain"/>
</intent>
</queries>
<!-- Required to fetch data from the internet. -->
<uses-permission android:name="android.permission.INTERNET"/>
</manifest>

View File

@@ -1,4 +1,4 @@
package com.example.fast_network_navigation
package com.anydev.anyway
import io.flutter.embedding.android.FlutterActivity

Binary file not shown.

Before

Width:  |  Height:  |  Size: 544 B

After

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 442 B

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 721 B

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 KiB

After

Width:  |  Height:  |  Size: 9.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 KiB

After

Width:  |  Height:  |  Size: 13 KiB

View File

@@ -16,3 +16,14 @@ subprojects {
tasks.register("clean", Delete) {
delete rootProject.buildDir
}
buildscript {
repositories {
google()
mavenCentral()
}
dependencies {
classpath "com.google.android.libraries.mapsplatform.secrets-gradle-plugin:secrets-gradle-plugin:2.0.1"
}
}

View File

@@ -0,0 +1 @@
MAPS_API_KEY=Key

View File

@@ -0,0 +1,2 @@
json_key_file("google-key.json") # Path to the json secret file - Follow https://docs.fastlane.tools/actions/supply/#setup to get one
package_name("com.anydev.anyway") # e.g. com.krausefx.app

View File

@@ -0,0 +1,42 @@
# Uncomment the line if you want fastlane to automatically update itself
# update_fastlane
default_platform(:android)
platform :android do
desc "Deploy a new version as a preview version"
lane :deploy_testing do
version_name = ENV["VERSION_NAME"]
sh(
"flutter",
"build",
"appbundle",
"--release",
"--build-name=#{version_name}",
)
upload_to_play_store(
track: 'alpha',
skip_upload_apk: true,
skip_upload_changelogs: true,
)
end
desc "Deploy a new version as a full release"
lane :deploy_release do
gradle(
task: "clean assembleRelease",
properties: {
# loaded from environment
"android.injected.version.name" => ENV["VERSION_NAME"],
}
)
upload_to_play_store(
track: "production",
skip_upload_apk: true,
skip_upload_changelogs: true,
)
end
end

View File

@@ -0,0 +1,40 @@
fastlane documentation
----
# Installation
Make sure you have the latest version of the Xcode command line tools installed:
```sh
xcode-select --install
```
For _fastlane_ installation instructions, see [Installing _fastlane_](https://docs.fastlane.tools/#installing-fastlane)
# Available Actions
## Android
### android deploy_testing
```sh
[bundle exec] fastlane android deploy_testing
```
Deploy a new version as a preview version
### android deploy_release
```sh
[bundle exec] fastlane android deploy_release
```
Deploy a new version as a full release
----
This README.md is auto-generated and will be re-generated every time [_fastlane_](https://fastlane.tools) is run.
More information about _fastlane_ can be found on [fastlane.tools](https://fastlane.tools).
The documentation of _fastlane_ can be found on [docs.fastlane.tools](https://docs.fastlane.tools).

View File

@@ -0,0 +1,7 @@
AnyWay - plan city trips your way
AnyWay is a mobile application that helps users plan city trips. The app allows users to specify their preferences and constraints, and then generates a personalized itinerary for them. The planning follows some guiding principles:
- **Personalization**:The user's preferences should be reflected in the choice of destinations.
- **Efficiency**:The itinerary should be optimized for the user's constraints.
- **Flexibility**: We aknowledge that tourism is a dynamic activity, and that users may want to change their plans on the go.
- **Discoverability**: Tourism is an inherently exploratory activity. Once a rough itinerary is generated, detours and spontaneous decisions should be encouraged.

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 637 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 573 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 637 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 573 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 637 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 573 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 KiB

View File

@@ -0,0 +1 @@
AnyWay - plan city trips your way!

View File

@@ -0,0 +1 @@
AnyWay

View File

@@ -1,5 +0,0 @@
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-7.6.3-all.zip

View File

@@ -20,7 +20,7 @@ pluginManagement {
plugins {
id "dev.flutter.flutter-plugin-loader" version "1.0.0"
id "com.android.application" version "7.3.0" apply false
id "org.jetbrains.kotlin.android" version "1.7.10" apply false
id "org.jetbrains.kotlin.android" version "2.0.20" apply false
}
include ":app"

107
frontend/assets/cat.svg Normal file
View File

@@ -0,0 +1,107 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 500 500" style="enable-background:new 0 0 500 500;" xml:space="preserve">
<g id="OBJECTS">
<g>
<path style="fill:#F2DBDE;" d="M381.005,363.01c-53.963,8.445-84.441,11.1-138.832,6.101
c-54.388-4.998-109.48-25.844-144.743-67.555c-23.468-27.759-36.728-62.943-43.732-98.613c-3.745-19.07-5.754-39.21,0.433-57.635
c7.513-22.378,26.565-39.569,48.136-49.156c21.572-9.589,45.552-12.365,69.151-12.944c47.753-1.172,95.706,6.26,140.863,21.831
c35.603,12.277,69.954,29.937,96.972,56.171c27.019,26.233,46.213,61.723,47.963,99.341
C458.967,298.17,438.434,354.022,381.005,363.01z"/>
<g>
<path style="fill:#F2BFC6;" d="M314.479,248.209c-22.398,36.41-29.246,81.831-19.597,123.401
c27.302-0.242,52.026-3.263,86.124-8.6c57.429-8.989,77.961-64.84,76.211-102.458c-1.503-32.308-15.881-63.041-37.024-87.694
C375.546,184.337,337.241,211.21,314.479,248.209z"/>
<path style="fill:#F2BFC6;" d="M60.074,229.111c2.232,7.566,4.802,15.029,7.749,22.32c40.138-5.931,78.066-26.379,104.834-56.907
c26.459-30.176,41.716-69.876,42.677-109.969c-14.6-1.246-29.267-1.705-43.916-1.345c-11.908,0.292-23.911,1.147-35.655,3.151
C136.569,142.478,107.155,198.423,60.074,229.111z"/>
<path style="fill:#F2BFC6;" d="M365.131,128.557c-16.748-9.529-34.631-17.233-52.85-23.516
c-6.45-2.224-12.962-4.262-19.517-6.153c-1.712,23.304-4.543,46.555-11.914,68.659c-9.236,27.692-26.464,53.808-52.01,67.931
c-22.973,12.7-50.376,14.689-74.443,25.169c-21.624,9.417-39.587,25.305-54.36,43.893c8.346,9.381,17.714,17.663,27.862,24.902
c16.736-21.461,41.874-37.166,67.161-48.559c35.578-16.03,74.129-26.682,105.739-49.566
C334.357,207.023,357.577,169.22,365.131,128.557z"/>
</g>
</g>
<ellipse style="opacity:0.15;fill:#2D3038;" cx="250.223" cy="394.224" rx="109.236" ry="18.917"/>
<g>
<path style="fill:#2D3038;" d="M305.132,388.442c-0.168,1.158-0.626,2.243-1.458,3.061c-1.863,1.832-4.823,1.724-7.427,1.538
c-17.939-1.285-36.017-0.625-53.815,1.965c-7.053,3.155-16.423,3.233-25.275,2.004c-8.853-1.231-17.514-3.684-26.397-4.661
c-8.885-0.976-21.867-0.33-26.499,2.758c0,0-7.266,3.996-12.907,12.021c-3.367,4.789-4.105,11.306-2.377,16.899
c2.452,7.945,10.312,13.334,18.475,14.912c8.163,1.579,16.603-0.053,24.6-2.327c22.82-6.49,43.805-18.134,66.018-26.468
c22.213-8.334,47.017-13.282,69.546-5.844c3.96,1.306,7.879,3.033,10.941,5.866c3.062,2.832,5.173,6.927,4.813,11.081
c-0.464,5.356-4.97,9.719-10.061,11.444c-5.092,1.726-10.658,1.275-15.953,0.346c-5.296-0.93-10.554-2.17-15.926-2.414
c-20.08-0.909-38.455,4.247-56.124,10.857c-17.669,6.608-35.096,14.21-53.56,18.085c-18.463,3.874-35.807,8.106-51.682-4.186
c-20.345-15.753-19.603-41.137-8.091-63.296c5.521-10.629,12.589-18.637,19.416-27.732c-1.72-12.542-6.898-24.945-9.467-37.525
c-4.135-20.25-1.309-41.854,7.666-61.314c5.614-15.439,11.257-30.942,19.093-45.38c7.835-14.438,18.007-27.88,31.297-37.536
c13.289-9.656,29.927-15.279,46.993-13.222c7.787-8.403,16.038-16.377,24.703-23.871c-1.319-7.29-1.183-14.637,0.584-20.961
c-4.077-8.872-8.2-17.907-9.54-27.579c-0.835-6.027-0.441-12.408,1.577-17.991c1.878-5.198,8.452-6.799,12.542-3.08
c6.673,6.07,12.683,12.869,17.891,20.235c18.398-4.802,38.164-4.231,56.264,1.583c6.473-8.017,14.398-14.861,23.286-20.075
c2.366-1.388,5.533-2.613,7.657-0.875c1.683,1.377,1.736,3.89,1.592,6.059c-0.815,12.217-3.418,24.313-8.016,36.577
c4.862,15.779,0.82,33.862-9.812,46.412c-2.168,11.956,1.193,24.438,2.504,36.665c2.294,21.385-1.98,43.411-12.271,62.744
c-2.4,4.508-5.754,8.444-9.863,11.477c-1.71,1.263-3.38,2.581-5.006,3.951c-5.172,20.881-10.139,41.311-15.351,62.281
c2.061,7.78,4.487,15.496,7.272,23.126c3.209-0.899,6.478-1.696,9.816-1.809c3.896-0.132,7.942,0.744,11.024,3.131
c2.308,1.785,3.979,4.375,4.658,7.212c0.484,2.028,0.445,4.26-0.563,6.086c-0.663,1.203-1.81,2.171-3.102,2.583
c0.454,1.78,0.565,3.616,0.106,5.385c-0.778,3.004-3.622,5.6-6.675,5.375c-0.047,0.112-0.097,0.223-0.151,0.333
c-0.979,1.985-3.08,3.228-5.239,3.714c-2.063,0.464-4.207,0.333-6.319,0.174c-0.138,0.225-0.3,0.437-0.489,0.633
c-1.556,1.603-4.16,1.338-6.346,0.87c-3.015-0.645-6.04-1.471-8.688-3.051c-2.647-1.583-4.906-4.013-5.707-6.991
c-1.237-4.607,2.111-10.097,0.151-14.313c-3.538-7.609-7.733-14.893-12.004-22.126c-8.712,7.077-18.162,13.242-28.147,18.367
c6.95-0.974,14.248-1.345,21.476-0.293c3.273,0.475,6.596,1.283,9.285,3.208c2.689,1.924,4.631,5.173,4.214,8.453
c-0.34,2.664-2.596,5.054-5.156,5.449"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M151.465,379.089
c0.578-3.877,0.614-7.729,0.28-11.566"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M296.431,98.602
c1.739,2.591,3.381,5.247,4.918,7.962"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M273.736,153.553
c-0.645-1.929-1.188-3.891-1.625-5.865"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.23,106.811
c-4.87-7.904-10.55-15.309-16.923-22.061c-1.834-1.943-4.156-3.987-6.799-3.598c-2.928,0.431-4.574,3.626-5.147,6.53
c-1.629,8.254,1.474,16.627,4.521,24.47"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M352.846,98.327
c1.084,0.372,2.162,0.763,3.232,1.174"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.545,168.179
c-1.077,1.107-2.211,2.161-3.399,3.155"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.583,130.136
c3.86-4.907,10.772-7.181,16.791-5.521c6.019,1.659,10.791,7.151,11.446,13.054c-4.594,3.601-11.6,3.717-16.311,0.268
c-3.162-2.315-5.105-6.101-5.423-9.993"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.109,126.785
c-1.79-2.631-5.159-4.002-8.321-3.646c-3.162,0.356-6.042,2.317-7.787,4.979c-1.743,2.662-2.395,5.96-1.828,9.854
c4.738,1.952,10.727,0.164,13.621-4.066c1.462-2.137,2.057-4.785,1.832-7.36"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M350.957,171.048
c-4.278,4.378-10.749,6.497-16.787,5.499"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.68,282.717
c-5.42,4.867-10.31,10.327-14.541,16.258"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M333.834,368.351
c0.757,2.017,1.54,4.028,2.348,6.032c2.26-0.589,4.541-1.183,6.876-1.268c2.333-0.084,4.757,0.381,6.656,1.74
c1.559,1.116,2.664,2.753,3.552,4.452c0.261,0.499,0.505,1.013,0.727,1.536"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M317.138,283.315
c0.476,18.805,3.038,37.553,7.633,55.961"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M337.823,376.837
c2.877-0.595,5.878,0.99,7.67,3.316c1.791,2.327,2.567,5.273,3.025,8.174c0.191,1.214,0.327,2.48,0.209,3.695"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M327.236,380.633
c3.086-0.38,6.102,1.606,7.733,4.252c1.632,2.645,2.112,5.835,2.285,8.939c0.04,0.721,0.054,1.476-0.027,2.204"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M305.059,385.808
c-0.036-0.193-0.079-0.385-0.128-0.573c-1.058-4.111-4.728-7.422-8.927-8.052"/>
<g>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M250.442,264.812
c-1.67-3.125-3.183-6.325-4.488-9.622c-5.098-12.883-6.92-27.047-5.248-40.801"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M302.266,351.248
c-7.667-12.944-15.022-25.405-19.496-39.762"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M272.435,372.065
c-3.368,0.554-6.637,1.226-9.757,1.918c10.852-22.715,21.971-46.794,19.913-71.883c-0.826-10.055-4.036-20.316-11.156-27.463
c-8.522-8.553-21.576-11.406-33.547-9.827c-22.022,2.903-41.327,20.57-46.167,42.248"/>
</g>
<g>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M328.579,152.076
c1.379-0.341,2.796,0.501,3.736,1.565c0.942,1.065,1.588,2.366,2.551,3.41c0.963,1.044,2.43,1.826,3.784,1.398
c1.002-0.317,1.702-1.217,2.207-2.139c0.504-0.921,0.888-1.923,1.572-2.721c1.237-1.447,3.432-1.978,5.192-1.258"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M360.735,158.173
c-2.16,5.007-7.325,8.57-12.773,8.812c-1.946,0.086-3.967-0.245-5.593-1.317c-1.872-1.234-2.979-3.253-3.85-5.361
c-0.089,1.146-0.496,2.29-1.133,3.25c-1.229,1.854-3.175,3.116-5.189,4.059c-3.3,1.546-7.007,2.373-10.616,1.879
c-3.611-0.495-7.099-2.413-9.07-5.477"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.276,158.534
c0,0,0.176,1.073,0.244,1.773"/>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 9.5 KiB

273
frontend/assets/city.svg Normal file
View File

@@ -0,0 +1,273 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 1000 700" style="enable-background:new 0 0 1000 700;" xml:space="preserve">
<g id="Shadow">
<g style="opacity:0.1;">
<path style="fill:#38415C;" d="M186.919,556.734c0,0.331,0.541,0.599,1.208,0.599c0.667,0,1.208-0.268,1.208-0.599
c0-0.331-0.541-0.599-1.208-0.599C187.46,556.135,186.919,556.403,186.919,556.734z"/>
<path style="fill:#38415C;" d="M957.699,446.328h-12.196h-37.267h-8.131h-4.525h-22.106h-29.729h-8.01h-8.921h-7.462H777.69h-5.38
h-8.517h-13.921h-24.898h-0.367h-35.201h-33.29h-13.405h-8.642h-18.387h-20.084H584.19h-2.542h-5.421h-37.944h-7.453h-2.757
h-2.757h-1.428h-8.748h-5.514h-10.175h-0.905h-4.609h-10.175h-5.514h-10.175h-2.757h-2.757h-27.938h-8.05h-29.96h-6.713h-18.964
h-11.234h-48.644h-12.099h-10.229h-20.764h-12.382h-3.512h-23.242h-5.943h-13.266h-10.795h-35.413h-16.467h-4.656h-8.696h-25.877
H89.054h-4.763H72.026h-7.508H53.821H42.302v9.376h11.519v6.41h10.696v6.835h19.774v2.177h20.658v9.405h17.084v-5.919h11.557
v10.475h3.789v11.69h11.18v9.823h-4.017v1.763h7.066v4.785h23.433v28.254h-1.845v1.897h4.028v2.429h4.636v0.913v2.777v2.41h5.594
v4.306h0.673l0,0h0.673v-4.306h3.015l1.823-2.41h12.206v-3.69h31.948V543.3h4.028v-1.897h-1.845V484.37h15.302v40.617h1.509v3.023
h2.811v10.012h1.016v-10.012h2.287v7.997h1.017v-7.997h4.828v-3.023h6.098v-10.569h11.445v-0.743h-1.492v-2.116h7.56v32.974
h-1.078v0.849h7.678v5.101h-0.992v0.817h7.047v2.933h-1.099v0.627h3.502v2.77h3.348v5.513h0.402h0.398h0.314v-5.513h1.354v9.889
h0.402h0.399h0.314v-9.889h0.451h2.897v-2.77h3.034v-0.627h-0.632v-2.933h7.047v-0.817h-0.992v-5.101h7.678v-0.849h-1.078v-43.096
h23.505v-5.982h8.399v31.88h-4.954v0.806h4.954v1.443h6.279v2.37h30.344v27.318h7.165v21.803h13.871V593h1.952v-11.927h4.298
v9.528h1.952v-9.528h21.941v-12.964h3.982v-8.839h11.148v-32.999h4.318v-7.629l6.342,0.769v1.742h5.514v-1.073l10.175,1.234v1.969
h5.514v-1.3l9.332,1.131v9.523h2.491v16.539h11.982v6.297h6.46v5.29h2.267v9.068h0.586v-9.068h2.267v-5.29h6.46v-6.297h12.075
v-16.539h2.399v-45.67l5.467,13.925h5.729v12.219h-2.645v0.527h31.278v6.75h-3.52v0.763h-1.791v2.08h8.284v2.313h-1.087v0.668
h18.198v-0.668h-1.087v-2.313h23.966c0.802,1.935,2.023,3.811,3.668,5.596l-3.992,0.913c-0.688-0.732-2.184-1.239-3.92-1.239
c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143c2.388,0,4.324-0.96,4.324-2.143
c0-0.239-0.08-0.468-0.225-0.683l4.015-0.919c2.595,2.749,6.165,5.281,10.623,7.491c0.352,0.174,0.709,0.346,1.069,0.515
l-3.154,1.668c-0.76-0.329-1.753-0.528-2.841-0.528c-2.388,0-4.324,0.959-4.324,2.143s1.936,2.143,4.324,2.143
c2.388,0,4.324-0.959,4.324-2.143c0-0.559-0.432-1.068-1.139-1.449l3.16-1.671c5.36,2.471,11.576,4.337,18.308,5.527l-1.744,2.453
c-0.378-0.054-0.777-0.083-1.19-0.083c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143
c2.388,0,4.324-0.96,4.324-2.143c0-0.895-1.107-1.662-2.68-1.982l1.743-2.451c5.551,0.953,11.445,1.449,17.493,1.449
c0.498,0,0.995-0.003,1.491-0.01l0.198,3.017c-2.096,0.148-3.707,1.041-3.707,2.121c0,1.183,1.936,2.143,4.324,2.143
c2.388,0,4.324-0.96,4.324-2.143c0-1.184-1.936-2.143-4.324-2.143c-0.046,0-0.091,0.001-0.137,0.002l-0.197-3.004
c2.456-0.044,4.881-0.173,7.265-0.378l-2.223,24.735l79.948-8.225v-43.336h13.883v22.309h24.985v8.902h1.355v-8.902h2.795v16.446
h1.355v-16.446h3.219v11.855h1.355v-11.855h4.235v-54.059h12.874V506.6h2.033v3.715h2.033v2.582h14.483v-2.582h2.033V506.6h7.369
v1.594h3.557V506.6h1.259v4.262h5.082V506.6h1.452l3.161-11.593h11.528v5.526h0.762v-5.526h4.32v6.746h0.762v-6.746h6.25v-1.567
h-1.592v-17.317h12.874l1.507-4.997h10.931v-9.012h11.954v-6.86h12.196V446.328z M653.829,518.335l-11.117,0.179v-7.937h2.055
v-0.76h-2.055v-0.593l13.295,2.426c-1.417,1.94-2.19,4.031-2.19,6.21C653.816,518.019,653.821,518.177,653.829,518.335z
M689.289,499.58c-4.354,0.083-8.516,0.542-12.36,1.312l-5.314-6.414v-0.42h5.082v4.786h5.082v-4.786h7.148L689.289,499.58z
M702.329,517.554l-8.713,0.14c-0.026-0.114-0.079-0.224-0.155-0.328l9.073-2.076L702.329,517.554z M666.025,494.058v0.401
c-0.325,0.085-0.657,0.163-0.979,0.251l-0.713-0.651H666.025z M666.025,495.263v0.341l-0.291-0.266
C665.83,495.311,665.929,495.289,666.025,495.263z M666.025,496.603v2.241h2.454l3.554,3.247c-2.98,0.871-5.693,1.943-8.062,3.179
l-10.904-5.064c0.33-0.173,0.666-0.344,1.007-0.513c3.276-1.624,6.914-3.003,10.823-4.12L666.025,496.603z M672.377,502.405
l15.07,13.768l-22.95-10.659C666.813,504.306,669.465,503.258,672.377,502.405z M669.572,498.844h2.043v-3.739l4.87,5.877
c-1.242,0.259-2.449,0.55-3.618,0.872L669.572,498.844z M691.664,494.058v4.786h12.332l-1.224,1.721
c-3.776-0.648-7.828-1.001-12.044-1.001c-0.32,0-0.64,0.002-0.959,0.006l-0.361-5.512H691.664z M703.939,499.641l-0.101,1.127
c-0.206-0.039-0.404-0.087-0.612-0.124L703.939,499.641z M702.896,511.25l-8.307,4.394l8.619-7.874L702.896,511.25z
M702.863,511.616l-0.306,3.407l-9.299,2.127c-0.053-0.046-0.11-0.09-0.172-0.133l0.598-0.547L702.863,511.616z M693.364,518.468
l8.74,1.595l-0.252,2.801l-8.846-4.108C693.147,518.667,693.268,518.571,693.364,518.468z M693.53,518.245
c0.056-0.1,0.091-0.205,0.102-0.312l8.676-0.14l-0.182,2.021L693.53,518.245z M656.116,486.551l-11.415-10.428h11.415V486.551z
M656.116,487.55v4.746h-1.779v1.763h8.903l0.969,0.885c-4.029,1.15-7.778,2.571-11.154,4.243
c-0.352,0.175-0.698,0.352-1.039,0.53l-3.311-1.538c0.63-0.372,1.01-0.852,1.01-1.376c0-1.184-1.936-2.143-4.324-2.143
c-1.018,0-1.941,0.182-2.68,0.473v-5.035h2.055v-0.76h-2.055v-9.479h2.055v-0.76h-2.055v-2.977h0.897L656.116,487.55z
M642.711,500.338h2.055v-0.76h-2.055v-1.104c0.739,0.292,1.662,0.473,2.68,0.473c1.158,0,2.209-0.226,2.985-0.593l3.31,1.537
c-3.677,1.959-6.684,4.15-8.975,6.503V500.338z M642.711,508.163c2.337-2.844,5.703-5.479,10.027-7.784l10.906,5.065
c-3.215,1.722-5.771,3.749-7.47,5.983l-13.463-2.457V508.163z M664.17,505.688l24.004,11.148l0.198,0.181
c-0.107,0.074-0.2,0.152-0.279,0.235l-31.242-5.701C658.515,509.362,661.02,507.375,664.17,505.688z M673.21,502.168
c1.146-0.316,2.33-0.602,3.548-0.855l12.647,15.264c-0.111,0.028-0.218,0.06-0.32,0.094L673.21,502.168z M677.203,501.222
c3.766-0.755,7.844-1.204,12.11-1.286l1.082,16.492c-0.187,0.011-0.369,0.03-0.544,0.057L677.203,501.222z M689.793,499.928
c0.311-0.004,0.623-0.006,0.935-0.006c4.131,0,8.103,0.346,11.804,0.981l-11.067,15.563c-0.19-0.025-0.388-0.04-0.591-0.045
L689.793,499.928z M702.985,500.982c0.278,0.05,0.543,0.112,0.818,0.165l-0.497,5.535l-10.935,9.99
c-0.142-0.048-0.294-0.09-0.453-0.126L702.985,500.982z M692.678,518.929l9.146,4.247l-0.629,7.002l-9.143-11.035
C692.279,519.085,692.49,519.013,692.678,518.929z M656.683,511.774l31.244,5.702c-0.056,0.1-0.091,0.204-0.102,0.312
l-33.276,0.536c-0.008-0.154-0.012-0.309-0.012-0.464C654.537,515.724,655.295,513.675,656.683,511.774z M687.841,518.026
c0.026,0.114,0.079,0.224,0.155,0.328l-30.225,6.916c-1.892-2.059-3.018-4.325-3.204-6.708L687.841,518.026z M688.199,518.57
c0.106,0.092,0.231,0.178,0.373,0.257l-22.753,12.035c-3.243-1.527-5.915-3.348-7.845-5.376L688.199,518.57z M688.923,518.989
c0.188,0.074,0.394,0.137,0.616,0.186l-11.067,15.563c-4.604-0.824-8.776-2.098-12.301-3.714L688.923,518.989z M689.992,519.254
c0.19,0.024,0.388,0.04,0.591,0.045l1.082,16.493c-0.311,0.004-0.623,0.006-0.936,0.006c-4.131,0-8.102-0.346-11.804-0.98
L689.992,519.254z M691.063,519.291c0.187-0.011,0.369-0.03,0.544-0.057l9.537,11.51l-0.39,4.342
c-2.753,0.394-5.632,0.641-8.61,0.697L691.063,519.291z M640.035,523.229h7.987v-2.08h-1.791v-0.763h-3.52v-1.635l11.136-0.179
c0.189,2.432,1.339,4.745,3.27,6.846l-13.578,3.106C641.982,526.835,640.816,525.059,640.035,523.229z M654.074,536.027
c-4.336-2.149-7.809-4.612-10.333-7.285l13.579-3.107c1.969,2.07,4.697,3.929,8.007,5.487l-10.218,5.404
C654.761,536.362,654.415,536.196,654.074,536.027z M655.459,536.689l10.219-5.405c3.597,1.65,7.855,2.95,12.553,3.791
l-4.97,6.989C666.716,540.907,660.672,539.092,655.459,536.689z M690.728,543.552c-5.882,0-11.614-0.483-17.013-1.409l4.97-6.989
c3.776,0.648,7.828,1.001,12.043,1.001c0.321,0,0.64-0.002,0.959-0.006l0.485,7.393
C691.692,543.549,691.211,543.552,690.728,543.552z M692.653,543.535l-0.485-7.395c2.956-0.057,5.813-0.299,8.553-0.681
l-0.69,7.679C697.611,543.354,695.148,543.49,692.653,543.535z"/>
</g>
</g>
<g id="Object">
<g style="opacity:0.3;">
<linearGradient id="SVGID_1_" gradientUnits="userSpaceOnUse" x1="207.5072" y1="393.376" x2="207.5072" y2="229.7061">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
<stop offset="0.5479" style="stop-color:#626262"/>
<stop offset="1" style="stop-color:#646464"/>
</linearGradient>
<polygon style="fill:url(#SVGID_1_);" points="175.04,393.376 239.974,393.376 239.974,259.43 241.819,259.43 241.819,255.601
237.792,255.601 237.792,250.701 205.844,250.701 205.844,243.255 193.638,243.255 191.815,238.393 188.799,238.393
188.799,229.706 188.126,229.706 187.454,229.706 187.454,238.393 181.859,238.393 181.859,243.255 181.859,248.859
181.859,250.701 177.223,250.701 177.223,255.601 173.195,255.601 173.195,259.43 175.04,259.43 "/>
<linearGradient id="SVGID_00000000931258187104496080000017865145222397382034_" gradientUnits="userSpaceOnUse" x1="188.1266" y1="229.7061" x2="188.1266" y2="227.2891">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
<stop offset="0.5479" style="stop-color:#626262"/>
<stop offset="1" style="stop-color:#646464"/>
</linearGradient>
<path style="fill:url(#SVGID_00000000931258187104496080000017865145222397382034_);" d="M189.335,228.498
c0-0.668-0.541-1.209-1.209-1.209c-0.667,0-1.208,0.541-1.208,1.209c0,0.667,0.541,1.208,1.208,1.208
C188.794,229.706,189.335,229.165,189.335,228.498z"/>
<linearGradient id="SVGID_00000036247364810958532620000001993945857249512106_" gradientUnits="userSpaceOnUse" x1="508.9194" y1="421.4165" x2="508.9194" y2="155.3276">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
<stop offset="0.5479" style="stop-color:#626262"/>
<stop offset="1" style="stop-color:#646464"/>
</linearGradient>
<polygon style="fill:url(#SVGID_00000036247364810958532620000001993945857249512106_);" points="777.689,401.218 777.689,221.14
697.741,204.545 706.501,401.218 471.904,401.218 471.904,289.958 467.586,289.958 467.586,223.38 456.438,223.38
456.438,205.547 452.456,205.547 452.456,179.391 430.514,179.391 430.514,160.168 428.562,160.168 428.562,179.391
424.264,179.391 424.264,155.328 422.311,155.328 422.311,179.391 408.44,179.391 408.44,223.38 401.275,223.38 401.275,289.958
395.133,289.958 395.133,401.218 332.748,401.218 332.748,253.114 333.825,253.114 333.825,251.402 326.147,251.402
326.147,241.111 327.14,241.111 327.14,239.463 320.092,239.463 320.092,233.547 320.725,233.547 320.725,232.282 317.69,232.282
317.69,226.693 314.794,226.693 314.343,226.693 314.343,206.742 314.029,206.742 313.63,206.742 313.228,206.742
313.228,226.693 311.874,226.693 311.874,215.571 311.56,215.571 311.161,215.571 310.759,215.571 310.759,226.693
307.411,226.693 307.411,232.282 303.909,232.282 303.909,233.547 305.009,233.547 305.009,239.463 297.962,239.463
297.962,241.111 298.954,241.111 298.954,251.402 291.276,251.402 291.276,253.114 292.354,253.114 292.354,401.218
84.29,401.218 84.29,421.417 933.548,421.417 933.548,401.218 "/>
</g>
<linearGradient id="SVGID_00000121963338060960119620000016097684000583641491_" gradientUnits="userSpaceOnUse" x1="499.6613" y1="451.2495" x2="499.6613" y2="202.0752">
<stop offset="0.0815" style="stop-color:#403E40"/>
<stop offset="0.4715" style="stop-color:#444244"/>
<stop offset="0.8768" style="stop-color:#504F50"/>
<stop offset="1" style="stop-color:#555455"/>
</linearGradient>
<path style="fill:url(#SVGID_00000121963338060960119620000016097684000583641491_);" d="M918.278,419.4v-18.183h-25.56
l-9.674-71.571h-1.452v-8.598h-5.082v8.598h-1.259v-3.216h-3.557v3.216h-7.369v-7.496h-2.033v-5.209h-14.483v5.209h-2.033v7.496
h-2.033v42.986h-12.874V263.564h-4.235v-23.92h-1.355v23.92h-3.219v-33.181h-1.355v33.181h-2.795v-17.961h-1.355v17.961h-24.985
v77.418h-27.78v50.154h-25.944l-20.601-37.972c3.473-2,6.738-4.405,9.735-7.193l4.225,4.508c-0.907,0.793-1.481,1.957-1.481,3.256
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-0.916,0-1.764,0.285-2.463,0.771l-4.255-4.54c0.36-0.341,0.717-0.687,1.069-1.039c4.458-4.459,8.028-9.568,10.623-15.114
l4.705,2.172c-0.086,0.339-0.131,0.693-0.131,1.059c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324
c0-2.388-1.936-4.324-4.324-4.324c-1.852,0-3.432,1.165-4.048,2.803l-4.648-2.146c2.866-6.273,4.489-13.092,4.744-20.153
l5.065,0.165c0.062,2.334,1.972,4.207,4.321,4.207c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-2.266,0-4.123,1.743-4.308,3.961l-5.064-0.165c0.013-0.496,0.021-0.993,0.021-1.491c0-6.303-1.088-12.438-3.173-18.192
l4.231-1.558c0.664,1.533,2.191,2.606,3.968,2.606c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-2.388,0-4.324,1.936-4.324,4.324c0,0.44,0.066,0.866,0.189,1.267l-4.229,1.557c-2.41-6.464-6.085-12.437-10.898-17.611
l3.31-3.102c0.776,0.741,1.827,1.197,2.985,1.197c2.388,0,4.324-1.935,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-2.388,0-4.324,1.936-4.324,4.324c0,1.057,0.38,2.025,1.01,2.776l-3.31,3.102c-0.341-0.36-0.687-0.717-1.039-1.069
c-5.012-5.013-10.848-8.903-17.201-11.546l1.821-4.434c0.413,0.131,0.853,0.203,1.309,0.203c2.388,0,4.324-1.936,4.324-4.324
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,1.762,1.054,3.276,2.566,3.95l-1.816,4.423
c-5.685-2.304-11.775-3.615-18.057-3.842l0.197-6.06c0.046,0.001,0.091,0.003,0.137,0.003c2.388,0,4.324-1.936,4.324-4.324
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.179,1.611,3.98,3.707,4.279l-0.198,6.086
c-0.496-0.014-0.993-0.021-1.491-0.021c-6.048,0-11.942,1.001-17.493,2.925l-1.743-4.946c1.573-0.647,2.68-2.193,2.68-4
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324
c0.413,0,0.812-0.059,1.19-0.167l1.744,4.948c-6.732,2.401-12.948,6.166-18.308,11.152l-3.16-3.372
c0.707-0.77,1.139-1.796,1.139-2.923c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.935-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c1.088,0,2.081-0.402,2.841-1.065l3.154,3.366c-0.36,0.341-0.717,0.688-1.069,1.04
c-4.458,4.458-8.028,9.568-10.623,15.114l-4.015-1.854c0.146-0.433,0.225-0.896,0.225-1.377c0-2.388-1.936-4.324-4.324-4.324
c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324c1.736,0,3.232-1.023,3.92-2.5l3.992,1.843
c-2.865,6.273-4.489,13.093-4.744,20.153l-5.154-0.167c-0.064-2.333-1.973-4.204-4.321-4.204c-2.388,0-4.324,1.936-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.267,0,4.125-1.744,4.308-3.963l5.153,0.167c-0.013,0.496-0.021,0.993-0.021,1.491
c0,6.302,1.088,12.438,3.173,18.191l-4.231,1.558c-0.664-1.533-2.191-2.606-3.969-2.606c-2.388,0-4.324,1.936-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-0.44-0.066-0.866-0.189-1.266l4.229-1.557
c2.409,6.464,6.084,12.436,10.898,17.611l-3.31,3.102c-0.776-0.741-1.827-1.197-2.985-1.197c-2.388,0-4.324,1.935-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.057-0.38-2.025-1.01-2.776l3.311-3.102
c0.341,0.36,0.687,0.717,1.039,1.069c3.376,3.375,7.125,6.242,11.154,8.561l-20.601,37.972h-16.685v-25.743h-6.801v-48.882h2.645
v-1.063H564.32v1.063h2.645v24.652h-5.729l-5.467,28.096v-92.143h-2.399v-33.37h-12.075v-12.705h-6.46V220.37h-2.267v-18.294
h-0.586v18.294h-2.267v10.672h-6.46v12.705h-11.982v33.37h-2.491V337.7h-18.579v53.436h-61.639V287.814h4.954v-1.626h-4.954v-2.911
h-6.279v-4.781h-51.354v4.781h-6.279v2.911h-4.954v1.626h4.954v64.319h-8.4v-12.069h-51.819v14.737h-11.298v27.442h-18.294V292.55
h-6.098v-6.099h-4.828v-16.134h-1.017v16.134h-2.287v-20.2h-1.016v20.2h-2.811v6.099h-1.509v89.693h-37.859v-52.597h1.779v-3.557
h-11.688v-9.655h-5.59v9.655h-5.082v-9.655h-5.082v9.655h-9.885v-9.655h-30.261v9.655h-7.066v3.557h4.017v19.819h-11.18v44.72
h-15.346v-11.942h-17.084v26.044H84.29V419.4H53.82v31.849h891.682V419.4H918.278z M716.559,351.896l-7.135-13.152
c2.287-1.349,4.417-2.938,6.354-4.731l10.219,10.906C723.091,347.622,719.925,349.955,716.559,351.896z M689.85,309.7
c0.175,0.055,0.357,0.094,0.544,0.116l-1.082,33.274c-4.266-0.165-8.344-1.071-12.11-2.594L689.85,309.7z M676.758,340.314
c-1.218-0.512-2.402-1.089-3.548-1.726l15.875-29.261c0.102,0.07,0.209,0.133,0.32,0.19L676.758,340.314z M690.874,309.832
c0.203-0.01,0.401-0.041,0.591-0.091l11.067,31.4c-3.701,1.281-7.673,1.978-11.804,1.978c-0.313,0-0.625-0.004-0.936-0.012
L690.874,309.832z M691.917,309.581c0.159-0.072,0.311-0.157,0.453-0.254l15.875,29.261c-1.677,0.932-3.435,1.734-5.261,2.394
L691.917,309.581z M694.589,311.399l20.697,22.088c-1.893,1.751-3.973,3.303-6.206,4.623L694.589,311.399z M693.683,309.731
l-0.598-1.103c0.062-0.086,0.119-0.176,0.172-0.268l30.224,13.952c-1.93,4.091-4.602,7.766-7.844,10.847L693.683,309.731z
M693.46,307.925c0.077-0.21,0.129-0.432,0.156-0.662l33.274,1.082c-0.186,4.809-1.313,9.38-3.204,13.534L693.46,307.925z
M693.631,306.783c-0.011-0.217-0.046-0.428-0.102-0.63l31.244-11.503c1.388,3.836,2.146,7.971,2.146,12.279
c0,0.313-0.004,0.624-0.012,0.936L693.631,306.783z M693.364,305.702c-0.097-0.207-0.217-0.401-0.358-0.579l24.281-22.752
c3.15,3.404,5.654,7.411,7.319,11.828L693.364,305.702z M692.678,304.772c-0.188-0.17-0.399-0.315-0.627-0.433l12.647-30.797
c4.661,1.958,8.83,4.864,12.261,8.477L692.678,304.772z M691.606,304.157c-0.175-0.055-0.357-0.094-0.544-0.116l1.082-33.273
c4.265,0.164,8.344,1.071,12.11,2.594L691.606,304.157z M690.582,304.025c-0.203,0.01-0.401,0.041-0.591,0.09l-11.067-31.4
c3.701-1.281,7.672-1.978,11.804-1.978c0.313,0,0.625,0.004,0.936,0.012L690.582,304.025z M689.539,304.276
c-0.221,0.099-0.428,0.226-0.616,0.375L666.17,280.37c3.525-3.261,7.697-5.832,12.301-7.494L689.539,304.276z M688.572,304.978
c-0.143,0.158-0.268,0.332-0.373,0.518l-30.224-13.953c1.929-4.091,4.602-7.766,7.845-10.847L688.572,304.978z M687.996,305.932
c-0.077,0.211-0.129,0.432-0.156,0.662l-33.274-1.082c0.186-4.809,1.313-9.38,3.204-13.534L687.996,305.932z M687.825,307.075
c0.011,0.217,0.046,0.427,0.102,0.629l-31.244,11.503c-1.388-3.836-2.146-7.97-2.146-12.279c0-0.313,0.004-0.625,0.012-0.936
L687.825,307.075z M688.092,308.155c0.078,0.168,0.171,0.326,0.279,0.474l-0.198,0.365l-24.004,22.492
c-3.15-3.404-5.654-7.411-7.319-11.828L688.092,308.155z M687.446,310.332l-15.07,27.777c-2.912-1.72-5.564-3.835-7.88-6.272
L687.446,310.332z M672.866,339.221c1.169,0.649,2.376,1.238,3.618,1.759l-5.681,13.833c-1.732-0.721-3.424-1.537-5.07-2.445
L672.866,339.221z M676.929,341.163c3.843,1.555,8.006,2.479,12.36,2.647l-0.485,14.92c-6.107-0.221-12.028-1.496-17.555-3.735
L676.929,341.163z M689.769,343.828c0.319,0.008,0.638,0.013,0.959,0.013c4.215,0,8.267-0.712,12.043-2.02l4.97,14.101
c-5.399,1.87-11.131,2.844-17.013,2.844c-0.482,0-0.964-0.007-1.444-0.021L689.769,343.828z M703.225,341.661
c1.862-0.672,3.655-1.49,5.365-2.44l7.133,13.148c-2.417,1.333-4.933,2.468-7.528,3.394L703.225,341.661z M727.382,343.582
c-0.341,0.341-0.686,0.676-1.035,1.007l-10.217-10.904c3.31-3.144,6.038-6.895,8.007-11.07l13.579,6.269
C735.191,334.277,731.718,339.247,727.382,343.582z M737.917,328.448l-13.578-6.268c1.931-4.239,3.081-8.904,3.27-13.813
l14.921,0.485C742.281,315.718,740.702,322.349,737.917,328.448z M742.565,306.929c0,0.482-0.007,0.963-0.02,1.444l-14.917-0.485
c0.008-0.319,0.012-0.639,0.012-0.959c0-4.397-0.774-8.615-2.19-12.528l14.03-5.165
C741.507,294.832,742.565,300.799,742.565,306.929z M728.718,271.66c4.68,5.032,8.253,10.839,10.596,17.124l-14.032,5.167
c-1.699-4.508-4.255-8.598-7.47-12.072L728.718,271.66z M727.382,270.274c0.341,0.341,0.676,0.686,1.007,1.035l-10.904,10.217
c-3.502-3.687-7.756-6.653-12.513-8.65l5.681-13.833C716.831,261.615,722.507,265.399,727.382,270.274z M692.652,255.126
c6.107,0.221,12.028,1.496,17.555,3.735l-5.681,13.833c-3.843-1.555-8.006-2.479-12.36-2.647L692.652,255.126z M690.728,255.092
c0.482,0,0.964,0.007,1.444,0.02l-0.485,14.917c-0.319-0.008-0.638-0.012-0.959-0.012c-4.215,0-8.267,0.712-12.043,2.019
l-4.97-14.101C679.114,256.065,684.846,255.092,690.728,255.092z M673.261,258.094l4.97,14.102
c-4.698,1.696-8.956,4.319-12.553,7.648l-10.219-10.906C660.671,264.091,666.716,260.43,673.261,258.094z M654.074,270.274
c0.341-0.341,0.687-0.676,1.035-1.007l10.218,10.904c-3.31,3.144-6.038,6.895-8.007,11.071l-13.579-6.269
C646.265,279.58,649.738,274.61,654.074,270.274z M643.539,285.409l13.578,6.268c-1.931,4.239-3.081,8.905-3.27,13.813
l-14.921-0.485C639.175,298.14,640.754,291.509,643.539,285.409z M638.891,306.929c0-0.482,0.007-0.964,0.02-1.444l14.917,0.485
c-0.008,0.318-0.012,0.638-0.012,0.959c0,4.396,0.774,8.614,2.19,12.528l-14.03,5.166
C639.949,319.025,638.891,313.058,638.891,306.929z M652.738,342.197c-4.68-5.032-8.253-10.839-10.597-17.124l14.032-5.167
c1.699,4.508,4.255,8.598,7.47,12.072L652.738,342.197z M654.074,343.582c-0.341-0.341-0.676-0.686-1.007-1.035l10.904-10.217
c2.368,2.494,5.082,4.656,8.062,6.414l-7.135,13.152C660.988,349.642,657.35,346.859,654.074,343.582z M665.046,353.636
c1.692,0.934,3.431,1.771,5.21,2.512l-1.821,4.434c-0.413-0.131-0.853-0.202-1.309-0.202c-2.388,0-4.324,1.936-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.762-1.054-3.276-2.566-3.95l1.816-4.423
c5.685,2.304,11.775,3.615,18.057,3.842l-0.148,4.534c-2.341,0.053-4.224,1.967-4.224,4.321c0,2.388,1.936,4.324,4.324,4.324
c2.388,0,4.324-1.936,4.324-4.324c0-2.26-1.734-4.113-3.944-4.306l0.148-4.535c0.496,0.014,0.993,0.021,1.491,0.021
c6.048,0,11.942-1.001,17.493-2.925l1.554,4.408c-1.471,0.69-2.491,2.184-2.491,3.916c0,2.388,1.936,4.324,4.324,4.324
c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324c-0.485,0-0.951,0.081-1.387,0.229l-1.547-4.388
c2.667-0.952,5.252-2.117,7.736-3.487l20.345,37.5h-92.055L665.046,353.636z"/>
<g>
<linearGradient id="SVGID_00000121273610027325662480000007068999652675512506_" gradientUnits="userSpaceOnUse" x1="815.83" y1="285.1626" x2="815.83" y2="287.5796">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="1" style="stop-color:#161F21"/>
</linearGradient>
<path style="fill:url(#SVGID_00000121273610027325662480000007068999652675512506_);" d="M816.844,286.371
c0-0.667-0.454-1.208-1.014-1.208c-0.56,0-1.014,0.541-1.014,1.208c0,0.668,0.454,1.208,1.014,1.208
C816.39,287.58,816.844,287.039,816.844,286.371z"/>
<linearGradient id="SVGID_00000011738580747612097720000010840228285618223286_" gradientUnits="userSpaceOnUse" x1="500" y1="287.5796" x2="500" y2="451.2495">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="1" style="stop-color:#161F21"/>
</linearGradient>
<polygon style="fill:url(#SVGID_00000011738580747612097720000010840228285618223286_);" points="927.404,433.241 921.11,391.136
908.236,391.136 908.236,356.197 909.828,356.197 909.828,353.036 903.578,353.036 903.578,339.427 902.815,339.427
902.815,353.036 898.496,353.036 898.496,341.887 897.734,341.887 897.734,353.036 871.695,353.036 871.695,356.197
873.474,356.197 873.474,427.088 843.745,427.088 843.745,395.334 826.815,395.334 826.815,317.303 828.363,317.303
828.363,313.475 824.982,313.475 824.982,308.574 821.091,308.574 821.091,306.732 821.091,301.129 821.091,296.267
816.395,296.267 816.395,287.58 815.83,287.58 815.265,287.58 815.265,296.267 812.734,296.267 811.204,301.129 800.958,301.129
800.958,308.574 774.141,308.574 774.141,313.475 770.76,313.475 770.76,317.303 772.309,317.303 772.309,368.073
749.871,368.073 749.871,417.957 724.973,406.925 724.973,358.507 728.991,358.507 728.991,354.95 721.924,354.95
721.924,345.294 691.664,345.294 691.664,354.95 681.778,354.95 681.778,345.294 676.696,345.294 676.696,354.95 671.615,354.95
671.615,345.294 666.025,345.294 666.025,354.95 654.337,354.95 654.337,358.507 656.115,358.507 656.115,425.617
644.765,425.617 644.765,424.913 642.711,424.913 642.711,405.789 644.765,405.789 644.765,404.255 642.711,404.255
642.711,385.13 644.765,385.13 644.765,383.597 642.711,383.597 642.711,364.472 644.765,364.472 644.765,362.939
642.711,362.939 642.711,343.814 644.765,343.814 644.765,342.28 642.711,342.28 642.711,323.156 644.765,323.156
644.765,321.622 642.711,321.622 642.711,301.83 646.231,301.83 646.231,300.291 648.021,300.291 648.021,296.095
614.595,296.095 614.595,291.429 615.682,291.429 615.682,290.081 597.484,290.081 597.484,291.429 598.571,291.429
598.571,296.095 590.287,296.095 590.287,300.291 592.078,300.291 592.078,301.83 595.598,301.83 595.598,321.622
593.543,321.622 593.543,323.156 595.598,323.156 595.598,342.28 593.543,342.28 593.543,343.814 595.598,343.814
595.598,362.939 593.543,362.939 593.543,364.472 595.598,364.472 595.598,383.597 593.543,383.597 593.543,385.13
595.598,385.13 595.598,404.255 593.543,404.255 593.543,405.789 595.598,405.789 595.598,424.913 593.543,424.913
593.543,426.447 595.598,426.447 595.598,442.075 584.189,442.075 584.189,381.685 538.283,381.685 538.283,425.617
530.83,425.617 530.83,288.763 525.315,288.763 525.315,292.286 515.14,294.775 515.14,292.487 509.625,292.487 509.625,296.124
499.45,298.612 499.45,295.989 493.936,295.989 493.936,299.961 483.76,302.45 483.76,300.286 478.246,300.286 478.246,303.799
468.071,306.288 468.071,304.423 462.557,304.423 462.557,438.816 454.799,438.816 454.799,367.168 426.065,367.168
426.065,411.227 396.608,411.227 396.608,373.655 392.979,373.655 392.979,361.316 395.133,361.316 395.133,360.077
385.601,360.077 385.601,356.197 384.584,356.197 384.584,360.077 381.535,360.077 381.535,340.162 380.773,340.162
380.773,360.077 376.802,360.077 376.802,361.316 379.138,361.316 379.138,373.655 359.697,373.655 359.697,402.316
340.771,402.316 330.886,438.816 311.053,438.816 311.053,319.642 284.794,319.642 284.794,315.373 286.286,315.373
286.286,313.875 266.397,313.875 266.397,315.373 267.961,315.373 267.961,319.642 267.961,326.508 267.961,408.127
255.579,408.127 255.579,377.289 259.98,377.289 259.98,374.497 228.825,374.497 228.825,355.867 222.882,355.867
222.882,352.039 209.616,352.039 209.616,355.867 198.821,355.867 198.821,422.389 163.408,422.389 163.408,373.052
133.589,373.052 133.589,412.021 107.712,412.021 107.712,436.954 89.054,436.954 89.054,405.609 64.517,405.609 64.517,432.333
42.301,432.333 42.301,451.25 64.517,451.25 72.025,451.25 84.29,451.25 89.054,451.25 107.712,451.25 133.589,451.25
142.285,451.25 146.941,451.25 163.408,451.25 198.821,451.25 209.616,451.25 222.882,451.25 228.825,451.25 252.067,451.25
255.579,451.25 267.961,451.25 288.725,451.25 298.954,451.25 311.053,451.25 359.697,451.25 370.931,451.25 389.895,451.25
396.608,451.25 426.568,451.25 434.618,451.25 462.557,451.25 465.314,451.25 468.071,451.25 478.246,451.25 483.76,451.25
493.936,451.25 498.545,451.25 499.45,451.25 509.625,451.25 515.14,451.25 523.887,451.25 525.315,451.25 528.072,451.25
530.83,451.25 538.283,451.25 576.227,451.25 581.647,451.25 584.189,451.25 595.598,451.25 615.682,451.25 634.069,451.25
642.711,451.25 656.115,451.25 689.405,451.25 724.606,451.25 724.973,451.25 749.871,451.25 763.792,451.25 772.309,451.25
777.689,451.25 819.353,451.25 826.815,451.25 835.736,451.25 843.745,451.25 873.474,451.25 895.58,451.25 900.105,451.25
908.236,451.25 957.698,451.25 957.698,433.241 "/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

161
frontend/assets/plan.svg Normal file
View File

@@ -0,0 +1,161 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 2200 2200" style="enable-background:new 0 0 2200 2200;" xml:space="preserve">
<g id="Objects">
<g>
<path style="fill:#788D8E;" d="M1202.178,2002.073c-5.328,0-9.648-4.319-9.649-9.647c-0.001-5.328,4.319-9.649,9.647-9.649
c9.63-0.001,19.271-0.006,28.918-0.014c0.003,0,0.006,0,0.009,0c5.325,0,9.643,4.314,9.647,9.639
c0.005,5.328-4.311,9.651-9.639,9.656C1221.458,2002.068,1211.813,2002.072,1202.178,2002.073z M1144.298,2002.03
c-0.006,0-0.01,0-0.016,0c-9.658-0.015-19.305-0.036-28.94-0.061c-5.328-0.014-9.636-4.345-9.622-9.673
c0.014-5.319,4.331-9.622,9.648-9.622c0.008,0,0.017,0,0.025,0c9.628,0.025,19.269,0.046,28.919,0.061
c5.328,0.009,9.641,4.335,9.632,9.663C1153.937,1997.721,1149.619,2002.03,1144.298,2002.03z M1288.979,2001.966
c-5.317,0-9.634-4.306-9.647-9.626c-0.012-5.328,4.298-9.657,9.626-9.669c9.634-0.022,19.274-0.047,28.923-0.075
c5.297,0.018,9.66,4.292,9.676,9.619c0.015,5.328-4.291,9.66-9.619,9.676c-9.652,0.028-19.299,0.054-28.936,0.075
C1288.994,2001.966,1288.986,2001.966,1288.979,2001.966z M1057.498,2001.759c-0.015,0-0.03,0-0.045,0
c-9.659-0.044-19.306-0.095-28.939-0.152c-5.328-0.031-9.622-4.376-9.591-9.704c0.031-5.309,4.344-9.591,9.646-9.591
c0.02,0,0.04,0,0.058,0c9.625,0.057,19.263,0.107,28.914,0.152c5.328,0.025,9.628,4.364,9.603,9.692
C1067.12,1997.468,1062.805,2001.759,1057.498,2001.759z M1375.787,2001.691c-5.31,0-9.625-4.293-9.647-9.609
c-0.022-5.328,4.281-9.665,9.609-9.686c9.636-0.039,19.28-0.079,28.928-0.123c0.015,0,0.029,0,0.044,0
c5.308,0,9.623,4.291,9.647,9.604c0.024,5.328-4.276,9.666-9.604,9.691c-9.651,0.043-19.297,0.084-28.937,0.122
C1375.813,2001.691,1375.8,2001.691,1375.787,2001.691z M1462.601,2001.29c-5.305,0-9.619-4.287-9.647-9.598
c-0.027-5.328,4.27-9.67,9.598-9.698c9.641-0.05,19.285-0.102,28.932-0.156c0.018,0,0.037,0,0.056,0
c5.302,0,9.616,4.284,9.646,9.594c0.029,5.328-4.266,9.671-9.594,9.701c-9.649,0.054-19.297,0.105-28.94,0.156
C1462.635,2001.29,1462.618,2001.29,1462.601,2001.29z M970.707,2001.198c-0.027,0-0.054,0-0.081,0
c-9.662-0.079-19.308-0.166-28.939-0.259c-5.328-0.052-9.605-4.413-9.554-9.741c0.052-5.296,4.361-9.554,9.646-9.554
c0.032,0,0.063,0,0.095,0.001c9.621,0.093,19.258,0.179,28.911,0.258c5.328,0.044,9.612,4.399,9.568,9.727
C980.31,1996.93,975.998,2001.198,970.707,2001.198z M1549.42,2000.802c-5.301,0-9.614-4.281-9.646-9.59
c-0.032-5.328,4.262-9.673,9.59-9.705l28.936-0.176c0.021,0,0.042,0,0.061,0c5.301,0,9.614,4.279,9.647,9.587
c0.033,5.328-4.259,9.674-9.587,9.708l-28.942,0.176C1549.459,2000.802,1549.439,2000.802,1549.42,2000.802z M883.923,2000.297
c-0.041,0-0.083,0-0.124-0.001c-9.663-0.122-19.308-0.25-28.935-0.385c-5.328-0.075-9.586-4.454-9.511-9.782
c0.075-5.328,4.464-9.604,9.782-9.511c9.617,0.136,19.254,0.264,28.907,0.385c5.328,0.067,9.592,4.44,9.525,9.768
C893.501,1996.057,889.195,2000.297,883.923,2000.297z M1636.244,2000.264c-5.3,0-9.612-4.279-9.646-9.586
c-0.034-5.328,4.258-9.675,9.586-9.709l28.943-0.184c0.021,0,0.042,0,0.062,0c5.3,0,9.613,4.279,9.647,9.586
c0.034,5.328-4.259,9.675-9.586,9.709l-28.943,0.184C1636.286,2000.264,1636.265,2000.264,1636.244,2000.264z M1723.075,1999.719
c-5.3,0-9.614-4.28-9.647-9.588c-0.033-5.328,4.26-9.674,9.588-9.707l28.946-0.177c0.02,0,0.04,0,0.059,0
c5.301,0,9.615,4.28,9.647,9.589c0.032,5.328-4.261,9.674-9.589,9.706l-28.945,0.177
C1723.115,1999.719,1723.095,1999.719,1723.075,1999.719z M1809.912,1999.201c-5.303,0-9.616-4.283-9.647-9.593
c-0.03-5.328,4.265-9.672,9.593-9.702l28.952-0.16c0.018,0,0.036,0,0.053,0c5.304,0,9.618,4.285,9.647,9.596
c0.028,5.328-4.268,9.67-9.596,9.699l-28.947,0.16C1809.949,1999.201,1809.931,1999.201,1809.912,1999.201z M797.15,1998.997
c-0.057,0-0.115-0.001-0.172-0.002c-9.665-0.169-19.31-0.346-28.935-0.531c-5.327-0.103-9.562-4.504-9.459-9.832
c0.104-5.327,4.48-9.533,9.832-9.459c9.612,0.186,19.245,0.363,28.899,0.531c5.327,0.092,9.57,4.487,9.477,9.814
C806.701,1994.788,802.399,1998.997,797.15,1998.997z M1896.756,1998.75c-5.307,0-9.621-4.29-9.647-9.602
c-0.025-5.328,4.274-9.667,9.602-9.693c9.658-0.045,19.31-0.089,28.958-0.129c0.014,0,0.027,0,0.041,0
c5.309,0,9.624,4.292,9.647,9.607c0.023,5.328-4.279,9.666-9.607,9.688c-9.644,0.041-19.294,0.084-28.948,0.129
C1896.787,1998.75,1896.771,1998.75,1896.756,1998.75z M710.388,1997.237c-0.076,0-0.152-0.001-0.228-0.003
c-9.667-0.223-19.311-0.457-28.932-0.7c-5.326-0.135-9.535-4.562-9.401-9.889c0.133-5.243,4.425-9.404,9.64-9.404
c0.083,0,0.166,0.001,0.249,0.003c9.607,0.243,19.237,0.477,28.891,0.7c5.327,0.122,9.545,4.541,9.421,9.868
C719.907,1993.064,715.612,1997.237,710.388,1997.237z M623.642,1994.948c-0.096,0-0.193-0.001-0.29-0.004
c-9.67-0.287-19.314-0.585-28.929-0.894c-5.326-0.172-9.503-4.628-9.333-9.953c0.171-5.325,4.65-9.465,9.953-9.333
c9.6,0.309,19.227,0.607,28.88,0.892c5.326,0.158,9.516,4.604,9.357,9.93C633.126,1990.815,628.838,1994.948,623.642,1994.948z
M536.937,1991.683c-0.226,0-0.453-0.007-0.682-0.024c-10.955-0.765-20.624-1.8-29.559-3.167
c-5.267-0.806-8.883-5.728-8.078-10.995c0.805-5.268,5.725-8.888,10.995-8.078c8.408,1.286,17.563,2.264,27.985,2.992
c5.316,0.371,9.323,4.981,8.952,10.296C546.196,1987.794,541.959,1991.683,536.937,1991.683z M452.936,1972.044
c-1.444,0-2.91-0.325-4.291-1.012c-5.129-2.553-10.134-5.398-14.875-8.458c-3.821-2.466-7.597-5.17-11.224-8.036
c-4.179-3.305-4.889-9.372-1.585-13.552c3.305-4.18,9.371-4.889,13.552-1.585c3.144,2.486,6.415,4.828,9.719,6.961
c4.142,2.673,8.519,5.162,13.01,7.397c4.77,2.373,6.713,8.165,4.34,12.935C459.893,1970.083,456.481,1972.044,452.936,1972.044z
M390.843,1913.094c-3.257,0-6.436-1.65-8.252-4.636c-5.088-8.366-9.753-17.406-13.866-26.869
c-2.125-4.886,0.115-10.57,5.002-12.693c4.884-2.125,10.569,0.114,12.694,5.002c3.765,8.661,8.023,16.915,12.657,24.534
c2.768,4.552,1.323,10.487-3.23,13.256C394.28,1912.639,392.55,1913.094,390.843,1913.094z M360.798,1832.103
c-4.545,0-8.593-3.227-9.469-7.857c-1.832-9.681-3.208-19.642-4.092-29.605c-0.471-5.307,3.45-9.991,8.757-10.463
c5.305-0.466,9.991,3.449,10.462,8.757c0.828,9.335,2.117,18.663,3.831,27.724c0.99,5.236-2.451,10.282-7.686,11.272
C361.996,1832.047,361.393,1832.103,360.798,1832.103z M357.3,1745.636c-0.337,0-0.677-0.018-1.02-0.054
c-5.299-0.557-9.143-5.304-8.586-10.603c1.051-10.004,2.612-19.95,4.636-29.561c1.098-5.214,6.217-8.55,11.429-7.451
c5.214,1.099,8.55,6.215,7.451,11.429c-1.889,8.965-3.345,18.252-4.327,27.6C366.362,1741.952,362.175,1745.636,357.3,1745.636z
M379.592,1662.099c-1.292,0-2.604-0.261-3.863-0.812c-4.881-2.136-7.107-7.824-4.97-12.706
c3.967-9.067,8.429-18.064,13.26-26.742c2.591-4.655,8.466-6.329,13.122-3.737c4.656,2.592,6.329,8.466,3.737,13.122
c-4.533,8.143-8.72,16.585-12.442,25.091C386.85,1659.939,383.308,1662.099,379.592,1662.099z M425.149,1588.527
c-2.174,0-4.36-0.73-6.162-2.228c-4.097-3.407-4.658-9.489-1.252-13.587c6.291-7.567,13.033-14.977,20.039-22.024
c3.756-3.78,9.865-3.796,13.644-0.039c3.778,3.756,3.796,9.865,0.039,13.643c-6.604,6.642-12.958,13.624-18.884,20.754
C430.666,1587.342,427.917,1588.527,425.149,1588.527z M488.757,1529.81c-3.021,0-5.994-1.414-7.875-4.063
c-3.085-4.345-2.062-10.367,2.282-13.452c8.036-5.705,16.424-11.148,24.935-16.182c4.587-2.711,10.502-1.194,13.215,3.393
c2.712,4.586,1.194,10.503-3.393,13.215c-8.051,4.762-15.987,9.912-23.588,15.308
C492.639,1529.232,490.688,1529.81,488.757,1529.81z M565.026,1488.849c-3.858,0-7.5-2.33-8.989-6.14
c-1.939-4.962,0.513-10.558,5.476-12.497c8.996-3.515,18.386-6.814,27.91-9.805c5.085-1.593,10.499,1.23,12.094,6.314
c1.597,5.083-1.229,10.498-6.313,12.095c-9.107,2.86-18.081,6.012-26.67,9.368
C567.381,1488.636,566.194,1488.849,565.026,1488.849z M648.419,1465.236c-4.529,0-8.569-3.204-9.462-7.816
c-1.012-5.232,2.408-10.293,7.639-11.306c9.243-1.788,18.981-3.446,28.945-4.926c5.268-0.786,10.177,2.855,10.961,8.125
c0.783,5.27-2.855,10.178-8.125,10.961c-9.686,1.439-19.145,3.049-28.114,4.784
C649.644,1465.178,649.027,1465.236,648.419,1465.236z M734.448,1453.776c-4.949,0-9.161-3.786-9.599-8.809
c-0.464-5.308,3.463-9.987,8.771-10.45c8.927-0.779,18.419-1.521,29.019-2.265c5.285-0.369,9.926,3.633,10.3,8.948
c0.373,5.315-3.633,9.926-8.948,10.299c-10.489,0.737-19.875,1.469-28.691,2.239
C735.013,1453.764,734.729,1453.776,734.448,1453.776z M821.074,1447.866c-5.059,0-9.308-3.941-9.621-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.341-0.318,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.766C821.471,1447.86,821.272,1447.866,821.074,1447.866z M907.74,1442.568c-5.059,0-9.308-3.941-9.621-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.344-0.326,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.218
l-28.889,1.767C908.137,1442.562,907.938,1442.568,907.74,1442.568z M994.406,1437.269c-5.059,0-9.307-3.941-9.62-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.345-0.309,9.893,3.722,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.767C994.805,1437.263,994.604,1437.269,994.406,1437.269z M1081.072,1431.969c-5.059,0-9.307-3.941-9.62-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.322-0.318,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.767C1081.47,1431.964,1081.27,1431.969,1081.072,1431.969z M1167.738,1426.671c-5.059,0-9.307-3.941-9.62-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.349-0.326,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.766C1168.135,1426.665,1167.936,1426.671,1167.738,1426.671z M1254.358,1420.693c-4.914,0-9.115-3.738-9.592-8.73
c-0.508-5.304,3.38-10.015,8.685-10.523c10.205-0.975,19.481-2.043,28.357-3.264c5.276-0.72,10.146,2.966,10.872,8.244
c0.725,5.279-2.966,10.146-8.244,10.872c-9.142,1.257-18.676,2.354-29.148,3.356
C1254.976,1420.678,1254.665,1420.693,1254.358,1420.693z M1339.835,1406.05c-4.233,0-8.115-2.807-9.295-7.086
c-1.416-5.136,1.6-10.448,6.735-11.864c9.242-2.549,18.223-5.456,26.694-8.639c4.994-1.875,10.551,0.65,12.425,5.636
c1.875,4.988-0.649,10.55-5.636,12.425c-9.014,3.388-18.553,6.476-28.353,9.178
C1341.548,1405.937,1340.684,1406.05,1339.835,1406.05z M1418.99,1371.212c-3.131,0-6.201-1.522-8.057-4.329
c-2.938-4.445-1.716-10.43,2.729-13.368c7.542-4.985,14.948-10.622,22.014-16.754c4.022-3.493,10.115-3.063,13.609,0.962
c3.493,4.024,3.062,10.117-0.962,13.609c-7.698,6.683-15.781,12.832-24.022,18.28
C1422.663,1370.694,1420.817,1371.212,1418.99,1371.212z M1480.743,1310.868c-1.931,0-3.882-0.578-5.577-1.782
c-4.344-3.086-5.366-9.108-2.281-13.452c5.366-7.558,10.318-15.487,14.721-23.567c2.549-4.679,8.41-6.406,13.087-3.856
c4.679,2.549,6.406,8.409,3.856,13.087c-4.765,8.747-10.126,17.328-15.932,25.506
C1486.737,1309.454,1483.762,1310.868,1480.743,1310.868z M1517.216,1232.602c-0.778,0-1.568-0.094-2.356-0.292
c-5.169-1.297-8.306-6.538-7.009-11.707c2.256-8.984,3.898-18.121,4.878-27.155c0.575-5.299,5.342-9.13,10.632-8.55
c5.298,0.575,9.126,5.335,8.55,10.633c-1.076,9.911-2.875,19.928-5.346,29.771
C1525.467,1229.681,1521.535,1232.602,1517.216,1232.602z M1520.169,1146.498c-4.554,0-8.606-3.239-9.472-7.879
c-1.672-8.957-4.032-17.905-7.015-26.593c-1.731-5.04,0.953-10.527,5.992-12.257c5.036-1.729,10.528,0.953,12.257,5.992
c3.287,9.575,5.889,19.438,7.733,29.318c0.978,5.237-2.475,10.276-7.713,11.254
C1521.352,1146.444,1520.757,1146.498,1520.169,1146.498z M1486.631,1067.128c-3.053,0-6.055-1.445-7.93-4.142
c-5.223-7.514-11.025-14.791-17.243-21.63c-3.585-3.942-3.295-10.044,0.647-13.629c3.942-3.584,10.044-3.295,13.628,0.648
c6.781,7.457,13.11,15.396,18.811,23.597c3.041,4.375,1.961,10.387-2.415,13.428
C1490.452,1066.568,1488.532,1067.128,1486.631,1067.128z M1424.593,1007.152c-1.794,0-3.608-0.499-5.227-1.546
c-7.728-4.995-15.75-9.441-23.845-13.217l-0.314-0.146c-4.827-2.257-6.911-7.999-4.653-12.826c2.257-4.826,8-6.91,12.825-4.653
l0.276,0.129c8.915,4.158,17.716,9.036,26.183,14.508c4.475,2.892,5.758,8.864,2.866,13.339
C1430.859,1005.596,1427.759,1007.152,1424.593,1007.152z M1344.533,974.803c-0.7,0-1.41-0.076-2.123-0.236
c-8.759-1.966-18.077-3.643-27.693-4.985c-5.277-0.736-8.958-5.611-8.222-10.888c0.737-5.277,5.615-8.957,10.888-8.222
c10.137,1.415,19.98,3.187,29.254,5.268c5.199,1.167,8.467,6.327,7.3,11.527C1352.93,971.754,1348.947,974.803,1344.533,974.803z
M274.324,966.773c-5.318,0-9.634-4.305-9.647-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.023,0
c5.317,0,9.634,4.305,9.647,9.625c0.012,5.328-4.297,9.657-9.625,9.67l-28.943,0.066
C274.339,966.773,274.331,966.773,274.324,966.773z M361.152,966.573c-5.318,0-9.635-4.305-9.647-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.338-0.002,9.657,4.297,9.67,9.625s-4.297,9.657-9.625,9.67l-28.943,0.066
C361.167,966.573,361.16,966.573,361.152,966.573z M447.979,966.373c-5.318,0-9.634-4.305-9.647-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.942-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.942,0.066C447.995,966.373,447.987,966.373,447.979,966.373z M534.808,966.174
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C534.823,966.174,534.815,966.174,534.808,966.174z M621.636,965.973c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C621.651,965.973,621.643,965.973,621.636,965.973z M708.463,965.774
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C708.478,965.774,708.471,965.774,708.463,965.774z M795.291,965.574c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.292,0.018,9.658,4.297,9.67,9.625c0.012,5.328-4.297,9.657-9.626,9.67
l-28.943,0.066C795.306,965.574,795.299,965.574,795.291,965.574z M882.12,965.374c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.317,0,9.634,4.305,9.647,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C882.135,965.374,882.127,965.374,882.12,965.374z M968.947,965.174
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C968.962,965.174,968.955,965.174,968.947,965.174z M1258.376,965.13c-0.103,0-0.204-0.001-0.307-0.005
c-8.629-0.27-17.745-0.424-28.69-0.483c-5.328-0.029-9.623-4.372-9.595-9.7c0.029-5.31,4.342-9.595,9.647-9.595
c0.018,0,0.036,0,0.054,0c11.114,0.06,20.389,0.216,29.188,0.492c5.326,0.167,9.508,4.619,9.341,9.945
C1267.849,961.007,1263.564,965.13,1258.376,965.13z M1055.775,964.974c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.318,0,9.634,4.305,9.647,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C1055.79,964.974,1055.783,964.974,1055.775,964.974z M1142.603,964.775
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.007,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C1142.619,964.775,1142.611,964.775,1142.603,964.775z"/>
<path style="fill:#D13737;" d="M462.452,197.927c-156.647,0-283.638,126.991-283.638,283.638
c0,251.801,283.638,464.048,283.638,464.048S746.09,733.366,746.09,481.565C746.09,324.918,619.099,197.927,462.452,197.927z
M462.316,679.485c-109.374,0-198.045-88.671-198.045-198.055c0-109.374,88.671-198.045,198.045-198.045
c109.384,0,198.055,88.671,198.055,198.045C660.371,590.814,571.701,679.485,462.316,679.485z"/>
<path style="fill:#18ACB7;" d="M1737.548,1228.212c-156.647,0-283.638,126.991-283.638,283.638
c0,251.801,283.638,464.048,283.638,464.048s283.638-212.246,283.638-464.048
C2021.187,1355.203,1894.196,1228.212,1737.548,1228.212z M1737.413,1709.77c-109.374,0-198.045-88.671-198.045-198.055
c0-109.374,88.671-198.045,198.045-198.045c109.384,0,198.055,88.671,198.055,198.045
C1935.468,1621.1,1846.797,1709.77,1737.413,1709.77z"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -0,0 +1,3 @@
description: This file stores settings for Dart & Flutter DevTools.
documentation: https://docs.flutter.dev/tools/devtools/extensions#configure-extension-enablement-states
extensions:

View File

@@ -0,0 +1,17 @@
flutter_launcher_icons:
image_path: "assets/launcher/icon.png"
# Android section
android: true
min_sdk_android: 21 # android min sdk min:16, default 21
# iOS section
ios: true
remove_alpha_ios: true # app store rejecs icons with alpha
# Web section
web:
generate: true
image_path: "assets/launcher/icon.png"
# background_color: "#hexcode"
# theme_color: "#hexcode"

View File

@@ -427,7 +427,7 @@
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = AppIcon;
CLANG_ANALYZER_NONNULL = YES;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++0x";
CLANG_CXX_LIBRARY = "libc++";
@@ -484,7 +484,7 @@
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = AppIcon;
CLANG_ANALYZER_NONNULL = YES;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++0x";
CLANG_CXX_LIBRARY = "libc++";

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 295 B

After

Width:  |  Height:  |  Size: 738 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 406 B

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 450 B

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 282 B

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 462 B

After

Width:  |  Height:  |  Size: 2.3 KiB

Some files were not shown because too many files have changed in this diff Show More