Compare commits
150 Commits
Author | SHA1 | Date | |
---|---|---|---|
7967b96d4e | |||
b05950d595 | |||
df51a6473b | |||
0b8f2bc94f | |||
3c5485cda8 | |||
720e4d1c17 | |||
8ef60104f0 | |||
efd332f8c5 | |||
bda87859ee | |||
a7e3553246 | |||
21f57f6929 | |||
86fd50e21d | |||
2df8a22239 | |||
6af74804ec | |||
e3d2c51c6d | |||
0819b8b201 | |||
5bc2918a39 | |||
114acaf93d | |||
615f028f94 | |||
45c860329f | |||
a676af3a67 | |||
e148c851e1 | |||
4ad867e609 | |||
6f2f86f936 | |||
56c55883ea | |||
8f6dfd404d | |||
aed407e2d0 | |||
f6d0cd5360 | |||
7a18830e99 | |||
ba14a0279e | |||
5a2c61d343 | |||
5e27dd9d79 | |||
d92001faaf | |||
73f0dc8361 | |||
05092e55f1 | |||
83be4b7616 | |||
8a9ec6b4d8 | |||
8c3145dfc9 | |||
2bf38119d6 | |||
ca711c614f | |||
357edf3000 | |||
444c47e3a4 | |||
da6ab207d9 | |||
c15e257dea | |||
5a698dd02c | |||
7e4a4b3dc7 | |||
84e5902436 | |||
81330e5eb3 | |||
9002483036 | |||
0271c3d7a7 | |||
4fd1272ea4 | |||
6bedd04a57 | |||
d31ca9f81f | |||
f6e396e54b | |||
d4de945df8 | |||
6f54522b8c | |||
080ecd28ae | |||
21706ea7e6 | |||
83c1533e78 | |||
1f4815c991 | |||
699737bc40 | |||
1240f86d6e | |||
2a5023df4b | |||
581644a108 | |||
f48dcf80c2 | |||
757773f433 | |||
25c2b6b0d1 | |||
b527318eec | |||
f2943eb3ad | |||
2ac8499dfb | |||
4a904c3d3c | |||
978cae290b | |||
bab6cfe74e | |||
71abeabbd2 | |||
f64e60ddf6 | |||
d6f723bee1 | |||
a3243431e0 | |||
3605408ebb | |||
431ae7c670 | |||
e612a82921 | |||
163e10032c | |||
06c01837cf | |||
cd24ee4a67 | |||
85c69d5e01 | |||
d02ba85c31 | |||
0c9b829c3f | |||
b9d45ac9f1 | |||
2f86536893 | |||
8d9e2d9207 | |||
259b0d36fd | |||
577ee232fc | |||
1cc935fb34 | |||
4818bde820 | |||
b30fa1f02e | |||
150055c1b2 | |||
f863c41653 | |||
f67e2b5dd6 | |||
28ff0460ab | |||
b9356dc4ee | |||
78f1dcaab4 | |||
ca40de82dd | |||
c668158341 | |||
98576cff0a | |||
7027444602 | |||
e5a4645f7a | |||
e2e54f5205 | |||
2be7cd1e61 | |||
3ebe0b7191 | |||
814da4b5f6 | |||
3fe6056f3c | |||
d62dddd424 | |||
133f81ce3b | |||
14385342cc | |||
dba988629d | |||
ecd505a9ce | |||
4fae658dbb | |||
41976e3e85 | |||
73373e0fc3 | |||
c6cebd0fdf | |||
11bbf34375 | |||
a0a3d76b78 | |||
160059d94b | |||
18d59012cb | |||
f297094c1a | |||
86187d9069 | |||
4e07c10969 | |||
bc63b57154 | |||
fa083a1080 | |||
c448e2dfb7 | |||
d9061388dd | |||
a9851f9627 | |||
e764393706 | |||
d992b62533 | |||
e78bee4597 | |||
a0467e1e19 | |||
9b61471c94 | |||
d186a51a87 | |||
a59029c809 | |||
9e0864d300 | |||
3dc27b2382 | |||
9326cf8a74 | |||
97cb5b16aa | |||
a4a70d56c6 | |||
7acfb84122 | |||
cbada7e4a4 | |||
4a542a4a1f | |||
f25355ee3e | |||
4baf045c8c | |||
3f1fe463bf | |||
d58ef2562d |
@ -25,10 +25,8 @@ jobs:
|
||||
ls -la
|
||||
# only install dev-packages
|
||||
pipenv install --categories=dev-packages
|
||||
pipenv run pip freeze
|
||||
|
||||
working-directory: backend
|
||||
|
||||
- name: Run linter
|
||||
run: pipenv run pylint src --fail-under=9
|
||||
run: pipenv run pylint src --fail-under=9
|
||||
working-directory: backend
|
||||
|
@ -25,11 +25,10 @@ jobs:
|
||||
ls -la
|
||||
# install all packages, including dev-packages
|
||||
pipenv install --dev
|
||||
pipenv run pip freeze
|
||||
working-directory: backend
|
||||
|
||||
- name: Run Tests
|
||||
run: pipenv run pytest src --html=report.html --self-contained-html
|
||||
run: pipenv run pytest src --html=report.html --self-contained-html --log-cli-level=DEBUG
|
||||
working-directory: backend
|
||||
|
||||
- name: Upload HTML report
|
||||
|
@ -1,67 +0,0 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- frontend/**
|
||||
|
||||
|
||||
name: Build and release debug APK
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build APK
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
||||
- name: Install prerequisites
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get install -y jq
|
||||
|
||||
- uses: https://gitea.com/actions/checkout@v4
|
||||
|
||||
|
||||
- uses: https://github.com/actions/setup-java@v4
|
||||
with:
|
||||
java-version: '17'
|
||||
distribution: 'zulu'
|
||||
|
||||
- name: Fix flutter SDK folder permission
|
||||
run: git config --global --add safe.directory "*"
|
||||
|
||||
- uses: https://github.com/subosito/flutter-action@v2
|
||||
with:
|
||||
channel: stable
|
||||
flutter-version: 3.22.0
|
||||
cache: true
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: https://github.com/android-actions/setup-android@v3
|
||||
|
||||
- run: flutter pub get
|
||||
working-directory: ./frontend
|
||||
|
||||
- name: Add required secrets
|
||||
env:
|
||||
ANDROID_SECRETS_PROPERTIES: ${{ secrets.ANDROID_SECRETS_PROPERTIES }}
|
||||
run: |
|
||||
echo "$ANDROID_SECRETS_PROPERTIES" >> ./android/secrets.properties
|
||||
working-directory: ./frontend
|
||||
|
||||
- name: Sanity check
|
||||
run: |
|
||||
ls
|
||||
ls -lah android
|
||||
working-directory: ./frontend
|
||||
|
||||
- run: flutter build apk --debug --split-per-abi --build-number=${{ gitea.run_number }}
|
||||
working-directory: ./frontend
|
||||
|
||||
- name: Upload APKs to artifacts
|
||||
uses: https://gitea.com/actions/upload-artifact@v3
|
||||
with:
|
||||
name: app-release
|
||||
path: frontend/build/app/outputs/flutter-apk/
|
||||
if-no-files-found: error
|
||||
retention-days: 15
|
74
.gitea/workflows/frontend_build-app-android.yaml
Normal file
@ -0,0 +1,74 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- frontend/**
|
||||
|
||||
|
||||
name: Build and release debug APK
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: frontend/android
|
||||
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: macos
|
||||
env:
|
||||
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
|
||||
BUNDLE_GEMFILE: ${{ gitea.workspace }}/frontend/android/Gemfile
|
||||
|
||||
steps:
|
||||
- uses: https://gitea.com/actions/checkout@v4
|
||||
|
||||
- uses: https://github.com/actions/setup-java@v4
|
||||
with:
|
||||
java-version: '17'
|
||||
distribution: 'zulu'
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: https://github.com/android-actions/setup-android@v3
|
||||
|
||||
- name: Fix flutter SDK folder permission
|
||||
run: git config --global --add safe.directory "*"
|
||||
|
||||
- uses: https://github.com/subosito/flutter-action@v2
|
||||
with:
|
||||
channel: stable
|
||||
flutter-version-file: ${{ gitea.workspace }}/frontend/pubspec.yaml
|
||||
architecture: x64
|
||||
cache: true
|
||||
|
||||
- name: Install dependencies and clean up
|
||||
run: |
|
||||
flutter pub get
|
||||
flutter clean
|
||||
|
||||
- name: Set up ruby env and install fastlane
|
||||
uses: https://github.com/ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: 3.3
|
||||
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
|
||||
|
||||
- name: Infer version number from git tag
|
||||
id: version
|
||||
env:
|
||||
REF_NAME: ${{ gitea.ref_name }}
|
||||
run:
|
||||
# remove the 'v' prefix from the tag name
|
||||
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
|
||||
|
||||
- name: Add required secret files
|
||||
run: |
|
||||
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
|
||||
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
|
||||
echo "${{ secrets.ANDROID_KEYSTORE_BASE64 }}" | base64 -d > release.keystore
|
||||
|
||||
- name: Run fastlane lane
|
||||
run: bundle exec fastlane deploy_beta
|
||||
env:
|
||||
BUILD_NUMBER: ${{ gitea.run_number }}
|
||||
# BUILD_NAME is implicitly available
|
||||
ANDROID_GOOGLE_MAPS_API_KEY: ${{ secrets.ANDROID_GOOGLE_MAPS_API_KEY }}
|
72
.gitea/workflows/frontend_build-app-ios.yaml
Normal file
@ -0,0 +1,72 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- frontend/**
|
||||
|
||||
name: Build and release debugging app to ios testflight
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: frontend/ios
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: macos
|
||||
env:
|
||||
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
|
||||
BUNDLE_GEMFILE: ${{ gitea.workspace }}/frontend/ios/Gemfile
|
||||
|
||||
steps:
|
||||
- uses: https://gitea.com/actions/checkout@v4
|
||||
|
||||
- name: Install Flutter
|
||||
uses: https://github.com/subosito/flutter-action@v2
|
||||
with:
|
||||
channel: stable
|
||||
flutter-version-file: ${{ gitea.workspace }}/frontend/pubspec.yaml
|
||||
architecture: x64
|
||||
cache: true
|
||||
|
||||
- name: Install dependencies and clean up
|
||||
run: |
|
||||
flutter pub get
|
||||
bundle exec pod install
|
||||
flutter clean
|
||||
bundle exec pod cache clean --all
|
||||
|
||||
- name: Set up ruby env
|
||||
uses: https://github.com/ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: 3.3
|
||||
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
|
||||
|
||||
- name: Infer version number from git tag
|
||||
id: version
|
||||
env:
|
||||
REF_NAME: ${{ gitea.ref_name }}
|
||||
run:
|
||||
# remove the 'v' prefix from the tag name
|
||||
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
|
||||
|
||||
- name: Setup SSH key for match git repo
|
||||
# and mark the host as known
|
||||
run: |
|
||||
echo $MATCH_REPO_SSH_KEY | base64 --decode > ~/.ssh/id_rsa
|
||||
chmod 600 ~/.ssh/id_rsa
|
||||
ssh-keyscan -p 2222 git.kluster.moll.re > ~/.ssh/known_hosts
|
||||
env:
|
||||
MATCH_REPO_SSH_KEY: ${{ secrets.IOS_MATCH_REPO_SSH_KEY_BASE64 }}
|
||||
|
||||
- name: Run fastlane lane
|
||||
run: bundle exec fastlane deploy_beta
|
||||
env:
|
||||
BUILD_NUMBER: ${{ gitea.run_number }}
|
||||
# BUILD_NAME is implicitly available
|
||||
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}
|
||||
IOS_ASC_KEY_ID: ${{ secrets.IOS_ASC_KEY_ID }}
|
||||
IOS_ASC_ISSUER_ID: ${{ secrets.IOS_ASC_ISSUER_ID }}
|
||||
IOS_ASC_KEY: ${{ secrets.IOS_ASC_KEY }}
|
||||
MATCH_PASSWORD: ${{ secrets.IOS_MATCH_PASSWORD }}
|
||||
IOS_GOOGLE_MAPS_API_KEY: ${{ secrets.IOS_GOOGLE_MAPS_API_KEY }}
|
@ -1,34 +0,0 @@
|
||||
# on:
|
||||
# pull_request:
|
||||
# branches:
|
||||
# - main
|
||||
# paths:
|
||||
# - frontend/**
|
||||
|
||||
|
||||
# name: Build web
|
||||
|
||||
# jobs:
|
||||
# build:
|
||||
# name: Build Web
|
||||
# runs-on: ubuntu-latest
|
||||
# steps:
|
||||
|
||||
# - name: Install prerequisites
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install -y xz-utils
|
||||
|
||||
# - uses: actions/checkout@v4
|
||||
|
||||
# - uses: https://github.com/subosito/flutter-action@v2
|
||||
# with:
|
||||
# channel: stable
|
||||
# flutter-version: 3.19.6
|
||||
# cache: true
|
||||
|
||||
# - run: flutter pub get
|
||||
# working-directory: ./frontend
|
||||
|
||||
# - run: flutter build web
|
||||
# working-directory: ./frontend
|
@ -1,39 +0,0 @@
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- v*
|
||||
|
||||
jobs:
|
||||
push-to-remote:
|
||||
# We want to use the macos runner provided by github actions. This requires to push to a remote first.
|
||||
# After the push we can use the action under frontend/.github/actions/ to deploy properly using fastlane on macos.
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
path: 'src'
|
||||
|
||||
- name: Checkout remote repository
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
path: 'dest'
|
||||
ref: 'main'
|
||||
github-server-url: 'https://github.com'
|
||||
repository: 'moll-re/anyway-frontend-builder'
|
||||
token: ${{ secrets.PUSH_GITHUB_API_TOKEN }}
|
||||
fetch-depth: 0
|
||||
persist-credentials: true
|
||||
|
||||
- name: Copy files to remote repository
|
||||
run: cp -r src/frontend/. dest/
|
||||
|
||||
- name: Commit and push changes
|
||||
run: |
|
||||
cd dest
|
||||
git config --global user.email "me@moll.re"
|
||||
git config --global user.name "[bot]"
|
||||
git add .
|
||||
git commit -m "Automatic code update for tag"
|
||||
git tag -a ${{ github.ref_name }} -m "mirrored tag"
|
||||
git push origin main --tags
|
21
.vscode/launch.json
vendored
@ -9,18 +9,16 @@
|
||||
"name": "Backend - debug",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"module": "uvicorn",
|
||||
"env": {
|
||||
"DEBUG": "true"
|
||||
},
|
||||
"args": [
|
||||
// "--app-dir",
|
||||
// "src",
|
||||
"src.main:app",
|
||||
"--reload",
|
||||
],
|
||||
"jinja": true,
|
||||
"cwd": "${workspaceFolder}/backend"
|
||||
"cwd": "${workspaceFolder}/backend",
|
||||
"module": "fastapi",
|
||||
"args": [
|
||||
"dev",
|
||||
"src/main.py"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Backend - tester",
|
||||
@ -38,7 +36,10 @@
|
||||
"type": "dart",
|
||||
"request": "launch",
|
||||
"program": "lib/main.dart",
|
||||
"cwd": "${workspaceFolder}/frontend"
|
||||
"cwd": "${workspaceFolder}/frontend",
|
||||
"env": {
|
||||
"GOOGLE_MAPS_API_KEY": "testing"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Frontend - profile",
|
||||
@ -49,4 +50,4 @@
|
||||
"cwd": "${workspaceFolder}/frontend"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
3
.vscode/settings.json
vendored
@ -1,3 +0,0 @@
|
||||
{
|
||||
"cmake.ignoreCMakeListsMissing": true
|
||||
}
|
30
LICENSE.md
Normal file
@ -0,0 +1,30 @@
|
||||
# License
|
||||
|
||||
## Proprietary License
|
||||
|
||||
All code and resources in this repository are the property of AnyDev. The software and related documentation are provided solely for use with services provided by AnyDev. Redistribution, modification, or use of this software outside of its intended service is strictly prohibited without explicit permission.
|
||||
|
||||
### Copyright © 2024 AnyDev
|
||||
|
||||
All rights reserved.
|
||||
|
||||
### Restrictions
|
||||
|
||||
- You may not modify, distribute, copy, or reverse engineer any part of this codebase.
|
||||
- This software is licensed for use solely in conjunction with services provided by AnyDev.
|
||||
- Any commercial use of this software is strictly prohibited without explicit written consent from AnyDev.
|
||||
|
||||
## Third-Party Dependencies
|
||||
|
||||
This project uses third-party dependencies, which are subject to their respective licenses.
|
||||
|
||||
- Python backend dependencies: fastapi, pydantic, numpy, shapely, etc. – Licensed under their respective licenses.
|
||||
- Flutter frontend dependencies: Cupertino Icons, sliding_up_panel, http, etc. – Licensed under their respective licenses.
|
||||
|
||||
Please refer to each project's documentation for the specific terms and conditions.
|
||||
|
||||
## OpenStreetMap Data Usage
|
||||
|
||||
This project uses data derived from **OpenStreetMap**. OpenStreetMap data is available under the [Open Database License (ODbL)](https://www.openstreetmap.org/copyright). We comply with the ODbL license, and some of the data displayed in the service may be derived from OpenStreetMap sources. We do not redistribute raw OpenStreetMap data; instead, it is processed and transformed before being used in our services.
|
||||
|
||||
More information about OpenStreetMap data usage can be found [here](https://www.openstreetmap.org/copyright).
|
@ -15,7 +15,7 @@ This project is divided into two main components: a frontend and a backend. The
|
||||
See the [frontend README](frontend/README.md) for more information. The application is centered around its map view, which displays the user's itinerary. This is based on the Google Maps API.
|
||||
|
||||
### Backend
|
||||
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap API, which is much more flexible.
|
||||
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap database through the Overpass API, which is much more flexible.
|
||||
|
||||
|
||||
## Getting Started
|
||||
@ -24,8 +24,8 @@ Refer to the READMEs in the `frontend` and `backend` directories for instruction
|
||||
- `google_maps_flutter` plugin
|
||||
- Python 3
|
||||
- `fastapi`
|
||||
- `OSMPythonTools`
|
||||
- `numpy, scipy`
|
||||
- `numpy`
|
||||
- `pydantic`
|
||||
- Docker
|
||||
|
||||
|
||||
|
9
backend/.gitignore
vendored
@ -1,9 +1,8 @@
|
||||
# osm-cache and wikidata cache
|
||||
cache/
|
||||
apicache/
|
||||
# osm-cache
|
||||
cache_XML/
|
||||
|
||||
# wikidata throttle
|
||||
*.ctrl
|
||||
# secrets
|
||||
*secrets.yaml
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
|
@ -293,7 +293,7 @@ ignored-parents=
|
||||
max-args=5
|
||||
|
||||
# Maximum number of attributes for a class (see R0902).
|
||||
max-attributes=7
|
||||
max-attributes=20
|
||||
|
||||
# Maximum number of boolean expressions in an if statement (see R0916).
|
||||
max-bool-expr=5
|
||||
@ -302,7 +302,7 @@ max-bool-expr=5
|
||||
max-branches=12
|
||||
|
||||
# Maximum number of locals for function / method body.
|
||||
max-locals=15
|
||||
max-locals=30
|
||||
|
||||
# Maximum number of parents for a class (see R0901).
|
||||
max-parents=7
|
||||
@ -402,7 +402,7 @@ preferred-modules=
|
||||
|
||||
# The type of string formatting that logging methods do. `old` means using %
|
||||
# formatting, `new` is for `{}` formatting.
|
||||
logging-format-style=old
|
||||
logging-format-style=new
|
||||
|
||||
# Logging modules to check that the string format arguments are in logging
|
||||
# function parameter format.
|
||||
@ -440,7 +440,14 @@ disable=raw-checker-failed,
|
||||
use-implicit-booleaness-not-comparison-to-string,
|
||||
use-implicit-booleaness-not-comparison-to-zero,
|
||||
import-error,
|
||||
line-too-long
|
||||
multiple-statements,
|
||||
line-too-long,
|
||||
logging-fstring-interpolation,
|
||||
duplicate-code,
|
||||
relative-beyond-top-level,
|
||||
invalid-name,
|
||||
too-many-arguments,
|
||||
too-many-positional-arguments
|
||||
|
||||
# Enable the message, report, category or checker with the given id(s). You can
|
||||
# either give multiple identifier separated by comma (,) or put this option
|
||||
|
@ -14,5 +14,7 @@ EXPOSE 8000
|
||||
ENV NUM_WORKERS=1
|
||||
ENV OSM_CACHE_DIR=/cache
|
||||
ENV MEMCACHED_HOST_PATH=none
|
||||
ENV LOKI_URL=none
|
||||
|
||||
# explicitly use a string instead of an argument list to force a shell and variable expansion
|
||||
CMD fastapi run src/main.py --port 8000 --workers $NUM_WORKERS
|
||||
|
@ -18,10 +18,10 @@ numpy = "*"
|
||||
fastapi = "*"
|
||||
pydantic = "*"
|
||||
shapely = "*"
|
||||
scipy = "*"
|
||||
osmpythontools = "*"
|
||||
pywikibot = "*"
|
||||
pymemcache = "*"
|
||||
fastapi-cli = "*"
|
||||
scikit-learn = "*"
|
||||
pyqt6 = "*"
|
||||
loki-logger-handler = "*"
|
||||
pulp = "*"
|
||||
scipy = "*"
|
||||
requests = "*"
|
||||
|
1881
backend/Pipfile.lock
generated
@ -38,7 +38,19 @@ To deploy the backend docker container, we use kubernetes. Modifications to the
|
||||
|
||||
The deployment configuration is included as a submodule in the `deployment` directory. The standalone repository is under [https://git.kluster.moll.re/anydev/anyway-backend-deployment/](https://git.kluster.moll.re/anydev/anyway-backend-deployment/).
|
||||
|
||||
|
||||
## Development
|
||||
TBD
|
||||
|
||||
The backend application is structured around the `src` directory, which contains the core components for handling route optimization and API logic. Development generally involves working with key modules such as the optimization engine, Overpass API integration, and utilities for managing landmarks and trip data.
|
||||
|
||||
### Key Areas:
|
||||
- **API Endpoints**: The main interaction with the backend is through the endpoints defined in `src/main.py`. FastAPI simplifies the creation of RESTful services that manage trip and landmark data.
|
||||
- **Optimization Logic**: The trip optimization and refinement are handled in the `src/optimization` module. This is where the core algorithms are implemented.
|
||||
- **Landmark Management**: Fetching and prioritizing points of interest (POIs) based on user preferences happens in `src/utils/LandmarkManager`.
|
||||
- **Testing**: The `src/tests` directory includes tests in various scenarii, ensuring that the logic works as expected.
|
||||
|
||||
For detailed information, refer to the [src README](backend/src/README.md).
|
||||
|
||||
### Running the Application:
|
||||
To run the backend locally, ensure that the virtual environment is activated and all dependencies are installed as outlined in the "Getting Started" section. You can start the FastAPI server with:
|
||||
```bash
|
||||
uvicorn src.main:app --reload
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit 718df09e88b63c9524c882ccbb8247ca1448d3ff
|
||||
Subproject commit 904f16bfc0624b6ab8569e0a70050aaa3bd64b3f
|
363
backend/landmarks.json
Normal file
@ -0,0 +1,363 @@
|
||||
[
|
||||
{
|
||||
"name": "Chinatown",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7554934,
|
||||
4.8444852
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 996515596,
|
||||
"attractiveness": 129,
|
||||
"n_tags": 0,
|
||||
"image_url": null,
|
||||
"website_url": null,
|
||||
"wiki_url": null,
|
||||
"keywords": {},
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "285d159c-68ee-4b37-8d71-f27ee3d38b02",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Galeries Lafayette",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7627107,
|
||||
4.8556833
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 1069872743,
|
||||
"attractiveness": 197,
|
||||
"n_tags": 11,
|
||||
"image_url": null,
|
||||
"website_url": "http://www.galerieslafayette.com/",
|
||||
"wiki_url": null,
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "28f1bc30-10d3-4944-8861-0ed9abca012d",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Muji",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7615971,
|
||||
4.8543781
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 1044165817,
|
||||
"attractiveness": 259,
|
||||
"n_tags": 14,
|
||||
"image_url": null,
|
||||
"website_url": "https://www.muji.com/fr/",
|
||||
"wiki_url": null,
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": "Muji",
|
||||
"uuid": "957f86a5-6c00-41a2-815d-d6f739052be4",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "HEMA",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7619133,
|
||||
4.8565239
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 1069872750,
|
||||
"attractiveness": 156,
|
||||
"n_tags": 9,
|
||||
"image_url": null,
|
||||
"website_url": "https://fr.westfield.com/lapartdieu/store/HEMA/www.hema.fr",
|
||||
"wiki_url": null,
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "8dae9d3e-e4c4-4e80-941d-0b106e22c85b",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Cordeliers",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7622752,
|
||||
4.8337998
|
||||
],
|
||||
"osm_type": "node",
|
||||
"osm_id": 5545183519,
|
||||
"attractiveness": 813,
|
||||
"n_tags": 0,
|
||||
"image_url": null,
|
||||
"website_url": null,
|
||||
"wiki_url": null,
|
||||
"keywords": {},
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "ba02adb5-e28f-4645-8c2d-25ead6232379",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Halles de Lyon Paul Bocuse",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7628282,
|
||||
4.8505601
|
||||
],
|
||||
"osm_type": "relation",
|
||||
"osm_id": 971529,
|
||||
"attractiveness": 272,
|
||||
"n_tags": 12,
|
||||
"image_url": null,
|
||||
"website_url": "https://www.halles-de-lyon-paulbocuse.com/",
|
||||
"wiki_url": "fr:Halles de Lyon-Paul Bocuse",
|
||||
"keywords": {
|
||||
"importance": "national",
|
||||
"height": null,
|
||||
"place_type": "marketplace",
|
||||
"date": null
|
||||
},
|
||||
"description": "Halles de Lyon Paul Bocuse is a marketplace of national importance.",
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "bbd50de3-aa91-425d-90c2-d4abfd1b4abe",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Grand Bazar",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7632141,
|
||||
4.8361975
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 82399951,
|
||||
"attractiveness": 93,
|
||||
"n_tags": 7,
|
||||
"image_url": null,
|
||||
"website_url": null,
|
||||
"wiki_url": null,
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "3de9131c-87c5-4efb-9fa8-064896fb8b29",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Shopping Area",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7673452,
|
||||
4.8438683
|
||||
],
|
||||
"osm_type": "node",
|
||||
"osm_id": 0,
|
||||
"attractiveness": 156,
|
||||
"n_tags": 0,
|
||||
"image_url": null,
|
||||
"website_url": null,
|
||||
"wiki_url": null,
|
||||
"keywords": {},
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "df2482a8-7e2e-4536-aad3-564899b2fa65",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Cour Oxyg\u00e8ne",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7620905,
|
||||
4.8568873
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 132673030,
|
||||
"attractiveness": 63,
|
||||
"n_tags": 5,
|
||||
"image_url": null,
|
||||
"website_url": null,
|
||||
"wiki_url": null,
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "ed134f76-9a02-4bee-9c10-78454f7bc4ce",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "P\u00f4le de Commerces et de Loisirs Confluence",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7410414,
|
||||
4.8171031
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 440270633,
|
||||
"attractiveness": 259,
|
||||
"n_tags": 14,
|
||||
"image_url": null,
|
||||
"website_url": "https://www.confluence.fr/",
|
||||
"wiki_url": null,
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "dd7e2f5f-0e60-4560-b903-e5ded4b6e36a",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Grand H\u00f4tel-Dieu",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7586955,
|
||||
4.8364597
|
||||
],
|
||||
"osm_type": "relation",
|
||||
"osm_id": 300128,
|
||||
"attractiveness": 546,
|
||||
"n_tags": 22,
|
||||
"image_url": null,
|
||||
"website_url": "https://grand-hotel-dieu.com",
|
||||
"wiki_url": "fr:H\u00f4tel-Dieu de Lyon",
|
||||
"keywords": {
|
||||
"importance": "international",
|
||||
"height": null,
|
||||
"place_type": "building",
|
||||
"date": "C17"
|
||||
},
|
||||
"description": "Grand H\u00f4tel-Dieu is an internationally famous building. It was constructed in C17.",
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "a91265a8-ffbd-44f7-a7ab-3ff75f08fbab",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Westfield La Part-Dieu",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.761331,
|
||||
4.855676
|
||||
],
|
||||
"osm_type": "way",
|
||||
"osm_id": 62338376,
|
||||
"attractiveness": 546,
|
||||
"n_tags": 22,
|
||||
"image_url": null,
|
||||
"website_url": "https://fr.westfield.com/lapartdieu",
|
||||
"wiki_url": "fr:La Part-Dieu (centre commercial)",
|
||||
"keywords": null,
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "7d60316f-d689-4fcf-be68-ffc09353b826",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
},
|
||||
{
|
||||
"name": "Ainay",
|
||||
"type": "shopping",
|
||||
"location": [
|
||||
45.7553105,
|
||||
4.8312084
|
||||
],
|
||||
"osm_type": "node",
|
||||
"osm_id": 5545126047,
|
||||
"attractiveness": 132,
|
||||
"n_tags": 0,
|
||||
"image_url": null,
|
||||
"website_url": null,
|
||||
"wiki_url": null,
|
||||
"keywords": {},
|
||||
"description": null,
|
||||
"duration": 30,
|
||||
"name_en": null,
|
||||
"uuid": "ad214f3d-a4b9-4078-876a-446caa7ab01c",
|
||||
"must_do": false,
|
||||
"must_avoid": false,
|
||||
"is_secondary": false,
|
||||
"time_to_reach_next": 0,
|
||||
"next_uuid": null,
|
||||
"is_viewpoint": false,
|
||||
"is_place_of_worship": false
|
||||
}
|
||||
]
|
65
backend/src/README.md
Normal file
@ -0,0 +1,65 @@
|
||||
# Overview of backend/src
|
||||
|
||||
This project is structured into several components that handle different aspects of the application's functionality. Below is a high-level overview of each folder and the key Python files in the |src| directory.
|
||||
|
||||
## Folders
|
||||
|
||||
### src/optimization
|
||||
This folder contains modules related to the optimization algorithm used to compute the optimal trip. It comprises the optimizer for the first rough trip and a refiner to include less famous landmarks as well.
|
||||
|
||||
### src/overpass
|
||||
This folder handles interactions with the Overpass API, including constructing and sending queries, caching responses, and parsing results from the Overpass database.
|
||||
|
||||
### src/parameters
|
||||
The modules in this folder define and manage parameters for various parts of the application. This includes configuration values for the optimizer or the list of selectors for Overpass queries.
|
||||
|
||||
### src/structs
|
||||
This folder defines the commonly used data structures used within the project. The models leverage Pydantic's `BaseModel` to ensure data validation, serialization, and easy interaction between different components of the application. The main classes are:
|
||||
- **Landmark**:
|
||||
- Represents a point of interest in the context of a trip. It stores various attributes like the landmark's name, type, location (latitude and longitude), and its OSM details.
|
||||
- It also includes other optional fields like image URLs, website links, and descriptions. Additionally, the class has properties to track its attractiveness score or elative importance.
|
||||
|
||||
- **Preferences**:
|
||||
- This class captures user-defined preferences needed to personalize a trip. Preferences are provided for sightseeing (history and culture), nature (parks and gardens), and shopping. These preferences guide the trip optimization process.
|
||||
|
||||
- **Trip**:
|
||||
- The `Trip` class represents the complete travel plan generated by the system. It holds key information like the trip's total time and the first landmark's UUID.
|
||||
|
||||
### src/tests
|
||||
This folder contains unit tests and test cases for the application's various modules. It is used to ensure the correctness and stability of the code.
|
||||
|
||||
### src/utils
|
||||
The `utils` folder contains utility classes and functions that provide core functionality for the application. The main component in this folder is the `LandmarkManager`, which is central to the process of fetching and organizing landmarks.
|
||||
|
||||
- **LandmarkManager**:
|
||||
- The `LandmarkManager` is responsible for fetching landmarks from OpenStreetMap (via the Overpass API) and managing their classification based on user preferences. It processes raw geographical data, filters landmarks into relevant categories (such as sightseeing, nature, shopping), and prioritizes them for trip planning.
|
||||
|
||||
## Files
|
||||
|
||||
### src/cache.py
|
||||
This file manages the caching mechanisms used throughout the application. It defines the caching strategy for storing and retrieving data, improving the performance of repeated operations by avoiding redundant API calls or computations.
|
||||
|
||||
### src/constants.py
|
||||
This module defines global constants used throughout the project. These constants may include API endpoints, fixed configuration values, or reusable strings and integers that need to remain consistent.
|
||||
|
||||
### src/logging_config.py
|
||||
This file configures the logging system for the application. It defines how logs are formatted, where they are output (e.g., console or file), and the logging levels (e.g., debug, info, error).
|
||||
|
||||
### src/main.py
|
||||
This file contains the main application logic and API endpoints for interacting with the system. The application is built using the FastAPI framework, which provides several endpoints for creating trips, fetching trips, and retrieving landmarks or nearby facilities. The key endpoints include:
|
||||
|
||||
- **POST /trip/new**:
|
||||
- This endpoint allows users to create a new trip by specifying preferences, start coordinates, and optionally end coordinates. The preferences guide the optimization process for selecting landmarks.
|
||||
- Returns: A `Trip` object containing the optimized route, landmarks, and trip details.
|
||||
|
||||
- **GET /trip/{trip_uuid}**:
|
||||
- This endpoint fetches an already generated trip by its unique identifier (`trip_uuid`). It retrieves the trip data from the cache.
|
||||
- Returns: A `Trip` object corresponding to the given `trip_uuid`.
|
||||
|
||||
- **GET /landmark/{landmark_uuid}**:
|
||||
- This endpoint retrieves a specific landmark by its unique identifier (`landmark_uuid`) from the cache.
|
||||
- Returns: A `Landmark` object containing the details of the requested landmark.
|
||||
|
||||
- **POST /toilets/new**:
|
||||
- This endpoint searches for public toilets near a specified location within a given radius. The location and radius are passed as query parameters.
|
||||
- Returns: A list of `Toilets` objects located within the specified radius of the provided coordinates.
|
@ -70,6 +70,6 @@ else:
|
||||
MEMCACHED_HOST_PATH,
|
||||
timeout=1,
|
||||
allow_unicode_keys=True,
|
||||
encoding='utf-8',
|
||||
encoding='utf-8',
|
||||
serde=serde.pickle_serde
|
||||
)
|
@ -1,8 +1,8 @@
|
||||
"""Module allowing to access the parameters of route generation"""
|
||||
"""Module setting global parameters for the application such as cache, route generation, etc."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Literal, Tuple
|
||||
|
||||
|
||||
LOCATION_PREFIX = Path('src')
|
||||
@ -15,21 +15,8 @@ OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
|
||||
cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
|
||||
OSM_CACHE_DIR = Path(cache_dir_string)
|
||||
|
||||
|
||||
# if we are in a debug session, set verbose and rich logging
|
||||
if os.getenv('DEBUG', "false") == "true":
|
||||
from rich.logging import RichHandler
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=[RichHandler()]
|
||||
)
|
||||
else:
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
)
|
||||
|
||||
OSM_TYPES = List[Literal['way', 'node', 'relation']]
|
||||
BBOX = Tuple[float, float, float, float]
|
||||
|
||||
MEMCACHED_HOST_PATH = os.getenv('MEMCACHED_HOST_PATH', None)
|
||||
if MEMCACHED_HOST_PATH == "none":
|
||||
|
0
backend/src/landmarks/__init__.py
Normal file
300
backend/src/landmarks/cluster_manager.py
Normal file
@ -0,0 +1,300 @@
|
||||
"""Find clusters of interest to add more general areas of visit to the tour."""
|
||||
import logging
|
||||
from typing import Literal, Tuple
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_distance import get_distance
|
||||
from ..utils.bbox import create_bbox
|
||||
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
|
||||
|
||||
|
||||
class Cluster(BaseModel):
|
||||
""""
|
||||
A class representing an interesting area for shopping or sightseeing.
|
||||
|
||||
It can represent either a general area or a specifc route with start and end point.
|
||||
The importance represents the number of shops found in this cluster.
|
||||
|
||||
Attributes:
|
||||
type : either a 'street' or 'area' (representing a denser field of shops).
|
||||
importance : size of the cluster (number of points).
|
||||
centroid : center of the cluster.
|
||||
start : if the type is a street it goes from here...
|
||||
end : ...to here
|
||||
"""
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: Tuple[float, float]
|
||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||
# end: Optional[list] = None
|
||||
|
||||
|
||||
class ClusterManager:
|
||||
"""
|
||||
A manager responsible for clustering points of interest, such as shops or historic sites,
|
||||
to identify areas worth visiting. It uses the DBSCAN algorithm to detect clusters
|
||||
based on a set of points retrieved from OpenStreetMap (OSM).
|
||||
|
||||
Attributes:
|
||||
logger (logging.Logger): Logger for capturing relevant events and errors.
|
||||
valid (bool): Indicates whether clusters were successfully identified.
|
||||
all_points (list): All points retrieved from OSM, representing locations of interest.
|
||||
cluster_points (list): Points identified as part of a cluster.
|
||||
cluster_labels (list): Labels corresponding to the clusters each point belongs to.
|
||||
cluster_type (Literal['sightseeing', 'shopping']): Type of clustering, either for sightseeing
|
||||
landmarks or shopping areas.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# NOTE: all points are in (lat, lon) format
|
||||
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
|
||||
all_points: list
|
||||
cluster_points: list
|
||||
cluster_labels: list
|
||||
cluster_type: Literal['sightseeing', 'shopping']
|
||||
|
||||
def __init__(self, bbox: tuple, cluster_type: Literal['sightseeing', 'shopping']) -> None:
|
||||
"""
|
||||
Upon intialization, generate the point cloud used for cluster detection.
|
||||
The points represent bag/clothes shops and general boutiques.
|
||||
If the first step is successful, it applies the DBSCAN clustering algorithm with different
|
||||
parameters depending on the size of the city (number of points).
|
||||
It filters out noise points and keeps only the largest clusters.
|
||||
|
||||
A successful initialization updates:
|
||||
- `self.cluster_points`: The points belonging to clusters.
|
||||
- `self.cluster_labels`: The labels for the points in clusters.
|
||||
|
||||
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||
|
||||
Args:
|
||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
"""
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass()
|
||||
|
||||
self.cluster_type = cluster_type
|
||||
if cluster_type == 'shopping' :
|
||||
osm_types = ['node']
|
||||
sel = '"shop"~"^(bag|boutique|clothes)$"'
|
||||
out = 'ids center'
|
||||
elif cluster_type == 'sightseeing' :
|
||||
osm_types = ['way']
|
||||
sel = '"historic"~"^(monument|building|yes)$"'
|
||||
out = 'ids center'
|
||||
else :
|
||||
raise NotImplementedError("Please choose only an available option for cluster detection")
|
||||
|
||||
# Initialize the points for cluster detection
|
||||
try:
|
||||
result = self.overpass.send_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = out
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"Error fetching clusters: {e}")
|
||||
|
||||
if result is None :
|
||||
self.logger.debug(f"Found no {cluster_type} clusters, overpass query returned no datapoints.")
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
points = []
|
||||
for elem in result:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is not None :
|
||||
points.append(coords)
|
||||
|
||||
if points :
|
||||
self.all_points = np.array(points)
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
elif self.cluster_type == 'sightseeing' :
|
||||
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(self.all_points)
|
||||
|
||||
# Check that there are is least 1 cluster
|
||||
if len(set(labels)) > 1 :
|
||||
self.logger.info(f"Found {len(set(labels))} different {cluster_type} clusters.")
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
|
||||
self.valid = True
|
||||
|
||||
else :
|
||||
self.logger.info(f"Found 0 {cluster_type} clusters.")
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
|
||||
self.valid = False
|
||||
|
||||
|
||||
def generate_clusters(self) -> list[Landmark]:
|
||||
"""
|
||||
Generate a list of landmarks based on identified clusters.
|
||||
|
||||
This method iterates over the different clusters, calculates the centroid
|
||||
(as the mean of the points within each cluster), and assigns an importance
|
||||
based on the size of the cluster.
|
||||
|
||||
The generated shopping locations are stored in `self.clusters`
|
||||
as a list of `Cluster` objects, each with:
|
||||
- `type`: Set to 'area'.
|
||||
- `centroid`: The calculated centroid of the cluster.
|
||||
- `importance`: The number of points in the cluster.
|
||||
"""
|
||||
|
||||
if not self.valid :
|
||||
return [] # Return empty list if no clusters were found
|
||||
|
||||
locations = []
|
||||
|
||||
# loop through the different clusters
|
||||
for label in set(self.cluster_labels):
|
||||
|
||||
# Extract points belonging to the current cluster
|
||||
current_cluster = self.cluster_points[self.cluster_labels == label]
|
||||
|
||||
# Calculate the centroid as the mean of the points
|
||||
centroid = np.mean(current_cluster, axis=0)
|
||||
centroid = tuple((round(centroid[0], 7), round(centroid[1], 7)))
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
score = len(current_cluster)*3
|
||||
else :
|
||||
score = len(current_cluster)*15
|
||||
locations.append(Cluster(
|
||||
type='area',
|
||||
centroid=centroid,
|
||||
importance = score
|
||||
))
|
||||
|
||||
# Transform the locations in landmarks and return the list
|
||||
cluster_landmarks = []
|
||||
for cluster in locations :
|
||||
cluster_landmarks.append(self.create_landmark(cluster))
|
||||
|
||||
return cluster_landmarks
|
||||
|
||||
|
||||
def create_landmark(self, cluster: Cluster) -> Landmark:
|
||||
"""
|
||||
Create a Landmark object based on the given shopping location.
|
||||
|
||||
This method queries the Overpass API for nearby neighborhoods and shopping malls
|
||||
within a 1000m radius around the shopping location centroid. It selects the closest
|
||||
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||
|
||||
Parameters:
|
||||
shopping_location (Cluster): A Cluster object containing
|
||||
the centroid and importance of the area.
|
||||
|
||||
Returns:
|
||||
Landmark: A Landmark object containing details such as the name, type,
|
||||
location, attractiveness, and OSM details.
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
bbox = create_bbox(cluster.centroid, 300)
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
selectors.append('"shop"="mall"')
|
||||
new_name = 'Shopping Area'
|
||||
t = 30
|
||||
else :
|
||||
new_name = 'Neighborhood'
|
||||
t = 20
|
||||
|
||||
min_dist = float('inf')
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
osm_types = ['node', 'way', 'relation']
|
||||
|
||||
for sel in selectors :
|
||||
try:
|
||||
result = self.overpass.send_query(bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = 'ids center tags'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"Error fetching clusters: {e}")
|
||||
continue
|
||||
|
||||
if result is None :
|
||||
self.logger.warning(f"Error fetching clusters: query result is None")
|
||||
continue
|
||||
|
||||
for elem in result:
|
||||
# Get basic info
|
||||
id, coords, name = get_base_info(elem, elem.get('type'), with_name=True)
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
d = get_distance(cluster.centroid, coords)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = name # add name
|
||||
osm_type = elem.get('type') # add type: 'way' or 'relation'
|
||||
osm_id = id # add OSM id
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type=self.cluster_type,
|
||||
location=cluster.centroid, # later: use the fact the we can also recognize streets.
|
||||
attractiveness=cluster.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
duration=t
|
||||
)
|
||||
|
||||
|
||||
def filter_clusters(self):
|
||||
"""
|
||||
Filter clusters to retain only the 5 largest clusters by point count.
|
||||
|
||||
This method calculates the size of each cluster and filters out all but the
|
||||
5 largest clusters. It then updates the cluster points and labels to reflect
|
||||
only those from the top 5 clusters.
|
||||
"""
|
||||
label_counts = np.bincount(self.cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# update the cluster points and labels with the filtered data
|
||||
self.cluster_points = np.vstack(filtered_cluster_points) # ValueError here
|
||||
self.cluster_labels = np.concatenate(filtered_cluster_labels)
|
440
backend/src/landmarks/landmarks_manager.py
Normal file
@ -0,0 +1,440 @@
|
||||
"""Module used to import data from OSM and arrange them in categories."""
|
||||
import logging
|
||||
import yaml
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.take_most_important import take_most_important
|
||||
from .cluster_manager import ClusterManager
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..utils.bbox import create_bbox
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
class LandmarkManager:
|
||||
"""
|
||||
Use this to manage landmarks.
|
||||
Uses the overpass api to fetch landmarks and classify them.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
radius_close_to: int # radius in meters
|
||||
church_coeff: float # coeff to adjsut score of churches
|
||||
nature_coeff: float # coeff to adjust score of parks
|
||||
overall_coeff: float # coeff to adjust weight of tags
|
||||
n_important: int # number of important landmarks to consider
|
||||
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
||||
with AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
self.amenity_selectors = yaml.safe_load(f)
|
||||
|
||||
with LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.max_bbox_side = parameters['max_bbox_side']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.nature_coeff = parameters['nature_coeff']
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
self.tag_exponent = parameters['tag_exponent']
|
||||
self.image_bonus = parameters['image_bonus']
|
||||
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
self.n_important = parameters['N_important']
|
||||
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass()
|
||||
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
|
||||
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
||||
"""
|
||||
Generate and prioritize a list of landmarks based on user preferences.
|
||||
|
||||
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
|
||||
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
||||
landmarks based on a predefined criterion.
|
||||
|
||||
Args:
|
||||
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
self.logger.debug('Starting to fetch landmarks...')
|
||||
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
|
||||
radius = min(max_walk_dist, int(self.max_bbox_side/2))
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique, tuple of strings
|
||||
bbox = create_bbox(center_coordinates, radius)
|
||||
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
self.logger.debug('Fetching sightseeing landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks')
|
||||
|
||||
# special pipeline for historic neighborhoods
|
||||
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||
historic_clusters = neighborhood_manager.generate_clusters()
|
||||
all_landmarks.update(historic_clusters)
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
self.logger.debug('Fetching nature landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.info(f'Found {len(current_landmarks)} nature landmarks')
|
||||
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
self.logger.debug('Fetching shopping landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
|
||||
self.logger.info(f'Found {len(current_landmarks)} shopping landmarks')
|
||||
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks :
|
||||
landmark.duration = 30
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ClusterManager(bbox, 'shopping')
|
||||
shopping_clusters = shopping_manager.generate_clusters()
|
||||
all_landmarks.update(shopping_clusters)
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.n_important)
|
||||
# self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
|
||||
"""
|
||||
Calculate and set the attractiveness score for a given landmark.
|
||||
|
||||
This method evaluates the landmark's attractiveness based on its properties
|
||||
(number of tags, presence of Wikipedia URL, image, website, and whether it's
|
||||
a place of worship) and adjusts the score using the user's preference level.
|
||||
|
||||
Args:
|
||||
landmark (Landmark): The landmark object to score.
|
||||
landmarktype (str): The type of the landmark (currently unused).
|
||||
preference_level (int): The user's preference level for this landmark type.
|
||||
"""
|
||||
score = landmark.n_tags**self.tag_exponent
|
||||
if landmark.wiki_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.image_url :
|
||||
score *= self.image_bonus
|
||||
if landmark.website_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.is_place_of_worship :
|
||||
score *= self.church_coeff
|
||||
if landmark.is_viewpoint :
|
||||
score *= self.viewpoint_bonus
|
||||
if landmarktype == 'nature' :
|
||||
score *= self.nature_coeff
|
||||
|
||||
landmark.attractiveness = int(score * preference_level * 2)
|
||||
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = None
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
# self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
osm_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = None
|
||||
osm_types.append('node')
|
||||
|
||||
# Send the overpass query
|
||||
try:
|
||||
result = self.overpass.send_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'ids center tags'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.debug(f"Failed to fetch landmarks, proceeding without: {str(e)}")
|
||||
continue
|
||||
|
||||
return_list += self._to_landmarks(result, landmarktype, preference_level)
|
||||
|
||||
# self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
def _to_landmarks(self, elements: list, landmarktype, preference_level) -> list[Landmark]:
|
||||
"""
|
||||
Parse the Overpass API result and extract landmarks.
|
||||
|
||||
This method processes the JSON elements returned by the Overpass API and
|
||||
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
|
||||
relevant information such as name, coordinates, and tags, and converts them
|
||||
into Landmark objects.
|
||||
|
||||
Args:
|
||||
elements (list): The elements of json response from Overpass API.
|
||||
elem_type (str): The type of landmark (e.g., node, way, relation).
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects extracted from the JSON data.
|
||||
"""
|
||||
if elements is None :
|
||||
return []
|
||||
|
||||
landmarks = []
|
||||
for elem in elements:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
id, coords, name = get_base_info(elem, osm_type, with_name=True)
|
||||
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
tags = elem.get('tags')
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=landmarktype,
|
||||
location=coords,
|
||||
osm_id=id,
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for key, value in tags.items():
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and landmarktype != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if value == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
|
||||
landmark.description, landmark.keywords = self.description_and_keywords(tags)
|
||||
self.set_landmark_score(landmark, landmarktype, preference_level)
|
||||
landmarks.append(landmark)
|
||||
|
||||
continue
|
||||
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
def description_and_keywords(self, tags: dict):
|
||||
"""
|
||||
Generates a description and a set of keywords for a given landmark based on its tags.
|
||||
|
||||
Params:
|
||||
tags (dict): A dictionary containing metadata about the landmark, including its name,
|
||||
importance, height, date of construction, and visitor information.
|
||||
|
||||
Returns:
|
||||
description (str): A string description of the landmark.
|
||||
keywords (dict): A dictionary of keywords with fields such as 'importance', 'height',
|
||||
'place_type', and 'date'.
|
||||
"""
|
||||
# Extract relevant fields
|
||||
name = tags.get('name')
|
||||
importance = tags.get('importance', None)
|
||||
n_visitors = tags.get('tourism:visitors', None)
|
||||
height = tags.get('height')
|
||||
place_type = self.get_place_type(tags)
|
||||
date = self.get_date(tags)
|
||||
|
||||
if place_type is None :
|
||||
return None, None
|
||||
|
||||
# Start the description.
|
||||
if importance is None :
|
||||
if len(tags.keys()) < 5 :
|
||||
return None, None
|
||||
if len(tags.keys()) < 10 :
|
||||
description = f"{name} is a well known {place_type}."
|
||||
elif len(tags.keys()) < 17 :
|
||||
importance = 'national'
|
||||
description = f"{name} is a {place_type} of national importance."
|
||||
else :
|
||||
importance = 'international'
|
||||
description = f"{name} is an internationally famous {place_type}."
|
||||
else :
|
||||
description = f"{name} is a {place_type} of {importance} importance."
|
||||
|
||||
if height is not None and date is not None :
|
||||
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
|
||||
elif height is not None :
|
||||
description += f" This {place_type} stands ca. {height} meters tall."
|
||||
elif date is not None:
|
||||
description += f" It was constructed in {date}."
|
||||
|
||||
# Format the visitor number
|
||||
if n_visitors is not None :
|
||||
n_visitors = int(n_visitors)
|
||||
if n_visitors < 1000000 :
|
||||
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
|
||||
else :
|
||||
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
|
||||
|
||||
# Set the keywords.
|
||||
keywords = {"importance": importance,
|
||||
"height": height,
|
||||
"place_type": place_type,
|
||||
"date": date}
|
||||
|
||||
return description, keywords
|
||||
|
||||
|
||||
def get_place_type(self, data):
|
||||
"""
|
||||
Determines the type of the place based on available tags such as 'amenity', 'building',
|
||||
'historic', and 'leisure'. The priority order is: 'historic' > 'building' (if not generic) >
|
||||
'amenity' > 'leisure'.
|
||||
|
||||
Params:
|
||||
data (dict): A dictionary containing metadata about the place.
|
||||
|
||||
Returns:
|
||||
place_type (str): The determined type of the place, or None if no relevant type is found.
|
||||
"""
|
||||
amenity = data.get('amenity', None)
|
||||
building = data.get('building', None)
|
||||
historic = data.get('historic', None)
|
||||
leisure = data.get('leisure')
|
||||
|
||||
if historic and historic != "yes":
|
||||
return historic
|
||||
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
|
||||
return building
|
||||
if amenity:
|
||||
return amenity
|
||||
if leisure:
|
||||
return leisure
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_date(self, data):
|
||||
"""
|
||||
Extracts the most relevant date from the available tags, prioritizing 'construction_date',
|
||||
'start_date', 'year_of_construction', and 'opening_date' in that order.
|
||||
|
||||
Params:
|
||||
data (dict): A dictionary containing metadata about the place.
|
||||
|
||||
Returns:
|
||||
date (str): The most relevant date found, or None if no date is available.
|
||||
"""
|
||||
construction_date = data.get('construction_date', None)
|
||||
opening_date = data.get('opening_date', None)
|
||||
start_date = data.get('start_date', None)
|
||||
year_of_construction = data.get('year_of_construction', None)
|
||||
|
||||
# Prioritize based on availability
|
||||
if construction_date:
|
||||
return construction_date
|
||||
if start_date:
|
||||
return start_date
|
||||
if year_of_construction:
|
||||
return year_of_construction
|
||||
if opening_date:
|
||||
return opening_date
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
||||
Args:
|
||||
d (dict): A dictionary of key-value pairs representing the selector.
|
||||
|
||||
Returns:
|
||||
list: A list of strings representing the Overpass query selectors.
|
||||
"""
|
||||
return_list = []
|
||||
for key, value in d.items():
|
||||
if isinstance(value, list):
|
||||
val = '|'.join(value)
|
||||
return_list.append(f'{key}~"^({val})$"')
|
||||
elif isinstance(value, str) and len(value) == 0:
|
||||
return_list.append(f'{key}')
|
||||
else:
|
||||
return_list.append(f'{key}={value}')
|
||||
return return_list
|
56
backend/src/logging_config.py
Normal file
@ -0,0 +1,56 @@
|
||||
"""Sets up global logging configuration for the application."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def configure_logging():
|
||||
"""
|
||||
Called at startup of a FastAPI application instance to setup logging. Depending on the environment, it will log to stdout or to Loki.
|
||||
"""
|
||||
|
||||
is_debug = os.getenv('DEBUG', "false") == "true"
|
||||
is_kubernetes = os.getenv('KUBERNETES_SERVICE_HOST') is not None
|
||||
|
||||
|
||||
if is_kubernetes:
|
||||
# in that case we want to log to stdout and also to loki
|
||||
from loki_logger_handler.loki_logger_handler import LokiLoggerHandler
|
||||
loki_url = os.getenv('LOKI_URL')
|
||||
if loki_url is None:
|
||||
raise ValueError("LOKI_URL environment variable is not set")
|
||||
|
||||
loki_handler = LokiLoggerHandler(
|
||||
url = loki_url,
|
||||
labels = {'app': 'anyway', 'environment': 'staging' if is_debug else 'production'}
|
||||
)
|
||||
|
||||
logger.info(f"Logging to Loki at {loki_url} with {loki_handler.labels} and {is_debug=}")
|
||||
logging_handlers = [loki_handler, logging.StreamHandler()]
|
||||
logging_level = logging.DEBUG if is_debug else logging.INFO
|
||||
# silence the chatty logs loki generates itself
|
||||
logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING)
|
||||
# no need for time since it's added by loki or can be shown in kube logs
|
||||
logging_format = '%(name)s - %(levelname)s - %(message)s'
|
||||
|
||||
else:
|
||||
# if we are in a debug (local) session, set verbose and rich logging
|
||||
from rich.logging import RichHandler
|
||||
logging_handlers = [RichHandler()]
|
||||
logging_level = logging.DEBUG if is_debug else logging.INFO
|
||||
logging_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
|
||||
|
||||
|
||||
logging.basicConfig(
|
||||
level = logging_level,
|
||||
format = logging_format,
|
||||
handlers = logging_handlers
|
||||
)
|
||||
|
||||
# also overwrite the uvicorn loggers
|
||||
logging.getLogger('uvicorn').handlers = logging_handlers
|
||||
logging.getLogger('uvicorn.access').handlers = logging_handlers
|
||||
logging.getLogger('uvicorn.error').handlers = logging_handlers
|
@ -1,31 +1,50 @@
|
||||
"""Main app for backend api"""
|
||||
|
||||
import logging
|
||||
from fastapi import FastAPI, HTTPException, Query
|
||||
import time
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
||||
|
||||
from .structs.landmark import Landmark, Toilets
|
||||
from .logging_config import configure_logging
|
||||
from .structs.landmark import Landmark
|
||||
from .structs.preferences import Preferences
|
||||
from .structs.linked_landmarks import LinkedLandmarks
|
||||
from .structs.trip import Trip
|
||||
from .utils.landmarks_manager import LandmarkManager
|
||||
from .utils.toilets_manager import ToiletsManager
|
||||
from .utils.optimizer import Optimizer
|
||||
from .utils.refiner import Refiner
|
||||
from .persistence import client as cache_client
|
||||
from .landmarks.landmarks_manager import LandmarkManager
|
||||
from .toilets.toilet_routes import router as toilets_router
|
||||
from .optimization.optimizer import Optimizer
|
||||
from .optimization.refiner import Refiner
|
||||
from .overpass.overpass import fill_cache
|
||||
from .cache import client as cache_client
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
app = FastAPI()
|
||||
manager = LandmarkManager()
|
||||
optimizer = Optimizer()
|
||||
refiner = Refiner(optimizer=optimizer)
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
"""Function to run at the start of the app"""
|
||||
logger.info("Setting up logging")
|
||||
configure_logging()
|
||||
yield
|
||||
logger.info("Shutting down logging")
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
|
||||
|
||||
app.include_router(toilets_router)
|
||||
|
||||
|
||||
@app.post("/trip/new")
|
||||
def new_trip(preferences: Preferences,
|
||||
start: tuple[float, float],
|
||||
end: tuple[float, float] | None = None) -> Trip:
|
||||
end: tuple[float, float] | None = None,
|
||||
background_tasks: BackgroundTasks = None) -> Trip:
|
||||
"""
|
||||
Main function to call the optimizer.
|
||||
|
||||
@ -50,12 +69,15 @@ def new_trip(preferences: Preferences,
|
||||
end = start
|
||||
logger.info("No end coordinates provided. Using start=end.")
|
||||
|
||||
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
|
||||
|
||||
start_landmark = Landmark(name='start',
|
||||
type='start',
|
||||
location=(start[0], start[1]),
|
||||
osm_type='start',
|
||||
osm_id=0,
|
||||
attractiveness=0,
|
||||
duration=0,
|
||||
must_do=True,
|
||||
n_tags = 0)
|
||||
|
||||
@ -65,35 +87,63 @@ def new_trip(preferences: Preferences,
|
||||
osm_type='end',
|
||||
osm_id=0,
|
||||
attractiveness=0,
|
||||
duration=0,
|
||||
must_do=True,
|
||||
n_tags=0)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Generate the landmarks from the start location
|
||||
landmarks, landmarks_short = manager.generate_landmarks_list(
|
||||
center_coordinates = start,
|
||||
preferences = preferences
|
||||
)
|
||||
|
||||
if len(landmarks) == 0 :
|
||||
raise HTTPException(status_code=500, detail="No landmarks were found.")
|
||||
|
||||
# insert start and finish to the landmarks list
|
||||
landmarks_short.insert(0, start_landmark)
|
||||
landmarks_short.append(end_landmark)
|
||||
|
||||
t_generate_landmarks = time.time() - start_time
|
||||
logger.info(f'Fetched {len(landmarks)} landmarks in \t: {round(t_generate_landmarks,3)} seconds')
|
||||
start_time = time.time()
|
||||
|
||||
# First stage optimization
|
||||
try:
|
||||
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
|
||||
except ArithmeticError as exc:
|
||||
raise HTTPException(status_code=500, detail="No solution found") from exc
|
||||
except TimeoutError as exc:
|
||||
raise HTTPException(status_code=500, detail="Optimzation took too long") from exc
|
||||
except Exception as exc:
|
||||
logger.error(f"Trip generation failed: {str(exc)}")
|
||||
raise HTTPException(status_code=500, detail=f"Optimization failed: {str(exc)}") from exc
|
||||
|
||||
t_first_stage = time.time() - start_time
|
||||
start_time = time.time()
|
||||
|
||||
# Second stage optimization
|
||||
refined_tour = refiner.refine_optimization(landmarks, base_tour,
|
||||
# TODO : only if necessary (not enough landmarks for ex.)
|
||||
try :
|
||||
refined_tour = refiner.refine_optimization(landmarks, base_tour,
|
||||
preferences.max_time_minute,
|
||||
preferences.detour_tolerance_minute)
|
||||
except Exception as exc :
|
||||
logger.warning(f"Refiner failed. Proceeding with base trip {str(exc)}")
|
||||
refined_tour = base_tour
|
||||
|
||||
t_second_stage = time.time() - start_time
|
||||
|
||||
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
|
||||
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
|
||||
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
|
||||
linked_tour = LinkedLandmarks(refined_tour)
|
||||
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
|
||||
logger.debug('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
|
||||
|
||||
background_tasks.add_task(fill_cache)
|
||||
|
||||
return trip
|
||||
|
||||
|
||||
@ -113,6 +163,7 @@ def get_trip(trip_uuid: str) -> Trip:
|
||||
trip = cache_client.get(f"trip_{trip_uuid}")
|
||||
return trip
|
||||
except KeyError as exc:
|
||||
logger.error(f"Failed to fetch trip with UUID {trip_uuid}: {str(exc)}")
|
||||
raise HTTPException(status_code=404, detail="Trip not found") from exc
|
||||
|
||||
|
||||
@ -131,32 +182,45 @@ def get_landmark(landmark_uuid: str) -> Landmark:
|
||||
landmark = cache_client.get(f"landmark_{landmark_uuid}")
|
||||
return landmark
|
||||
except KeyError as exc:
|
||||
logger.error(f"Failed to fetch landmark with UUID {landmark_uuid}: {str(exc)}")
|
||||
raise HTTPException(status_code=404, detail="Landmark not found") from exc
|
||||
|
||||
|
||||
@app.post("/toilets/new")
|
||||
def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -> list[Toilets] :
|
||||
@app.post("/trip/recompute-time/{trip_uuid}/{removed_landmark_uuid}")
|
||||
def update_trip_time(trip_uuid: str, removed_landmark_uuid: str) -> Trip:
|
||||
"""
|
||||
Endpoint to find toilets within a specified radius from a given location.
|
||||
|
||||
This endpoint expects the `location` and `radius` as **query parameters**, not in the request body.
|
||||
Updates the reaching times of a given trip when removing a landmark.
|
||||
|
||||
Args:
|
||||
location (tuple[float, float]): The latitude and longitude of the location to search from.
|
||||
radius (int, optional): The radius (in meters) within which to search for toilets. Defaults to 500 meters.
|
||||
landmark_uuid (str) : unique identifier for a Landmark.
|
||||
|
||||
Returns:
|
||||
list[Toilets]: A list of Toilets objects that meet the criteria.
|
||||
(Landmark) : the corresponding Landmark.
|
||||
"""
|
||||
if location is None:
|
||||
raise HTTPException(status_code=406, detail="Coordinates not provided or invalid")
|
||||
if not (-90 <= location[0] <= 90 or -180 <= location[1] <= 180):
|
||||
raise HTTPException(status_code=422, detail="Start coordinates not in range")
|
||||
|
||||
toilets_manager = ToiletsManager(location, radius)
|
||||
|
||||
try :
|
||||
toilets_list = toilets_manager.generate_toilet_list()
|
||||
return toilets_list
|
||||
# First, fetch the trip in the cache.
|
||||
try:
|
||||
trip = cache_client.get(f'trip_{trip_uuid}')
|
||||
except KeyError as exc:
|
||||
raise HTTPException(status_code=404, detail="No toilets found") from exc
|
||||
logger.error(f"Failed to update trip with UUID {trip_uuid} (trip not found): {str(exc)}")
|
||||
raise HTTPException(status_code=404, detail='Trip not found') from exc
|
||||
|
||||
landmarks = []
|
||||
next_uuid = trip.first_landmark_uuid
|
||||
|
||||
# Extract landmarks
|
||||
try :
|
||||
while next_uuid is not None:
|
||||
landmark = cache_client.get(f'landmark_{next_uuid}')
|
||||
# Filter out the removed landmark.
|
||||
if next_uuid != removed_landmark_uuid :
|
||||
landmarks.append(landmark)
|
||||
next_uuid = landmark.next_uuid # Prepare for the next iteration
|
||||
except KeyError as exc:
|
||||
logger.error(f"Failed to update trip with UUID {trip_uuid} : {str(exc)}")
|
||||
raise HTTPException(status_code=404, detail=f'landmark {next_uuid} not found') from exc
|
||||
|
||||
# Re-link every thing and compute times again
|
||||
linked_tour = LinkedLandmarks(landmarks)
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
|
||||
return trip
|
||||
|
0
backend/src/optimization/__init__.py
Normal file
638
backend/src/optimization/optimizer.py
Normal file
@ -0,0 +1,638 @@
|
||||
"""Module responsible for sloving an MILP to find best tour around the given landmarks."""
|
||||
import logging
|
||||
from collections import defaultdict, deque
|
||||
import yaml
|
||||
import numpy as np
|
||||
import pulp as pl
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_distance import get_time
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
# Silence the pupl logger
|
||||
logging.getLogger('pulp').setLevel(level=logging.CRITICAL)
|
||||
|
||||
|
||||
class Optimizer:
|
||||
"""
|
||||
Optimizes the balance between the efficiency of a tour and the inclusion of landmarks.
|
||||
|
||||
The `Optimizer` class is responsible for calculating the best possible detour adjustments
|
||||
to a tour based on specific parameters such as detour time, walking speed, and the maximum
|
||||
number of landmarks to visit. It helps refine a tour by determining whether adding additional
|
||||
landmarks would significantly reduce the overall efficiency.
|
||||
|
||||
Responsibilities:
|
||||
- Calculates the maximum detour time allowed for a given tour.
|
||||
- Considers the detour factor, which accounts for real-world walking paths versus straight-line distance.
|
||||
- Takes into account the average walking speed to estimate walking times.
|
||||
- Limits the number of landmarks that can be added to the tour to prevent excessive detouring.
|
||||
- Allows some overflow (overshoot) in the maximum detour time to accommodate for slight inefficiencies.
|
||||
|
||||
Attributes:
|
||||
logger (logging.Logger): Logger for capturing relevant events and errors.
|
||||
detour (int): The accepted maximum detour time in minutes.
|
||||
detour_factor (float): The ratio between straight-line distance and actual walking distance in cities.
|
||||
average_walking_speed (float): The average walking speed of an adult (in meters per second or kilometers per hour).
|
||||
max_landmarks (int): The maximum number of landmarks to include in the tour.
|
||||
overshoot (float): The overshoot allowance for exceeding the maximum detour time in a restrictive manner.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
detour: int = None # accepted max detour time (in minutes)
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks: int # max number of landmarks to visit
|
||||
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
|
||||
|
||||
def __init__(self) :
|
||||
|
||||
# load parameters from file
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
self.average_walking_speed = parameters['average_walking_speed']
|
||||
self.max_landmarks = parameters['max_landmarks']
|
||||
self.overshoot = parameters['overshoot']
|
||||
self.time_limit = parameters['time_limit']
|
||||
self.gap_rel = parameters['gap_rel']
|
||||
self.max_iter = parameters['max_iter']
|
||||
|
||||
|
||||
def init_ub_time(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark], max_time: int):
|
||||
"""
|
||||
Initialize the objective function and inequality constraints for the linear program.
|
||||
|
||||
This function sets up the objective to maximize the attractiveness of visiting landmarks,
|
||||
while ensuring that the total time (including travel and visit duration) does not exceed
|
||||
the maximum allowed time. It calculates the pairwise travel times between landmarks and
|
||||
incorporates visit duration to form the inequality constraints.
|
||||
|
||||
The objective is to maximize sightseeing by selecting the most attractive landmarks within
|
||||
the time limit.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints and the objective will be added.
|
||||
x (pl.LpVariable): A decision variable representing whether a landmark is visited.
|
||||
L (int): The number of landmarks.
|
||||
landmarks (list[Landmark]): List of landmarks to visit.
|
||||
max_time (int): Maximum allowable time for sightseeing, including travel and visit duration.
|
||||
|
||||
Returns:
|
||||
None: Adds the objective function and constraints to the LP problem directly.
|
||||
constraint coefficients, and the right-hand side of the inequality constraint.
|
||||
"""
|
||||
L = len(landmarks)
|
||||
|
||||
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
|
||||
c = np.zeros(L, dtype=np.int16)
|
||||
|
||||
# inequality matrix and vector
|
||||
A_ub = np.zeros(L*L, dtype=np.int16)
|
||||
b_ub = round(max_time*(1.1+max_time*self.overshoot))
|
||||
|
||||
for i, spot1 in enumerate(landmarks) :
|
||||
c[i] = spot1.attractiveness
|
||||
for j in range(i+1, L) :
|
||||
if i !=j :
|
||||
t = get_time(spot1.location, landmarks[j].location)
|
||||
A_ub[i*L + j] = t + spot1.duration
|
||||
A_ub[j*L + i] = t + landmarks[j].duration
|
||||
|
||||
# Expand 'c' to L*L for every decision variable and ad
|
||||
c = np.tile(c, L)
|
||||
|
||||
# Now sort and modify A_ub for each row
|
||||
if L > 22 :
|
||||
for i in range(L):
|
||||
# Get indices of the 4 smallest values in row i
|
||||
row_values = A_ub[i*L:i*L+L]
|
||||
closest_indices = np.argpartition(row_values, 22)[:22]
|
||||
|
||||
# Create a mask for non-closest landmarks
|
||||
mask = np.ones(L, dtype=bool)
|
||||
mask[closest_indices] = False
|
||||
|
||||
# Set non-closest landmarks to 32765
|
||||
row_values[mask] = 32765
|
||||
A_ub[i*L:i*L+L] = row_values
|
||||
|
||||
# Add the objective and the 1 distance constraint
|
||||
prob += pl.lpSum([c[j] * x[j] for j in range(L*L)])
|
||||
prob += (pl.lpSum([A_ub[j] * x[j] for j in range(L*L)]) <= b_ub)
|
||||
|
||||
|
||||
def respect_number(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, max_landmarks: int):
|
||||
"""
|
||||
Generate constraints to ensure each landmark is visited at most once and cap the total number of visited landmarks.
|
||||
|
||||
This function adds the following constraints to the linear program:
|
||||
1. Each landmark is visited at most once by creating L-2 constraints (one for each landmark).
|
||||
2. The total number of visited landmarks is capped by the specified maximum number (`max_landmarks`) plus 2.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints will be added.
|
||||
x (pl.LpVariable): Decision variable indicating whether a landmark is visited.
|
||||
L (int): The total number of landmarks.
|
||||
max_landmarks (int): The maximum number of landmarks that can be visited.
|
||||
|
||||
Returns:
|
||||
None: This function directly modifies the `prob` object by adding constraints.
|
||||
"""
|
||||
# L-2 constraints: each landmark is visited exactly once
|
||||
for i in range(1, L-1):
|
||||
prob += (pl.lpSum([x[L*i + j] for j in range(L)]) <= 1)
|
||||
|
||||
# 1 constraint: cap the total number of visits
|
||||
prob += (pl.lpSum([1 * x[j] for j in range(L*L)]) <= max_landmarks+2)
|
||||
|
||||
|
||||
def break_sym(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
|
||||
"""
|
||||
Generate constraints to prevent simultaneous travel between two landmarks
|
||||
in both directions. This constraint ensures that, for any pair of landmarks,
|
||||
travel from landmark i to landmark j (dij) and travel from landmark j to landmark i (dji)
|
||||
cannot happen simultaneously.
|
||||
|
||||
This method adds constraints to break symmetry, specifically to prevent
|
||||
cyclic paths with only two elements. It does not prevent cyclic paths involving more than two elements.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints will be added.
|
||||
x (pl.LpVariable): Decision variable representing travel between landmarks.
|
||||
L (int): The total number of landmarks.
|
||||
|
||||
Returns:
|
||||
None: This function modifies the `prob` object by adding constraints in-place.
|
||||
"""
|
||||
upper_ind = np.triu_indices(L, 0, L) # Get the upper triangular indices
|
||||
up_ind_x = upper_ind[0]
|
||||
up_ind_y = upper_ind[1]
|
||||
|
||||
# Loop over the upper triangular indices, excluding diagonal elements
|
||||
for i, up_ind in enumerate(up_ind_x):
|
||||
if up_ind != up_ind_y[i]:
|
||||
# Add (L*L-L)/2 constraints to break symmetry
|
||||
prob += (x[up_ind*L + up_ind_y[i]] + x[up_ind_y[i]*L + up_ind] <= 1)
|
||||
|
||||
|
||||
def init_eq_not_stay(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
|
||||
"""
|
||||
Generate constraints to prevent staying at the same position during travel.
|
||||
Specifically, it removes travel from a landmark to itself (e.g., d11, d22, d33, etc.).
|
||||
|
||||
This function adds one equality constraint to the optimization problem that ensures
|
||||
no decision variable corresponding to staying at the same landmark is included
|
||||
in the solution. This helps in ensuring that the path does not include self-loops.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints will be added.
|
||||
x (pl.LpVariable): Decision variable representing travel between landmarks.
|
||||
L (int): The total number of landmarks.
|
||||
|
||||
Returns:
|
||||
None: This function modifies the `prob` object by adding an equality constraint in-place.
|
||||
"""
|
||||
A_eq = np.zeros((L, L), dtype=np.int8)
|
||||
|
||||
# Set diagonal elements to 1 (to prevent staying in the same position)
|
||||
np.fill_diagonal(A_eq, 1)
|
||||
A_eq = A_eq.flatten()
|
||||
|
||||
# First equality constraint
|
||||
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 0)
|
||||
|
||||
|
||||
def respect_start_finish(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
|
||||
"""
|
||||
Generate constraints to ensure that the optimization starts at the designated
|
||||
start landmark and finishes at the goal landmark.
|
||||
|
||||
Specifically, this function adds three equality constraints:
|
||||
1. Ensures that the path starts at the designated start landmark (row 0).
|
||||
2. Ensures that the path finishes at the designated goal landmark (row 1).
|
||||
3. Prevents any arrivals at the start landmark or departures from the goal landmark (row 2).
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints will be added.
|
||||
x (pl.LpVariable): Decision variable representing travel between landmarks.
|
||||
L (int): The total number of landmarks.
|
||||
|
||||
Returns:
|
||||
None: This function modifies the `prob` object by adding three equality constraints in-place.
|
||||
"""
|
||||
# Fill-in row 0.
|
||||
A_eq = np.zeros((3,L*L), dtype=np.int8)
|
||||
A_eq[0, :L] = np.ones(L, dtype=np.int8) # sets departures only for start (horizontal ones)
|
||||
for k in range(L-1) :
|
||||
if k != 0 :
|
||||
# Fill-in row 1
|
||||
A_eq[1, k*L+L-1] = 1 # sets arrivals only for finish (vertical ones)
|
||||
# Fill-in row 1
|
||||
A_eq[2, k*L] = 1
|
||||
|
||||
A_eq[2, L*(L-1):] = np.ones(L, dtype=np.int8) # prevents arrivals at start and departures from goal
|
||||
b_eq= [1, 1, 0]
|
||||
|
||||
# Add the constraints to pulp
|
||||
for i in range(3) :
|
||||
prob += (pl.lpSum([A_eq[i][j] * x[j] for j in range(L*L)]) == b_eq[i])
|
||||
|
||||
|
||||
def respect_order(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
|
||||
"""
|
||||
Generate constraints to tie the optimization problem together and prevent
|
||||
stacked ones, although this does not fully prevent circles.
|
||||
|
||||
This function adds constraints to the optimization problem that prevent
|
||||
simultaneous travel between landmarks in a way that would result in stacked ones.
|
||||
However, it does not fully prevent circular paths.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints will be added.
|
||||
x (pl.LpVariable): Decision variable representing travel between landmarks.
|
||||
L (int): The total number of landmarks.
|
||||
|
||||
Returns:
|
||||
None: This function modifies the `prob` object by adding L-2 equality constraints in-place.
|
||||
"""
|
||||
# Loop through rows 1 to L-2 to prevent stacked ones
|
||||
for i in range(1, L-1):
|
||||
# Add the constraint that sums across each "row" or "block" in the decision variables
|
||||
row_sum = -pl.lpSum(x[i + j*L] for j in range(L)) + pl.lpSum(x[i*L:(i+1)*L])
|
||||
prob += (row_sum == 0)
|
||||
|
||||
|
||||
def respect_user_must(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark]) :
|
||||
"""
|
||||
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
|
||||
|
||||
This function adds constraints to the optimization problem to ensure that landmarks marked as
|
||||
'must_do' are included in the solution. It precomputes the constraints and adds them to the
|
||||
problem accordingly.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem where constraints will be added.
|
||||
x (pl.LpVariable): Decision variable representing travel between landmarks.
|
||||
L (int): The total number of landmarks.
|
||||
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
|
||||
|
||||
Returns:
|
||||
None: This function modifies the `prob` object by adding equality constraints in-place.
|
||||
"""
|
||||
ones = np.ones(L, dtype=np.int8)
|
||||
A_eq = np.zeros(L*L, dtype=np.int8)
|
||||
|
||||
for i, elem in enumerate(landmarks) :
|
||||
if elem.must_do is True and i not in [0, L-1]:
|
||||
A_eq[i*L:i*L+L] = ones
|
||||
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 1)
|
||||
if elem.must_avoid is True and i not in [0, L-1]:
|
||||
A_eq[i*L:i*L+L] = ones
|
||||
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 2)
|
||||
|
||||
|
||||
def prevent_circle(self, prob: pl.LpProblem, x: pl.LpVariable, circle_vertices: list, L: int) :
|
||||
"""
|
||||
Prevent circular paths by adding constraints to the optimization.
|
||||
|
||||
This function ensures that circular paths in both directions (i.e., forward and reverse)
|
||||
between landmarks are avoided in the optimization problem by adding the corresponding constraints.
|
||||
|
||||
Args:
|
||||
prob (pl.LpProblem): The linear programming problem instance to which the constraints will be added.
|
||||
x (pl.LpVariable): Decision variable representing the travel between landmarks in the problem.
|
||||
circle_vertices (list): List of indices representing the landmarks that form a circular path.
|
||||
L (int): The total number of landmarks.
|
||||
|
||||
Returns:
|
||||
None: This function modifies the `prob` object by adding two equality constraints that
|
||||
prevent circular paths in both directions for the specified circle vertices.
|
||||
"""
|
||||
l = np.zeros((2, L*L), dtype=np.int8)
|
||||
|
||||
for i, node in enumerate(circle_vertices[:-1]) :
|
||||
next = circle_vertices[i+1]
|
||||
|
||||
l[0, node*L + next] = 1
|
||||
l[1, next*L + node] = 1
|
||||
|
||||
s = circle_vertices[0]
|
||||
g = circle_vertices[-1]
|
||||
|
||||
l[0, g*L + s] = 1
|
||||
l[1, s*L + g] = 1
|
||||
|
||||
# Add the constraints
|
||||
prob += (pl.lpSum([l[0][j] * x[j] for j in range(L*L)]) == 0)
|
||||
prob += (pl.lpSum([l[1][j] * x[j] for j in range(L*L)]) == 0)
|
||||
|
||||
|
||||
def is_connected(self, resx) :
|
||||
"""
|
||||
Determine the order of visits and detect any circular paths in the given configuration.
|
||||
|
||||
Args:
|
||||
resx (list): List of edge weights.
|
||||
|
||||
Returns:
|
||||
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
|
||||
"""
|
||||
resx = np.round(resx).astype(np.int8) # round all elements and cast them to int
|
||||
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
ind_a = nonzero_tup[0]
|
||||
ind_b = nonzero_tup[1]
|
||||
|
||||
# Extract all journeys
|
||||
all_journeys_nodes = []
|
||||
visited_nodes = set()
|
||||
|
||||
for node in ind_a:
|
||||
if node not in visited_nodes:
|
||||
journey_nodes = self.get_journey(node, ind_a, ind_b)
|
||||
all_journeys_nodes.append(journey_nodes)
|
||||
visited_nodes.update(journey_nodes)
|
||||
|
||||
for l in all_journeys_nodes :
|
||||
if 0 in l :
|
||||
all_journeys_nodes.remove(l)
|
||||
break
|
||||
|
||||
if not all_journeys_nodes :
|
||||
return None
|
||||
|
||||
return all_journeys_nodes
|
||||
|
||||
|
||||
def get_journey(self, start, ind_a, ind_b):
|
||||
"""
|
||||
Trace the journey starting from a given node and follow the connections between landmarks.
|
||||
This method constructs a graph from two lists of landmark connections, `ind_a` and `ind_b`,
|
||||
where each element in `ind_a` is connected to the corresponding element in `ind_b`.
|
||||
It then performs a depth-first search (DFS) starting from the `start` node to determine
|
||||
the path (journey) by following the connections.
|
||||
|
||||
Args:
|
||||
start (int): The starting node of the journey.
|
||||
ind_a (list[int]): List of "from" nodes, representing the starting points of each connection.
|
||||
ind_b (list[int]): List of "to" nodes, representing the endpoints of each connection.
|
||||
|
||||
Returns:
|
||||
list[int]: A list of nodes representing the order of the journey, starting from the `start` node.
|
||||
|
||||
Example:
|
||||
If `ind_a = [0, 1, 2]` and `ind_b = [1, 2, 3]`, starting from node 0, the journey would be `[0, 1, 2, 3]`.
|
||||
"""
|
||||
graph = defaultdict(list)
|
||||
for a, b in zip(ind_a, ind_b):
|
||||
graph[a].append(b)
|
||||
|
||||
journey_nodes = []
|
||||
visited = set()
|
||||
stack = deque([start])
|
||||
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
if node not in visited:
|
||||
visited.add(node)
|
||||
journey_nodes.append(node)
|
||||
for neighbor in graph[node]:
|
||||
if neighbor not in visited:
|
||||
stack.append(neighbor)
|
||||
|
||||
return journey_nodes
|
||||
|
||||
|
||||
def get_order(self, resx):
|
||||
"""
|
||||
Determine the order of visits given the result of the optimization.
|
||||
|
||||
Args:
|
||||
resx (list): List of edge weights.
|
||||
|
||||
Returns:
|
||||
list[int]: A list containing the visit order.
|
||||
"""
|
||||
resx = np.round(resx).astype(np.uint8) # must contain only 0 and 1
|
||||
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
ind_a = nonzero_tup[0].tolist()
|
||||
ind_b = nonzero_tup[1].tolist()
|
||||
|
||||
order = [0]
|
||||
current = 0
|
||||
used_indices = set() # Track visited index pairs
|
||||
|
||||
while True:
|
||||
# Find index of the current node in ind_a
|
||||
try:
|
||||
i = ind_a.index(current)
|
||||
except ValueError:
|
||||
break # No more links, stop the search
|
||||
|
||||
if i in used_indices:
|
||||
break # Prevent infinite loops
|
||||
|
||||
used_indices.add(i) # Mark this index as visited
|
||||
next_node = ind_b[i] # Get the corresponding node in ind_b
|
||||
order.append(next_node) # Add it to the path
|
||||
|
||||
# Switch roles, now look for next_node in ind_a
|
||||
try:
|
||||
current = next_node
|
||||
except ValueError:
|
||||
break # No further connections, end the path
|
||||
|
||||
return order
|
||||
|
||||
|
||||
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
|
||||
"""
|
||||
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
|
||||
|
||||
Args:
|
||||
order (list[int]): List of indices representing the order of landmarks to visit.
|
||||
landmarks (list[Landmark]): List of all landmarks.
|
||||
|
||||
Returns:
|
||||
list[Landmark]]: The updated linked list of landmarks with travel times
|
||||
"""
|
||||
L = []
|
||||
j = 0
|
||||
while j < len(order)-1 :
|
||||
# get landmarks involved
|
||||
elem = landmarks[order[j]]
|
||||
next = landmarks[order[j+1]]
|
||||
|
||||
# get attributes
|
||||
elem.time_to_reach_next = get_time(elem.location, next.location)
|
||||
elem.must_do = True
|
||||
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
|
||||
elem.next_uuid = next.uuid
|
||||
L.append(elem)
|
||||
j += 1
|
||||
|
||||
next.location = (round(next.location[0], 5), round(next.location[1], 5))
|
||||
next.must_do = True
|
||||
L.append(next)
|
||||
|
||||
return L
|
||||
|
||||
|
||||
def warm_start(self, x: list[pl.LpVariable], L: int) :
|
||||
"""
|
||||
This function sets the initial values of the decision variables to a feasible solution.
|
||||
This can help the solver start with a feasible or heuristic solution,
|
||||
potentially speeding up convergence.
|
||||
|
||||
Args:
|
||||
x (list[pl.LpVariable]): A list of PuLP decision variables (binary variables).
|
||||
L (int): The size parameter, representing a dimension (likely related to a grid or matrix).
|
||||
|
||||
Returns:
|
||||
list[pl.LpVariable]: The modified list of PuLP decision variables with initial values set.
|
||||
"""
|
||||
for i in range(L*L) :
|
||||
x[i].setInitialValue(0)
|
||||
|
||||
x[1].setInitialValue(1)
|
||||
x[2*L-1].setInitialValue(1)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def pre_processing(self, L: int, landmarks: list[Landmark], max_time: int, max_landmarks: int | None) :
|
||||
"""
|
||||
Preprocesses the optimization problem by setting up constraints and variables for the tour optimization.
|
||||
|
||||
This method initializes and prepares the linear programming problem to optimize a tour that includes landmarks,
|
||||
while respecting various constraints such as time limits, the number of landmarks to visit, and user preferences.
|
||||
The pre-processing step sets up the problem before solving it using a linear programming solver.
|
||||
|
||||
Responsibilities:
|
||||
- Defines the optimization problem using linear programming (LP) with the objective to maximize the tour value.
|
||||
- Creates binary decision variables for each potential transition between landmarks.
|
||||
- Sets up inequality constraints to respect the maximum time available for the tour and the maximum number of landmarks.
|
||||
- Implements equality constraints to ensure the tour respects the start and finish positions, avoids staying in the same place,
|
||||
and adheres to a visit order.
|
||||
- Forces inclusion or exclusion of specific landmarks based on user preferences.
|
||||
|
||||
Attributes:
|
||||
prob (pl.LpProblem): The linear programming problem to be solved.
|
||||
x (list): A list of binary variables representing transitions between landmarks.
|
||||
L (int): The total number of landmarks considered in the optimization.
|
||||
landmarks (list[Landmark]): The list of landmarks to be visited in the tour.
|
||||
max_time (int): The maximum allowable time for the entire tour.
|
||||
max_landmarks (int | None): The maximum number of landmarks to visit in the tour, or None if no limit is set.
|
||||
|
||||
Returns:
|
||||
prob (pl.LpProblem): The linear programming problem setup for optimization.
|
||||
x (list): The list of binary variables for transitions between landmarks in the tour.
|
||||
"""
|
||||
|
||||
if max_landmarks is None :
|
||||
max_landmarks = self.max_landmarks
|
||||
|
||||
# Initalize the optimization problem
|
||||
prob = pl.LpProblem("OptimizationProblem", pl.LpMaximize)
|
||||
|
||||
# Define the problem
|
||||
x_bounds = [(0, 1)]*L*L
|
||||
x = [pl.LpVariable(f"x_{i}", lowBound=x_bounds[i][0], upBound=x_bounds[i][1], cat='Binary') for i in range(L*L)]
|
||||
|
||||
# Setup the inequality constraints
|
||||
self.init_ub_time(prob, x, L, landmarks, max_time) # Adds the distances from each landmark to the other.
|
||||
self.respect_number(prob, x, L, max_landmarks) # Respects max number of visits (no more possible stops than landmarks).
|
||||
self.break_sym(prob, x, L) # Breaks the 'zig-zag' symmetry. Avoids d12 and d21 but not larger cirlces.
|
||||
|
||||
# Setup the equality constraints
|
||||
self.init_eq_not_stay(prob, x, L) # Force solution not to stay in same place
|
||||
self.respect_start_finish(prob, x, L) # Force start and finish positions
|
||||
self.respect_order(prob, x, L) # Respect order of visit (only works when max_time is limiting factor)
|
||||
self.respect_user_must(prob, x, L, landmarks) # Force to do/avoid landmarks set by user.
|
||||
|
||||
# return prob, self.warm_start(x, L)
|
||||
return prob, x
|
||||
|
||||
|
||||
def solve_optimization(self, max_time: int, landmarks: list[Landmark], max_landmarks: int = None) -> list[Landmark]:
|
||||
"""
|
||||
Main optimization pipeline to solve the landmark visiting problem.
|
||||
|
||||
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
|
||||
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
|
||||
|
||||
Args:
|
||||
max_time (int): Maximum time allowed for the tour in minutes.
|
||||
landmarks (list[Landmark]): List of landmarks to visit.
|
||||
max_landmarks (int): Maximum number of landmarks visited
|
||||
Returns:
|
||||
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
|
||||
"""
|
||||
# Setup the optimization proplem.
|
||||
L = len(landmarks)
|
||||
prob, x = self.pre_processing(L, landmarks, max_time, max_landmarks)
|
||||
|
||||
# Solve the problem and extract results.
|
||||
try :
|
||||
prob.solve(pl.PULP_CBC_CMD(msg=False, timeLimit=self.time_limit+1, gapRel=self.gap_rel))
|
||||
except Exception as exc :
|
||||
raise Exception(f"No solution found: {str(exc)}") from exc
|
||||
status = pl.LpStatus[prob.status]
|
||||
solution = [pl.value(var) for var in x] # The values of the decision variables (will be 0 or 1)
|
||||
|
||||
self.logger.debug("First results are out. Looking out for circles and correcting...")
|
||||
|
||||
# Raise error if no solution is found. FIXME: for now this throws the internal server error
|
||||
if status != 'Optimal' :
|
||||
self.logger.warning("The problem is overconstrained, no solution on first try.")
|
||||
raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.")
|
||||
|
||||
# If there is a solution, we're good to go, just check for connectiveness
|
||||
circles = self.is_connected(solution)
|
||||
|
||||
i = 0
|
||||
while circles is not None :
|
||||
i += 1
|
||||
if i == self.max_iter :
|
||||
self.logger.warning(f'Timeout: No solution found after {self.max_iter} iterations.')
|
||||
raise TimeoutError(f"Optimization took too long. No solution found after {self.max_iter} iterations.")
|
||||
|
||||
for circle in circles :
|
||||
self.prevent_circle(prob, x, circle, L)
|
||||
|
||||
# Solve the problem again
|
||||
try :
|
||||
prob.solve(pl.PULP_CBC_CMD(msg=False, timeLimit=self.time_limit, gapRel=self.gap_rel))
|
||||
except Exception as exc :
|
||||
self.logger.warning("No solution found: {str(exc)")
|
||||
raise Exception(f"No solution found: {str(exc)}") from exc
|
||||
|
||||
solution = [pl.value(var) for var in x]
|
||||
|
||||
if pl.LpStatus[prob.status] != 'Optimal' :
|
||||
self.logger.warning("The problem is overconstrained, no solution after {i} cycles.")
|
||||
raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.")
|
||||
|
||||
circles = self.is_connected(solution)
|
||||
if circles is None :
|
||||
break
|
||||
|
||||
# Sort the landmarks in the order of the solution
|
||||
order = self.get_order(solution)
|
||||
tour = [landmarks[i] for i in order]
|
||||
|
||||
self.logger.info(f"Re-optimized {i} times, objective value : {int(pl.value(prob.objective))}")
|
||||
return tour
|
@ -1,23 +1,32 @@
|
||||
import yaml, logging
|
||||
|
||||
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
|
||||
"""Allows to refine the tour by adding more landmarks and making the path easier to follow."""
|
||||
import logging
|
||||
from math import pi
|
||||
import yaml
|
||||
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from . import take_most_important, get_time_separation
|
||||
from ..utils.get_time_distance import get_time
|
||||
from ..utils.take_most_important import take_most_important
|
||||
from .optimizer import Optimizer
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
|
||||
class Refiner :
|
||||
"""
|
||||
Refines a tour by incorporating smaller landmarks along the path to enhance the experience.
|
||||
|
||||
This class is designed to adjust an existing tour by considering additional,
|
||||
smaller points of interest (landmarks) that may require minor detours but
|
||||
improve the overall quality of the tour. It balances the efficiency of travel
|
||||
with the added value of visiting these landmarks.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
detour_corridor_width: float # width of the corridor around the path
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks_refiner: int # max number of landmarks to visit
|
||||
max_landmarks_refiner: int # max number of landmarks to visit
|
||||
optimizer: Optimizer # optimizer object
|
||||
|
||||
def __init__(self, optimizer: Optimizer) :
|
||||
@ -45,7 +54,7 @@ class Refiner :
|
||||
"""
|
||||
|
||||
corrected_width = (180*width)/(6371000*pi)
|
||||
|
||||
|
||||
path = self.create_linestring(landmarks)
|
||||
obj = buffer(path, corrected_width, join_style="mitre", cap_style="square", mitre_limit=2)
|
||||
|
||||
@ -70,7 +79,7 @@ class Refiner :
|
||||
return LineString(points)
|
||||
|
||||
|
||||
# Check if some coordinates are in area. Used for the corridor
|
||||
# Check if some coordinates are in area. Used for the corridor
|
||||
def is_in_area(self, area: Polygon, coordinates) -> bool :
|
||||
"""
|
||||
Check if a given point is within a specified area.
|
||||
@ -86,7 +95,7 @@ class Refiner :
|
||||
return point.within(area)
|
||||
|
||||
|
||||
# Function to determine if two landmarks are close to each other
|
||||
# Function to determine if two landmarks are close to each other
|
||||
def is_close_to(self, location1: tuple[float], location2: tuple[float]):
|
||||
"""
|
||||
Determine if two locations are close to each other by rounding their coordinates to 3 decimal places.
|
||||
@ -119,7 +128,7 @@ class Refiner :
|
||||
Returns:
|
||||
list[Landmark]: The rearranged list of landmarks with grouped nearby visits.
|
||||
"""
|
||||
|
||||
|
||||
i = 1
|
||||
while i < len(tour):
|
||||
j = i+1
|
||||
@ -131,9 +140,9 @@ class Refiner :
|
||||
break # Move to the next i-th element after rearrangement
|
||||
j += 1
|
||||
i += 1
|
||||
|
||||
|
||||
return tour
|
||||
|
||||
|
||||
def integrate_landmarks(self, sub_list: list[Landmark], main_list: list[Landmark]) :
|
||||
"""
|
||||
Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched.
|
||||
@ -166,27 +175,27 @@ class Refiner :
|
||||
should be visited, and the second element is a `Polygon` representing
|
||||
the path connecting all landmarks.
|
||||
"""
|
||||
|
||||
|
||||
# Step 1: Find 'start' and 'finish' landmarks
|
||||
start_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'start')
|
||||
finish_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'finish')
|
||||
|
||||
|
||||
start_landmark = landmarks[start_idx]
|
||||
finish_landmark = landmarks[finish_idx]
|
||||
|
||||
|
||||
|
||||
# Step 2: Create a list of unvisited landmarks excluding 'start' and 'finish'
|
||||
unvisited_landmarks = [lm for i, lm in enumerate(landmarks) if i not in [start_idx, finish_idx]]
|
||||
|
||||
|
||||
# Step 3: Initialize the path with the 'start' landmark
|
||||
path = [start_landmark]
|
||||
coordinates = [landmarks[start_idx].location]
|
||||
|
||||
current_landmark = start_landmark
|
||||
|
||||
|
||||
# Step 4: Use nearest neighbor heuristic to visit all landmarks
|
||||
while unvisited_landmarks:
|
||||
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_separation.get_time(current_landmark.location, lm.location))
|
||||
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time(current_landmark.location, lm.location))
|
||||
path.append(nearest_landmark)
|
||||
coordinates.append(nearest_landmark.location)
|
||||
current_landmark = nearest_landmark
|
||||
@ -224,12 +233,12 @@ class Refiner :
|
||||
|
||||
for visited in visited_landmarks :
|
||||
visited_names.append(visited.name)
|
||||
|
||||
|
||||
for landmark in all_landmarks :
|
||||
if self.is_in_area(area, landmark.location) and landmark.name not in visited_names:
|
||||
second_order_landmarks.append(landmark)
|
||||
|
||||
return take_most_important.take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
|
||||
return take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
|
||||
|
||||
|
||||
# Try fix the shortest path using shapely
|
||||
@ -256,7 +265,7 @@ class Refiner :
|
||||
coords_dict[landmark.location] = landmark
|
||||
|
||||
tour_poly = Polygon(coords)
|
||||
|
||||
|
||||
better_tour_poly = tour_poly.buffer(0)
|
||||
try :
|
||||
xs, ys = better_tour_poly.exterior.xy
|
||||
@ -265,11 +274,11 @@ class Refiner :
|
||||
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
|
||||
xs, ys = better_tour_poly.exterior.xy
|
||||
|
||||
except :
|
||||
except Exception:
|
||||
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
|
||||
xs, ys = better_tour_poly.exterior.xy
|
||||
"""
|
||||
ERROR HERE :
|
||||
FIXED : ERROR HERE :
|
||||
Exception has occurred: AttributeError
|
||||
'LineString' object has no attribute 'exterior'
|
||||
"""
|
||||
@ -299,7 +308,7 @@ class Refiner :
|
||||
# Rearrange only if polygon still not simple
|
||||
if not better_tour_poly.is_simple :
|
||||
better_tour = self.rearrange(better_tour)
|
||||
|
||||
|
||||
return better_tour
|
||||
|
||||
|
||||
@ -330,10 +339,10 @@ class Refiner :
|
||||
# No need to refine if no detour is taken
|
||||
# if detour == 0:
|
||||
# return base_tour
|
||||
|
||||
|
||||
minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width)
|
||||
|
||||
self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
|
||||
self.logger.debug(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
|
||||
|
||||
# Full set of visitable landmarks.
|
||||
full_set = self.integrate_landmarks(minor_landmarks, base_tour) # could probably be optimized with less overhead
|
||||
@ -341,13 +350,13 @@ class Refiner :
|
||||
# Generate a new tour with the optimizer.
|
||||
new_tour = self.optimizer.solve_optimization(
|
||||
max_time = max_time + detour,
|
||||
landmarks = full_set,
|
||||
landmarks = full_set,
|
||||
max_landmarks = self.max_landmarks_refiner
|
||||
)
|
||||
|
||||
# If unsuccessful optimization, use the base_tour.
|
||||
if new_tour is None:
|
||||
self.logger.warning("No solution found for the refined tour. Returning the initial tour.")
|
||||
self.logger.warning("Refiner failed: No solution found during second stage optimization.")
|
||||
new_tour = base_tour
|
||||
|
||||
# If only one landmark, return it.
|
||||
@ -357,9 +366,10 @@ class Refiner :
|
||||
# Find shortest path using the nearest neighbor heuristic.
|
||||
better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour)
|
||||
|
||||
# Fix the tour using Polygons if the path looks weird.
|
||||
# Fix the tour using Polygons if the path looks weird.
|
||||
# Conditions : circular trip and invalid polygon.
|
||||
if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid :
|
||||
self.logger.debug("Tours might be funky, attempting to correct with polygons")
|
||||
better_tour = self.fix_using_polygon(better_tour)
|
||||
|
||||
return better_tour
|
0
backend/src/overpass/__init__.py
Normal file
136
backend/src/overpass/caching_strategy.py
Normal file
@ -0,0 +1,136 @@
|
||||
"""Module defining the handling of cache data from Overpass requests."""
|
||||
import os
|
||||
import json
|
||||
import hashlib
|
||||
|
||||
from ..constants import OSM_CACHE_DIR, OSM_TYPES
|
||||
|
||||
|
||||
def get_cache_key(query: str) -> str:
|
||||
"""
|
||||
Generate a unique cache key for the query using a hash function.
|
||||
This ensures that queries with different parameters are cached separately.
|
||||
"""
|
||||
return hashlib.md5(query.encode('utf-8')).hexdigest()
|
||||
|
||||
|
||||
class CachingStrategyBase:
|
||||
"""
|
||||
Base class for implementing caching strategies.
|
||||
"""
|
||||
def get(self, key):
|
||||
"""Retrieve the cached data associated with the provided key."""
|
||||
raise NotImplementedError('Subclass should implement get')
|
||||
|
||||
def set(self, key, value):
|
||||
"""Store data in the cache with the specified key."""
|
||||
raise NotImplementedError('Subclass should implement set')
|
||||
|
||||
def set_hollow(self, key, **kwargs):
|
||||
"""Create a hollow (empty) cache entry with a specific key."""
|
||||
raise NotImplementedError('Subclass should implement set_hollow')
|
||||
|
||||
def close(self):
|
||||
"""Clean up or close any resources used by the caching strategy."""
|
||||
|
||||
|
||||
class JSONCache(CachingStrategyBase):
|
||||
"""
|
||||
A caching strategy that stores and retrieves data in JSON format.
|
||||
"""
|
||||
def __init__(self, cache_dir=OSM_CACHE_DIR):
|
||||
# Add the class name as a suffix to the directory
|
||||
self._cache_dir = f'{cache_dir}'
|
||||
if not os.path.exists(self._cache_dir):
|
||||
os.makedirs(self._cache_dir)
|
||||
|
||||
def _filename(self, key):
|
||||
return os.path.join(self._cache_dir, f'{key}.json')
|
||||
|
||||
def get(self, key):
|
||||
"""Retrieve JSON data from the cache and parse it as an ElementTree."""
|
||||
filename = self._filename(key)
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
# Open and parse the cached JSON data
|
||||
with open(filename, 'r', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
# Return the data as a list of dicts.
|
||||
return data
|
||||
except json.JSONDecodeError:
|
||||
return None # Return None if parsing fails
|
||||
return None
|
||||
|
||||
def set(self, key, value):
|
||||
"""Save the JSON data in the cache."""
|
||||
filename = self._filename(key)
|
||||
try:
|
||||
# Write the JSON data to the cache file
|
||||
with open(filename, 'w', encoding='utf-8') as file:
|
||||
json.dump(value, file, ensure_ascii=False, indent=4)
|
||||
except IOError as e:
|
||||
raise IOError(f"Error writing to cache file: {filename} - {e}") from e
|
||||
|
||||
def set_hollow(self, key, cell: tuple, osm_types: list,
|
||||
selector: str, conditions: list=None, out='center'):
|
||||
"""Create an empty placeholder cache entry for a future fill."""
|
||||
hollow_key = f'hollow_{key}'
|
||||
filename = self._filename(hollow_key)
|
||||
|
||||
# Create the hollow JSON structure
|
||||
hollow_data = {
|
||||
"key": key,
|
||||
"cell": list(cell),
|
||||
"osm_types": list(osm_types),
|
||||
"selector": selector,
|
||||
"conditions": conditions,
|
||||
"out": out
|
||||
}
|
||||
# Write the hollow data to the cache file
|
||||
try:
|
||||
with open(filename, 'w', encoding='utf-8') as file:
|
||||
json.dump(hollow_data, file, ensure_ascii=False, indent=4)
|
||||
except IOError as e:
|
||||
raise IOError(f"Error writing hollow cache to file: {filename} - {e}") from e
|
||||
|
||||
def close(self):
|
||||
"""Cleanup method, if needed."""
|
||||
|
||||
|
||||
class CachingStrategy:
|
||||
"""
|
||||
A class to manage different caching strategies.
|
||||
"""
|
||||
__strategy = JSONCache() # Default caching strategy
|
||||
__strategies = {
|
||||
'JSON': JSONCache,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def use(cls, strategy_name='JSON', **kwargs):
|
||||
"""Define the caching strategy to use."""
|
||||
if cls.__strategy:
|
||||
cls.__strategy.close()
|
||||
|
||||
strategy_class = cls.__strategies.get(strategy_name)
|
||||
if not strategy_class:
|
||||
raise ValueError(f"Unknown caching strategy: {strategy_name}")
|
||||
|
||||
cls.__strategy = strategy_class(**kwargs)
|
||||
return cls.__strategy
|
||||
|
||||
@classmethod
|
||||
def get(cls, key):
|
||||
"""Get the data from the cache."""
|
||||
return cls.__strategy.get(key)
|
||||
|
||||
@classmethod
|
||||
def set(cls, key, value):
|
||||
"""Save the data in the cache."""
|
||||
cls.__strategy.set(key, value)
|
||||
|
||||
@classmethod
|
||||
def set_hollow(cls, key, cell: tuple, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list=None, out='center'):
|
||||
"""Create a hollow cache entry."""
|
||||
cls.__strategy.set_hollow(key, cell, osm_types, selector, conditions, out)
|
423
backend/src/overpass/overpass.py
Normal file
@ -0,0 +1,423 @@
|
||||
"""Module allowing connexion to overpass api and fectch data from OSM."""
|
||||
import os
|
||||
import time
|
||||
import urllib
|
||||
import math
|
||||
import logging
|
||||
import json
|
||||
from typing import List, Tuple
|
||||
|
||||
from .caching_strategy import get_cache_key, CachingStrategy
|
||||
from ..constants import OSM_CACHE_DIR, OSM_TYPES, BBOX
|
||||
|
||||
|
||||
RESOLUTION = 0.05
|
||||
CELL = Tuple[int, int]
|
||||
|
||||
|
||||
class Overpass :
|
||||
"""
|
||||
Overpass class to manage the query building and sending to overpass api.
|
||||
The caching strategy is a part of this class and initialized upon creation of the Overpass object.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def __init__(self, caching_strategy: str = 'JSON', cache_dir: str = OSM_CACHE_DIR) :
|
||||
"""
|
||||
Initialize the Overpass instance with the url, headers and caching strategy.
|
||||
"""
|
||||
self.overpass_url = "https://overpass-api.de/api/interpreter"
|
||||
self.headers = {'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',}
|
||||
self.caching_strategy = CachingStrategy.use(caching_strategy, cache_dir=cache_dir)
|
||||
|
||||
|
||||
def send_query(self, bbox: BBOX, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list=None, out='center') -> List[dict]:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed json response.
|
||||
|
||||
Args:
|
||||
bbox (tuple): Bounding box for the query.
|
||||
osm_types (list[str]): List of OSM element types (e.g., 'node', 'way').
|
||||
selector (str): Key or tag to filter OSM elements (e.g., 'highway').
|
||||
conditions (list): Optional list of additional filter conditions in Overpass QL format.
|
||||
out (str): Output format ('center', 'body', etc.). Defaults to 'center'.
|
||||
|
||||
Returns:
|
||||
list: Parsed json response from the Overpass API, or cached data if available.
|
||||
"""
|
||||
# Determine which grid cells overlap with this bounding box.
|
||||
overlapping_cells = Overpass._get_overlapping_cells(bbox)
|
||||
|
||||
# Retrieve cached data and identify missing cache entries
|
||||
cached_responses, non_cached_cells = self._retrieve_cached_data(overlapping_cells, osm_types, selector, conditions, out)
|
||||
|
||||
self.logger.debug(f'Cache hit for {len(overlapping_cells)-len(non_cached_cells)}/{len(overlapping_cells)} quadrants.')
|
||||
|
||||
# If there is no missing data, return the cached responses after filtering.
|
||||
if not non_cached_cells :
|
||||
return Overpass._filter_landmarks(cached_responses, bbox)
|
||||
|
||||
# If there is no cached data, fetch all from Overpass.
|
||||
if not cached_responses :
|
||||
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
|
||||
self.logger.debug(f'Query string: {query_str}')
|
||||
return self.fetch_data_from_api(query_str)
|
||||
|
||||
# Resize the bbox for smaller search area and build new query string.
|
||||
non_cached_bbox = Overpass._get_non_cached_bbox(non_cached_cells, bbox)
|
||||
query_str = Overpass.build_query(non_cached_bbox, osm_types, selector, conditions, out)
|
||||
self.logger.debug(f'Query string: {query_str}')
|
||||
non_cached_responses = self.fetch_data_from_api(query_str)
|
||||
return Overpass._filter_landmarks(cached_responses, bbox) + non_cached_responses
|
||||
|
||||
|
||||
def fetch_data_from_api(self, query_str: str) -> List[dict]:
|
||||
"""
|
||||
Fetch data from the Overpass API and return the json data.
|
||||
|
||||
Args:
|
||||
query_str (str): The Overpass query string.
|
||||
|
||||
Returns:
|
||||
dict: Combined cached and fetched data.
|
||||
"""
|
||||
try:
|
||||
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
|
||||
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
|
||||
|
||||
with urllib.request.urlopen(request) as response:
|
||||
response_data = response.read().decode('utf-8') # Convert the HTTPResponse to a string
|
||||
data = json.loads(response_data) # Load the JSON from the string
|
||||
elements = data.get('elements', [])
|
||||
# self.logger.debug(f'Query = {query_str}')
|
||||
return elements
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
self.logger.error(f"Error connecting to Overpass API: {str(e)}")
|
||||
raise ConnectionError(f"Error connecting to Overpass API: {str(e)}") from e
|
||||
except Exception as exc :
|
||||
self.logger.error(f"unexpected error while fetching data from Overpass: {str(exc)}")
|
||||
raise Exception(f'An unexpected error occured: {str(exc)}') from exc
|
||||
|
||||
|
||||
def fill_cache(self, json_data: dict) :
|
||||
"""
|
||||
Fill cache with data by using a hollow cache entry's information.
|
||||
"""
|
||||
query_str, cache_key = Overpass._build_query_from_hollow(json_data)
|
||||
try:
|
||||
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
|
||||
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
|
||||
|
||||
with urllib.request.urlopen(request) as response:
|
||||
|
||||
# Convert the HTTPResponse to a string and load data
|
||||
response_data = response.read().decode('utf-8')
|
||||
data = json.loads(response_data)
|
||||
|
||||
# Get elements and set cache
|
||||
elements = data.get('elements', [])
|
||||
self.caching_strategy.set(cache_key, elements)
|
||||
self.logger.debug(f'Cache set for {cache_key}')
|
||||
except urllib.error.URLError as e:
|
||||
raise ConnectionError(f"Error connecting to Overpass API: {str(e)}") from e
|
||||
except Exception as exc :
|
||||
raise Exception(f'An unexpected error occured: {str(exc)}') from exc
|
||||
|
||||
|
||||
@staticmethod
|
||||
def build_query(bbox: BBOX, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list=None, out='center') -> str:
|
||||
"""
|
||||
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
|
||||
|
||||
Args:
|
||||
bbox (tuple): A tuple representing the geographical search area, typically in the format
|
||||
(lat_min, lon_min, lat_max, lon_max).
|
||||
osm_types (list[str]): A list of OSM element types to search for. Must be one or more of
|
||||
'Way', 'Node', or 'Relation'.
|
||||
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
|
||||
conditions (list, optional): A list of conditions to apply as additional filters for the
|
||||
selected OSM elements. The conditions should be written in
|
||||
the Overpass QL format, and they are combined with '&&' if
|
||||
multiple are provided. Defaults to an empty list.
|
||||
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
|
||||
Defaults to 'center'.
|
||||
|
||||
Returns:
|
||||
str: The constructed Overpass QL query string.
|
||||
|
||||
Notes:
|
||||
- If no conditions are provided, the query will just use the `selector` to filter the OSM
|
||||
elements without additional constraints.
|
||||
"""
|
||||
query = '[out:json][timeout:20];('
|
||||
|
||||
# convert the bbox to string.
|
||||
bbox_str = f"({','.join(map(str, bbox))})"
|
||||
|
||||
if conditions is not None and len(conditions) > 0:
|
||||
conditions = '(if: ' + ' && '.join(conditions) + ')'
|
||||
else :
|
||||
conditions = ''
|
||||
|
||||
for elem in osm_types :
|
||||
query += elem + '[' + selector + ']' + conditions + bbox_str + ';'
|
||||
|
||||
query += ');' + f'out {out};'
|
||||
|
||||
return query
|
||||
|
||||
|
||||
def _retrieve_cached_data(self, overlapping_cells: CELL, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list, out: str) -> Tuple[List[dict], list[CELL]]:
|
||||
"""
|
||||
Retrieve cached data and identify missing cache quadrants.
|
||||
|
||||
Args:
|
||||
overlapping_cells (list): Cells to check for cached data.
|
||||
osm_types (list): OSM types (e.g., 'node', 'way').
|
||||
selector (str): Key or tag to filter OSM elements.
|
||||
conditions (list): Additional conditions to apply.
|
||||
out (str): Output format.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing:
|
||||
- cached_responses (list): List of cached data found.
|
||||
- non_cached_cells (list(tuple)): List of cells with missing data.
|
||||
"""
|
||||
cell_key_dict = {}
|
||||
for cell in overlapping_cells :
|
||||
for elem in osm_types :
|
||||
key_str = f"{elem}[{selector}]{conditions}({','.join(map(str, cell))})"
|
||||
|
||||
cell_key_dict[cell] = get_cache_key(key_str)
|
||||
|
||||
cached_responses = []
|
||||
non_cached_cells = []
|
||||
|
||||
# Retrieve the cached data and mark the missing entries as hollow
|
||||
for cell, key in cell_key_dict.items():
|
||||
cached_data = self.caching_strategy.get(key)
|
||||
if cached_data is not None :
|
||||
cached_responses += cached_data
|
||||
else:
|
||||
self.caching_strategy.set_hollow(key, cell, osm_types, selector, conditions, out)
|
||||
non_cached_cells.append(cell)
|
||||
|
||||
return cached_responses, non_cached_cells
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _build_query_from_hollow(json_data: dict) -> Tuple[str, str]:
|
||||
"""
|
||||
Build query string using information from a hollow cache entry.
|
||||
"""
|
||||
# Extract values from the JSON object
|
||||
key = json_data.get('key')
|
||||
cell = tuple(json_data.get('cell'))
|
||||
bbox = Overpass._get_bbox_from_grid_cell(cell)
|
||||
osm_types = json_data.get('osm_types')
|
||||
selector = json_data.get('selector')
|
||||
conditions = json_data.get('conditions')
|
||||
out = json_data.get('out')
|
||||
|
||||
|
||||
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
|
||||
return query_str, key
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_overlapping_cells(query_bbox: tuple) -> List[CELL]:
|
||||
"""
|
||||
Returns a set of all grid cells that overlap with the given bounding box.
|
||||
"""
|
||||
# Extract location from the query bbox
|
||||
lat_min, lon_min, lat_max, lon_max = query_bbox
|
||||
|
||||
min_lat_cell, min_lon_cell = Overpass._get_grid_cell(lat_min, lon_min)
|
||||
max_lat_cell, max_lon_cell = Overpass._get_grid_cell(lat_max, lon_max)
|
||||
|
||||
overlapping_cells = set()
|
||||
for lat_idx in range(min_lat_cell, max_lat_cell + 1):
|
||||
for lon_idx in range(min_lon_cell, max_lon_cell + 1):
|
||||
overlapping_cells.add((lat_idx, lon_idx))
|
||||
|
||||
return overlapping_cells
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_grid_cell(lat: float, lon: float) -> CELL:
|
||||
"""
|
||||
Returns the grid cell coordinates for a given latitude and longitude.
|
||||
Each grid cell is 0.05°lat x 0.05°lon resolution in size.
|
||||
"""
|
||||
lat_index = math.floor(lat / RESOLUTION)
|
||||
lon_index = math.floor(lon / RESOLUTION)
|
||||
return (lat_index, lon_index)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_bbox_from_grid_cell(cell: CELL) -> BBOX:
|
||||
"""
|
||||
Returns the bounding box for a given grid cell index.
|
||||
Each grid cell is resolution x resolution in size.
|
||||
|
||||
The bounding box is returned as (min_lat, min_lon, max_lat, max_lon).
|
||||
"""
|
||||
# Calculate the southwest (min_lat, min_lon) corner of the bounding box
|
||||
min_lat = round(cell[0] * RESOLUTION, 2)
|
||||
min_lon = round(cell[1] * RESOLUTION, 2)
|
||||
|
||||
# Calculate the northeast (max_lat, max_lon) corner of the bounding box
|
||||
max_lat = round((cell[0] + 1) * RESOLUTION, 2)
|
||||
max_lon = round((cell[1] + 1) * RESOLUTION, 2)
|
||||
|
||||
return (min_lat, min_lon, max_lat, max_lon)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_non_cached_bbox(non_cached_cells: List[CELL], original_bbox: BBOX):
|
||||
"""
|
||||
Calculate the non-cached bounding box by excluding cached cells.
|
||||
|
||||
Args:
|
||||
non_cached_cells (list): The list of cells that were not found in the cache.
|
||||
original_bbox (tuple): The original bounding box (min_lat, min_lon, max_lat, max_lon).
|
||||
|
||||
Returns:
|
||||
tuple: The new bounding box that excludes cached cells, or None if all cells are cached.
|
||||
"""
|
||||
if not non_cached_cells:
|
||||
return None # All cells were cached
|
||||
|
||||
# Initialize the non-cached bounding box with extreme values
|
||||
min_lat, min_lon, max_lat, max_lon = float('inf'), float('inf'), float('-inf'), float('-inf')
|
||||
|
||||
# Iterate over non-cached cells to find the new bounding box
|
||||
for cell in non_cached_cells:
|
||||
cell_min_lat, cell_min_lon, cell_max_lat, cell_max_lon = Overpass._get_bbox_from_grid_cell(cell)
|
||||
|
||||
min_lat = min(min_lat, cell_min_lat)
|
||||
min_lon = min(min_lon, cell_min_lon)
|
||||
max_lat = max(max_lat, cell_max_lat)
|
||||
max_lon = max(max_lon, cell_max_lon)
|
||||
|
||||
# If no update to bounding box, return the original
|
||||
if min_lat == float('inf') or min_lon == float('inf'):
|
||||
return None
|
||||
|
||||
return (max(min_lat, original_bbox[0]),
|
||||
max(min_lon, original_bbox[1]),
|
||||
min(max_lat, original_bbox[2]),
|
||||
min(max_lon, original_bbox[3]))
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _filter_landmarks(elements: List[dict], bbox: BBOX) -> List[dict]:
|
||||
"""
|
||||
Filters elements based on whether their coordinates are inside the given bbox.
|
||||
|
||||
Args:
|
||||
- elements (list of dict): List of elements containing coordinates.
|
||||
- bbox (tuple): A bounding box defined as (min_lat, min_lon, max_lat, max_lon).
|
||||
|
||||
Returns:
|
||||
- list: A list of elements whose coordinates are inside the bounding box.
|
||||
"""
|
||||
|
||||
filtered_elements = []
|
||||
min_lat, min_lon, max_lat, max_lon = bbox
|
||||
|
||||
for elem in elements:
|
||||
# Extract coordinates based on the 'type' of element
|
||||
if elem.get('type') != 'node':
|
||||
center = elem.get('center', {})
|
||||
lat = float(center.get('lat', 0))
|
||||
lon = float(center.get('lon', 0))
|
||||
else:
|
||||
lat = float(elem.get('lat', 0))
|
||||
lon = float(elem.get('lon', 0))
|
||||
|
||||
# Check if the coordinates fall within the given bounding box
|
||||
if min_lat <= lat <= max_lat and min_lon <= lon <= max_lon:
|
||||
filtered_elements.append(elem)
|
||||
|
||||
return filtered_elements
|
||||
|
||||
|
||||
def get_base_info(elem: dict, osm_type: OSM_TYPES, with_name=False) :
|
||||
"""
|
||||
Extracts base information (coordinates, OSM ID, and optionally a name) from an OSM element.
|
||||
|
||||
This function retrieves the latitude and longitude coordinates, OSM ID, and optionally the name
|
||||
of a given OpenStreetMap (OSM) element. It handles different OSM types (e.g., 'node', 'way') by
|
||||
extracting coordinates either directly or from a center tag, depending on the element type.
|
||||
|
||||
Args:
|
||||
elem (dict): The JSON element representing the OSM entity.
|
||||
osm_type (str): The type of the OSM entity (e.g., 'node', 'way'). If 'node', the coordinates
|
||||
are extracted directly from the element; otherwise, from the 'center' tag.
|
||||
with_name (bool): Whether to extract and return the name of the element. If True, it attempts
|
||||
to find the 'name' tag within the element and return its value. Defaults to False.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing:
|
||||
- osm_id (str): The OSM ID of the element.
|
||||
- coords (tuple): A tuple of (latitude, longitude) coordinates.
|
||||
- name (str, optional): The name of the element if `with_name` is True; otherwise, not included.
|
||||
"""
|
||||
# 1. extract coordinates
|
||||
if osm_type != 'node' :
|
||||
center = elem.get('center')
|
||||
lat = float(center.get('lat'))
|
||||
lon = float(center.get('lon'))
|
||||
|
||||
else :
|
||||
lat = float(elem.get('lat'))
|
||||
lon = float(elem.get('lon'))
|
||||
|
||||
coords = tuple((lat, lon))
|
||||
|
||||
# 2. Extract OSM id
|
||||
osm_id = elem.get('id')
|
||||
|
||||
# 3. Extract name if specified and return
|
||||
if with_name :
|
||||
name = elem.get('tags', {}).get('name')
|
||||
return osm_id, coords, name
|
||||
|
||||
return osm_id, coords
|
||||
|
||||
|
||||
def fill_cache():
|
||||
"""
|
||||
Scans the specified cache directory for files starting with 'hollow_' and attempts to load
|
||||
their contents as JSON to fill the cache of the Overpass system.
|
||||
"""
|
||||
overpass = Overpass()
|
||||
|
||||
n_files = 0
|
||||
total = 0
|
||||
|
||||
with os.scandir(OSM_CACHE_DIR) as it:
|
||||
for entry in it:
|
||||
if entry.is_file() and entry.name.startswith('hollow_'):
|
||||
total += 1
|
||||
try :
|
||||
# Read the whole file content as a string
|
||||
with open(entry.path, 'r', encoding='utf-8') as f:
|
||||
# load data and fill the cache with the query and key
|
||||
json_data = json.load(f)
|
||||
overpass.fill_cache(json_data)
|
||||
n_files += 1
|
||||
time.sleep(1)
|
||||
# Now delete the file as the cache is filled
|
||||
os.remove(entry.path)
|
||||
|
||||
except Exception as exc :
|
||||
overpass.logger.error(f'An error occured while parsing file {entry.path} as .json file: {str(exc)}')
|
||||
|
||||
overpass.logger.info(f"Successfully filled {n_files}/{total} cache files.")
|
@ -51,25 +51,27 @@ sightseeing:
|
||||
- place_of_worship
|
||||
- fountain
|
||||
- townhall
|
||||
water:
|
||||
- reflecting_pool
|
||||
water: reflecting_pool
|
||||
bridge:
|
||||
- aqueduct
|
||||
- viaduct
|
||||
- boardwalk
|
||||
- cantilever
|
||||
- abandoned
|
||||
building:
|
||||
- church
|
||||
- chapel
|
||||
- mosque
|
||||
- synagogue
|
||||
- ruins
|
||||
- temple
|
||||
- government
|
||||
- cathedral
|
||||
- castle
|
||||
- museum
|
||||
building: cathedral
|
||||
|
||||
# unused sightseeing/buildings:
|
||||
# - church
|
||||
# - chapel
|
||||
# - mosque
|
||||
# - synagogue
|
||||
# - ruins
|
||||
# - temple
|
||||
# - government
|
||||
# - cathedral
|
||||
# - castle
|
||||
# - museum
|
||||
|
||||
|
||||
museums:
|
||||
tourism:
|
||||
|
@ -1,12 +1,11 @@
|
||||
city_bbox_side: 7500 #m
|
||||
max_bbox_side: 4000 #m
|
||||
radius_close_to: 50
|
||||
church_coeff: 0.9
|
||||
nature_coeff: 1.25
|
||||
church_coeff: 0.75
|
||||
nature_coeff: 1.6
|
||||
overall_coeff: 10
|
||||
tag_exponent: 1.15
|
||||
image_bonus: 10
|
||||
viewpoint_bonus: 15
|
||||
wikipedia_bonus: 4
|
||||
name_bonus: 3
|
||||
N_important: 40
|
||||
image_bonus: 1.1
|
||||
viewpoint_bonus: 10
|
||||
wikipedia_bonus: 1.25
|
||||
N_important: 60
|
||||
pay_bonus: -1
|
||||
|
@ -2,5 +2,8 @@ detour_factor: 1.4
|
||||
detour_corridor_width: 300
|
||||
average_walking_speed: 4.8
|
||||
max_landmarks: 10
|
||||
max_landmarks_refiner: 30
|
||||
overshoot: 1.1
|
||||
max_landmarks_refiner: 20
|
||||
overshoot: 0.0016
|
||||
time_limit: 1
|
||||
gap_rel: 0.025
|
||||
max_iter: 80
|
@ -1,698 +0,0 @@
|
||||
{
|
||||
"type": "FeatureCollection",
|
||||
"generator": "overpass-turbo",
|
||||
"copyright": "The data included in this document is from www.openstreetmap.org. The data is made available under ODbL.",
|
||||
"timestamp": "2024-12-02T21:14:59Z",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/1345741798",
|
||||
"name": "Cordonnerie Saint-Joseph",
|
||||
"shop": "shoes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3481705,
|
||||
48.0816462
|
||||
]
|
||||
},
|
||||
"id": "node/1345741798"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/2659184738",
|
||||
"brand": "Armand Thiery",
|
||||
"brand:wikidata": "Q2861975",
|
||||
"brand:wikipedia": "fr:Armand Thiery",
|
||||
"name": "Armand Thiery",
|
||||
"opening_hours": "Mo-Sa 09:30-19:00",
|
||||
"shop": "clothes",
|
||||
"wheelchair": "limited"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3594454,
|
||||
48.0785574
|
||||
]
|
||||
},
|
||||
"id": "node/2659184738"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3618136290",
|
||||
"name": "Chez Dominique",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3362362,
|
||||
48.0712174
|
||||
]
|
||||
},
|
||||
"id": "node/3618136290"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3618136605",
|
||||
"name": "Divamod",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3304253,
|
||||
48.0782989
|
||||
]
|
||||
},
|
||||
"id": "node/3618136605"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3618284507",
|
||||
"name": "Star tendances et voyages",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3474029,
|
||||
48.0830993
|
||||
]
|
||||
},
|
||||
"id": "node/3618284507"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/3619696125",
|
||||
"brand": "Zeeman",
|
||||
"brand:wikidata": "Q184399",
|
||||
"name": "Zeeman",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3413834,
|
||||
48.0638444
|
||||
]
|
||||
},
|
||||
"id": "node/3619696125"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4594398129",
|
||||
"name": "Miss et Mister",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3308309,
|
||||
48.0779118
|
||||
]
|
||||
},
|
||||
"id": "node/4594398129"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4907320441",
|
||||
"brand": "Sergent Major",
|
||||
"brand:wikidata": "Q62521738",
|
||||
"clothes": "babies;children",
|
||||
"name": "Sergent Major",
|
||||
"opening_hours": "Mo-Sa 09:30-19:00",
|
||||
"shop": "clothes",
|
||||
"wheelchair": "no"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.359116,
|
||||
48.0787229
|
||||
]
|
||||
},
|
||||
"id": "node/4907320441"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4907364791",
|
||||
"brand": "Armand Thiery",
|
||||
"brand:wikidata": "Q2861975",
|
||||
"brand:wikipedia": "fr:Armand Thiery",
|
||||
"clothes": "women",
|
||||
"name": "Armand Thiery",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3601857,
|
||||
48.0783373
|
||||
]
|
||||
},
|
||||
"id": "node/4907364791"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4907385675",
|
||||
"check_date": "2024-05-19",
|
||||
"clothes": "children",
|
||||
"name": "Du Pareil...au même",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3604521,
|
||||
48.0779726
|
||||
]
|
||||
},
|
||||
"id": "node/4907385675"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922191645",
|
||||
"name": "Abilos",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3566167,
|
||||
48.0794136
|
||||
]
|
||||
},
|
||||
"id": "node/4922191645"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922191648",
|
||||
"brand": "Esprit",
|
||||
"brand:wikidata": "Q532746",
|
||||
"brand:wikipedia": "en:Esprit Holdings",
|
||||
"name": "Esprit",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3554004,
|
||||
48.0787549
|
||||
]
|
||||
},
|
||||
"id": "node/4922191648"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922191972",
|
||||
"brand": "Guess",
|
||||
"brand:wikidata": "Q2470307",
|
||||
"brand:wikipedia": "en:Guess (clothing)",
|
||||
"name": "Guess",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.355273,
|
||||
48.0788003
|
||||
]
|
||||
},
|
||||
"id": "node/4922191972"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/4922192001",
|
||||
"name": "Lingerie",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3575453,
|
||||
48.0779317
|
||||
]
|
||||
},
|
||||
"id": "node/4922192001"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/5359915869",
|
||||
"name": "Al Assil",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3305665,
|
||||
48.0780902
|
||||
]
|
||||
},
|
||||
"id": "node/5359915869"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9089360040",
|
||||
"brand": "Grain de Malice",
|
||||
"brand:wikidata": "Q66757157",
|
||||
"clothes": "women",
|
||||
"name": "Grain de Malice",
|
||||
"shop": "clothes",
|
||||
"short_name": "GDM"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3593125,
|
||||
48.0786234
|
||||
]
|
||||
},
|
||||
"id": "node/9089360040"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095193153",
|
||||
"brand": "Undiz",
|
||||
"brand:wikidata": "Q105306275",
|
||||
"clothes": "underwear",
|
||||
"name": "Undiz",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3599579,
|
||||
48.0782846
|
||||
]
|
||||
},
|
||||
"id": "node/9095193153"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095193154",
|
||||
"branch": "Lingerie",
|
||||
"brand": "RougeGorge",
|
||||
"brand:wikidata": "Q104600739",
|
||||
"clothes": "underwear",
|
||||
"name": "RougeGorge",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3604883,
|
||||
48.0781607
|
||||
]
|
||||
},
|
||||
"id": "node/9095193154"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095212690",
|
||||
"alt_name": "North Face",
|
||||
"brand": "The North Face",
|
||||
"brand:wikidata": "Q152784",
|
||||
"brand:wikipedia": "en:The North Face",
|
||||
"check_date": "2024-05-19",
|
||||
"name": "The North Face",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3603923,
|
||||
48.0773727
|
||||
]
|
||||
},
|
||||
"id": "node/9095212690"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9095270059",
|
||||
"air_conditioning": "no",
|
||||
"clothes": "men",
|
||||
"level": "0",
|
||||
"name": "Maison Aume",
|
||||
"second_hand": "no",
|
||||
"shop": "clothes",
|
||||
"wheelchair": "no"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.361364,
|
||||
48.0799999
|
||||
]
|
||||
},
|
||||
"id": "node/9095270059"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9098624272",
|
||||
"name": "Destock Place",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3575161,
|
||||
48.0793009
|
||||
]
|
||||
},
|
||||
"id": "node/9098624272"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9123861652",
|
||||
"name": "Weackers",
|
||||
"shop": "shoes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.361329,
|
||||
48.0785972
|
||||
]
|
||||
},
|
||||
"id": "node/9123861652"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162179887",
|
||||
"brand": "Calzedonia",
|
||||
"brand:wikidata": "Q1027874",
|
||||
"brand:wikipedia": "en:Calzedonia",
|
||||
"name": "Calzedonia",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3606374,
|
||||
48.0780809
|
||||
]
|
||||
},
|
||||
"id": "node/9162179887"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162206449",
|
||||
"clothes": "women",
|
||||
"name": "Cop. Copine",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3600947,
|
||||
48.078399
|
||||
]
|
||||
},
|
||||
"id": "node/9162206449"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162226360",
|
||||
"brand": "Okaïdi",
|
||||
"brand:wikidata": "Q3350027",
|
||||
"brand:wikipedia": "fr:Okaïdi",
|
||||
"name": "Okaïdi",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3596986,
|
||||
48.078428
|
||||
]
|
||||
},
|
||||
"id": "node/9162226360"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/9162227010",
|
||||
"brand": "Jules",
|
||||
"brand:wikidata": "Q3188386",
|
||||
"brand:wikipedia": "fr:Jules (enseigne)",
|
||||
"clothes": "men",
|
||||
"name": "Jules",
|
||||
"opening_hours": "Mo-Sa 09:30-19:00",
|
||||
"phone": "+33 3 89 41 03 62",
|
||||
"shop": "clothes",
|
||||
"website": "https://www.jules.com/fr-fr/magasins/1600133/"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3600323,
|
||||
48.0782229
|
||||
]
|
||||
},
|
||||
"id": "node/9162227010"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/10151865029",
|
||||
"name": "Atelier Cinq",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3571756,
|
||||
48.0772657
|
||||
]
|
||||
},
|
||||
"id": "node/10151865029"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/10862176110",
|
||||
"name": "L'hexagone",
|
||||
"shop": "bag"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3808571,
|
||||
48.0814138
|
||||
]
|
||||
},
|
||||
"id": "node/10862176110"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11150877331",
|
||||
"brand": "Punt Roma",
|
||||
"brand:wikidata": "Q101423290",
|
||||
"clothes": "women",
|
||||
"name": "Punt Roma",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3571859,
|
||||
48.0779406
|
||||
]
|
||||
},
|
||||
"id": "node/11150877331"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11150959880",
|
||||
"name": "Caroll",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3579354,
|
||||
48.0779291
|
||||
]
|
||||
},
|
||||
"id": "node/11150959880"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11302242094",
|
||||
"branch": "Wintzenheim",
|
||||
"name": "Label Fripe",
|
||||
"opening_hours": "Mo-Sa 09:00-18:45",
|
||||
"phone": "+33 3 89 27 39 25",
|
||||
"second_hand": "only",
|
||||
"shop": "clothes",
|
||||
"website": "https://labelfripe.fr/label-fripe-wintzenheim/"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3109899,
|
||||
48.0850362
|
||||
]
|
||||
},
|
||||
"id": "node/11302242094"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11392247003",
|
||||
"name": "Lingerie Sipp",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3111507,
|
||||
48.0841835
|
||||
]
|
||||
},
|
||||
"id": "node/11392247003"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11778819781",
|
||||
"addr:city": "Colmar",
|
||||
"addr:housenumber": "10",
|
||||
"addr:postcode": "68000",
|
||||
"addr:street": "Rue des Têtes",
|
||||
"clothes": "suits;hats;men",
|
||||
"name": "Phillipe",
|
||||
"phone": "0389411983",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3559389,
|
||||
48.0789064
|
||||
]
|
||||
},
|
||||
"id": "node/11778819781"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11799215969",
|
||||
"brand": "Petit Bateau",
|
||||
"brand:wikidata": "Q3377090",
|
||||
"name": "Petit Bateau",
|
||||
"opening_hours": "Mo-Sa 10:00-19:00; Su 10:00-18:00",
|
||||
"phone": "+33 3 89 24 97 85",
|
||||
"shop": "clothes",
|
||||
"website": "https://stores.petit-bateau.com/france/colmar/9-rue-des-boulangers"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.355149,
|
||||
48.0780213
|
||||
]
|
||||
},
|
||||
"id": "node/11799215969"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/11816704669",
|
||||
"addr:housenumber": "10",
|
||||
"addr:street": "Rue des Boulangers",
|
||||
"name": "des petits hauts",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3555001,
|
||||
48.0780768
|
||||
]
|
||||
},
|
||||
"id": "node/11816704669"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/12320343534",
|
||||
"addr:city": "Colmar",
|
||||
"addr:housenumber": "44",
|
||||
"addr:postcode": "68000",
|
||||
"addr:street": "Rue des Clefs",
|
||||
"brand": "Un Jour Ailleurs",
|
||||
"brand:wikidata": "Q105106211",
|
||||
"clothes": "women",
|
||||
"name": "Un Jour Ailleurs",
|
||||
"opening_hours": "Mo-Fr 10:00-19:00; Sa 10:00-18:30",
|
||||
"phone": "+33368318572",
|
||||
"shop": "clothes",
|
||||
"website": "https://boutique.unjourailleurs.com/fr/mode-femme/boutique-colmar-76"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.35897,
|
||||
48.0789807
|
||||
]
|
||||
},
|
||||
"id": "node/12320343534"
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"@id": "node/12320343536",
|
||||
"addr:city": "Colmar",
|
||||
"addr:housenumber": "38",
|
||||
"addr:postcode": "68000",
|
||||
"addr:street": "Rue des Clefs",
|
||||
"brand": "Timberland",
|
||||
"brand:wikidata": "Q1539185",
|
||||
"name": "Timberland",
|
||||
"opening_hours": "Mo-Sa 10:00-19:00",
|
||||
"phone": "+33389298650",
|
||||
"shop": "clothes"
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": [
|
||||
7.3592409,
|
||||
48.0788785
|
||||
]
|
||||
},
|
||||
"id": "node/12320343536"
|
||||
}
|
||||
]
|
||||
}
|
@ -1,350 +0,0 @@
|
||||
# pylint: skip-file
|
||||
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
from typing import Optional, Literal
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.decomposition import PCA
|
||||
import matplotlib.pyplot as plt
|
||||
from pydantic import BaseModel
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
from math import sin, cos, sqrt, atan2, radians
|
||||
|
||||
|
||||
EARTH_RADIUS_KM = 6373
|
||||
|
||||
|
||||
class ShoppingLocation(BaseModel):
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: tuple
|
||||
start: Optional[list] = None
|
||||
end: Optional[list] = None
|
||||
|
||||
|
||||
# Output to frontend
|
||||
class Landmark(BaseModel) :
|
||||
# Properties of the landmark
|
||||
name : str
|
||||
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
|
||||
location : tuple
|
||||
osm_type : str
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0
|
||||
name_en : Optional[str] = None
|
||||
|
||||
# Additional properties depending on specific tour
|
||||
must_do : Optional[bool] = False
|
||||
must_avoid : Optional[bool] = False
|
||||
is_secondary : Optional[bool] = False
|
||||
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
next_uuid : Optional[str] = None
|
||||
|
||||
|
||||
def extract_points(filestr: str) :
|
||||
"""
|
||||
Extract points from geojson file.
|
||||
|
||||
Returns :
|
||||
np.array containing the points
|
||||
"""
|
||||
points = []
|
||||
|
||||
with open(os.path.dirname(__file__) + '/' + filestr, 'r') as f:
|
||||
geojson = json.load(f)
|
||||
|
||||
for feature in geojson['features']:
|
||||
if feature['geometry']['type'] == 'Point':
|
||||
centroid = feature['geometry']['coordinates']
|
||||
points.append(centroid)
|
||||
|
||||
elif feature['geometry']['type'] == 'Polygon':
|
||||
centroid = np.array(feature['geometry']['coordinates'][0][0])
|
||||
points.append(centroid)
|
||||
|
||||
# Convert the list of points to a NumPy array
|
||||
return np.array(points)
|
||||
|
||||
|
||||
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
"""
|
||||
Calculate the time in minutes to travel from one location to another.
|
||||
|
||||
Args:
|
||||
p1 (tuple[float, float]): Coordinates of the starting location.
|
||||
p2 (tuple[float, float]): Coordinates of the destination.
|
||||
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
|
||||
|
||||
if p1 == p2:
|
||||
return 0
|
||||
else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
return EARTH_RADIUS_KM * c
|
||||
|
||||
def filter_clusters(cluster_points, cluster_labels):
|
||||
"""
|
||||
Remove clusters of less importance.
|
||||
"""
|
||||
label_counts = np.bincount(cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(cluster_points[cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# Concatenate filtered clusters into a single array
|
||||
return np.vstack(filtered_cluster_points), np.concatenate(filtered_cluster_labels)
|
||||
|
||||
|
||||
def fit_lines(points, labels):
|
||||
"""
|
||||
Fit lines to identified clusters.
|
||||
"""
|
||||
all_x = []
|
||||
all_y = []
|
||||
lines = []
|
||||
locations = []
|
||||
|
||||
for label in set(labels):
|
||||
cluster_points = points[labels == label]
|
||||
|
||||
# If there's not enough points, skip
|
||||
if len(cluster_points) < 2:
|
||||
continue
|
||||
|
||||
# Apply PCA to find the principal component (i.e., the line of best fit)
|
||||
pca = PCA(n_components=1)
|
||||
pca.fit(cluster_points)
|
||||
|
||||
direction = pca.components_[0]
|
||||
centroid = pca.mean_
|
||||
|
||||
# Project the cluster points onto the principal direction (line direction)
|
||||
projections = np.dot(cluster_points - centroid, direction)
|
||||
|
||||
# Get the range of the projections to find the approximate length of the cluster
|
||||
cluster_length = projections.max() - projections.min()
|
||||
|
||||
# Now adjust `t` so that it scales with the cluster length
|
||||
t = np.linspace(-cluster_length / 2.75, cluster_length / 2.75, 10)
|
||||
|
||||
# Calculate the start and end of the line based on min/max projections
|
||||
start_point = centroid[0] + t*direction[0]
|
||||
end_point = centroid[1] + t*direction[1]
|
||||
|
||||
# Store the line
|
||||
lines.append((start_point, end_point))
|
||||
|
||||
# For visualization, store the points
|
||||
all_x.append(min(start_point))
|
||||
all_x.append(max(start_point))
|
||||
all_y.append(min(end_point))
|
||||
all_y.append(max(end_point))
|
||||
|
||||
if np.linalg.norm(t) <= 0.0045 :
|
||||
loc = ShoppingLocation(
|
||||
type='area',
|
||||
centroid=tuple((centroid[1], centroid[0])),
|
||||
importance = len(cluster_points),
|
||||
)
|
||||
else :
|
||||
loc = ShoppingLocation(
|
||||
type='street',
|
||||
centroid=tuple((centroid[1], centroid[0])),
|
||||
importance = len(cluster_points),
|
||||
start=start_point,
|
||||
end=end_point
|
||||
)
|
||||
|
||||
locations.append(loc)
|
||||
|
||||
xmin = min(all_x)
|
||||
xmax = max(all_x)
|
||||
ymin = min(all_y)
|
||||
ymax = max(all_y)
|
||||
corners = (xmin, xmax, ymin, ymax)
|
||||
|
||||
return corners, locations
|
||||
|
||||
|
||||
|
||||
def create_landmark(shopping_location: ShoppingLocation):
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
lat, lon = shopping_location.centroid
|
||||
bbox = ("around:1000", str(lat), str(lon))
|
||||
|
||||
overpass = Overpass()
|
||||
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
|
||||
|
||||
min_dist = float('inf')
|
||||
new_name = 'Shopping Area'
|
||||
new_name_en = None
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
|
||||
for sel in selectors :
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
selector = sel,
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
|
||||
try:
|
||||
result = overpass.query(query)
|
||||
except Exception as e:
|
||||
raise Exception("query unsuccessful")
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
if location[0] is None :
|
||||
location = (elem.lat(), elem.lon())
|
||||
if location[0] is None :
|
||||
# print(f"Fetching coordinates failed with {elem.type()}/{elem.id()}")
|
||||
continue
|
||||
|
||||
# print(f"Distance : {get_distance(shopping_location.centroid, location)}")
|
||||
d = get_distance(shopping_location.centroid, location)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = elem.tag('name')
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# add english name if it exists
|
||||
try :
|
||||
new_name_en = elem.tag('name:en')
|
||||
except:
|
||||
pass
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type='shopping',
|
||||
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
|
||||
attractiveness=shopping_location.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
name_en=new_name_en
|
||||
)
|
||||
|
||||
|
||||
# Extract points
|
||||
points = extract_points('vienna_data.json')
|
||||
|
||||
# print(len(points))
|
||||
|
||||
######## Create a figure with 1 row and 3 columns for side-by-side plots
|
||||
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
||||
# Plot Raw data points
|
||||
axes[0].set_title('Raw Data')
|
||||
axes[0].scatter(points[:, 0], points[:, 1], color='blue', s=20)
|
||||
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if len(points) > 400 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(points)
|
||||
|
||||
# Separate clustered points and noise points
|
||||
clustered_points = points[labels != -1]
|
||||
clustered_labels = labels[labels != -1]
|
||||
noise_points = points[labels == -1]
|
||||
|
||||
######## Plot n°1: DBSCAN Clustering Results
|
||||
axes[1].set_title('DBSCAN Clusters')
|
||||
axes[1].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=20)
|
||||
axes[1].scatter(noise_points[:, 0], noise_points[:, 1], c='blue', s=7, label='Noise')
|
||||
|
||||
# Keep the 5 biggest clusters
|
||||
clustered_points, clustered_labels = filter_clusters(clustered_points, clustered_labels)
|
||||
|
||||
# Fit lines
|
||||
corners, locations = fit_lines(clustered_points, clustered_labels)
|
||||
(xmin, xmax, ymin, ymax) = corners
|
||||
|
||||
|
||||
######## Plot clustered points in normal size and noise points separately
|
||||
axes[2].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=30)
|
||||
axes[2].set_title('PCA Fitted Lines on Clusters')
|
||||
|
||||
# Create a list of Landmarks for the shopping things
|
||||
shopping_landmarks = []
|
||||
for loc in locations :
|
||||
axes[2].scatter(loc.centroid[1], loc.centroid[0], color='red', marker='x', s=200, linewidth=3)
|
||||
landmark = create_landmark(loc)
|
||||
shopping_landmarks.append(landmark)
|
||||
axes[2].text(loc.centroid[1], loc.centroid[0], landmark.name,
|
||||
ha='center', va='top', fontsize=6,
|
||||
bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.2'),
|
||||
zorder=3)
|
||||
|
||||
|
||||
|
||||
####### Plot the detected lines in the final plot #######
|
||||
# for loc in locations:
|
||||
# if loc.type == 'street' :
|
||||
# line_x = loc.start
|
||||
# line_y = loc.end
|
||||
# axes[2].plot(line_x, line_y, color='lime', linewidth=3)
|
||||
# else :
|
||||
|
||||
|
||||
|
||||
axes[0].set_xlim(xmin-0.01, xmax+0.01)
|
||||
axes[0].set_ylim(ymin-0.01, ymax+0.01)
|
||||
|
||||
axes[1].set_xlim(xmin-0.01, xmax+0.01)
|
||||
axes[1].set_ylim(ymin-0.01, ymax+0.01)
|
||||
|
||||
axes[2].set_xlim(xmin-0.01, xmax+0.01)
|
||||
axes[2].set_ylim(ymin-0.01, ymax+0.01)
|
||||
|
||||
|
||||
print("\n\n\n")
|
||||
for landmark in shopping_landmarks :
|
||||
print(f"{landmark.name} is a shopping area with a score of {landmark.attractiveness}")
|
||||
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
@ -1,7 +1,6 @@
|
||||
"""Definition of the Landmark class to handle visitable objects across the world."""
|
||||
|
||||
from typing import Optional, Literal
|
||||
from uuid import uuid4
|
||||
from uuid import uuid4, UUID
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@ -29,12 +28,12 @@ class Landmark(BaseModel) :
|
||||
description (Optional[str]): A text description of the landmark.
|
||||
duration (Optional[int]): The estimated time to visit the landmark (in minutes).
|
||||
name_en (Optional[str]): The English name of the landmark.
|
||||
uuid (str): A unique identifier for the landmark, generated by default using uuid4.
|
||||
uuid (UUID): A unique identifier for the landmark, generated by default using uuid4.
|
||||
must_do (Optional[bool]): Whether the landmark is a "must-do" attraction.
|
||||
must_avoid (Optional[bool]): Whether the landmark should be avoided.
|
||||
is_secondary (Optional[bool]): Whether the landmark is secondary or less important.
|
||||
time_to_reach_next (Optional[int]): Estimated time (in minutes) to reach the next landmark.
|
||||
next_uuid (Optional[str]): UUID of the next landmark in sequence (if applicable).
|
||||
next_uuid (Optional[UUID]): UUID of the next landmark in sequence (if applicable).
|
||||
"""
|
||||
|
||||
# Properties of the landmark
|
||||
@ -45,14 +44,18 @@ class Landmark(BaseModel) :
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
|
||||
# Optional properties to gather more information.
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0
|
||||
wiki_url : Optional[str] = None
|
||||
keywords: Optional[dict] = {}
|
||||
description : Optional[str] = None
|
||||
duration : Optional[int] = 5
|
||||
name_en : Optional[str] = None
|
||||
|
||||
# Unique ID of a given landmark
|
||||
uuid: str = Field(default_factory=uuid4)
|
||||
uuid: UUID = Field(default_factory=uuid4)
|
||||
|
||||
# Additional properties depending on specific tour
|
||||
must_do : Optional[bool] = False
|
||||
@ -60,7 +63,12 @@ class Landmark(BaseModel) :
|
||||
is_secondary : Optional[bool] = False
|
||||
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
next_uuid : Optional[str] = None
|
||||
next_uuid : Optional[UUID] = None
|
||||
|
||||
# More properties to define the score
|
||||
is_viewpoint : Optional[bool] = False
|
||||
is_place_of_worship : Optional[bool] = False
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
@ -115,28 +123,3 @@ class Landmark(BaseModel) :
|
||||
return (self.uuid == value.uuid or
|
||||
self.osm_id == value.osm_id or
|
||||
(self.name == value.name and self.distance(value) < 0.001))
|
||||
|
||||
|
||||
class Toilets(BaseModel) :
|
||||
"""
|
||||
Model for toilets. When false/empty the information is either false either not known.
|
||||
"""
|
||||
location : tuple
|
||||
wheelchair : Optional[bool] = False
|
||||
changing_table : Optional[bool] = False
|
||||
fee : Optional[bool] = False
|
||||
opening_hours : Optional[str] = ""
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
String representation of the Toilets object.
|
||||
|
||||
Returns:
|
||||
str: A formatted string with the toilets location.
|
||||
"""
|
||||
return f'Toilets @{self.location}'
|
||||
|
||||
class Config:
|
||||
# This allows us to easily convert the model to and from dictionaries
|
||||
orm_mode = True
|
@ -1,7 +1,7 @@
|
||||
"""Linked and ordered list of Landmarks that represents the visiting order."""
|
||||
|
||||
from .landmark import Landmark
|
||||
from ..utils.get_time_separation import get_time
|
||||
from ..utils.get_time_distance import get_time
|
||||
|
||||
class LinkedLandmarks:
|
||||
"""
|
||||
|
26
backend/src/structs/toilets.py
Normal file
@ -0,0 +1,26 @@
|
||||
"""Definition of the Toilets class."""
|
||||
from typing import Optional
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
|
||||
class Toilets(BaseModel) :
|
||||
"""
|
||||
Model for toilets. When false/empty the information is either false either not known.
|
||||
"""
|
||||
location : tuple
|
||||
wheelchair : Optional[bool] = False
|
||||
changing_table : Optional[bool] = False
|
||||
fee : Optional[bool] = False
|
||||
opening_hours : Optional[str] = ""
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
String representation of the Toilets object.
|
||||
|
||||
Returns:
|
||||
str: A formatted string with the toilets location.
|
||||
"""
|
||||
return f'Toilets @{self.location}'
|
||||
|
||||
model_config = ConfigDict(from_attributes=True)
|
@ -1,6 +1,6 @@
|
||||
"""Definition of the Trip class."""
|
||||
|
||||
import uuid
|
||||
from uuid import uuid4, UUID
|
||||
from pydantic import BaseModel, Field
|
||||
from pymemcache.client.base import Client
|
||||
|
||||
@ -19,9 +19,9 @@ class Trip(BaseModel):
|
||||
Methods:
|
||||
from_linked_landmarks: create a Trip from LinkedLandmarks object.
|
||||
"""
|
||||
uuid: str = Field(default_factory=uuid.uuid4)
|
||||
uuid: UUID = Field(default_factory=uuid4)
|
||||
total_time: int
|
||||
first_landmark_uuid: str
|
||||
first_landmark_uuid: UUID
|
||||
|
||||
|
||||
@classmethod
|
||||
@ -31,7 +31,7 @@ class Trip(BaseModel):
|
||||
"""
|
||||
trip = Trip(
|
||||
total_time = landmarks.total_time,
|
||||
first_landmark_uuid = str(landmarks[0].uuid)
|
||||
first_landmark_uuid = landmarks[0].uuid
|
||||
)
|
||||
|
||||
# Store the trip in the cache
|
||||
|
@ -1,42 +0,0 @@
|
||||
"""Collection of tests to ensure correct handling of invalid input."""
|
||||
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from .test_utils import load_trip_landmarks
|
||||
from ..main import app
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
def test_cache(client, request): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 15
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.084588, 7.280405]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
landmarks_cached = load_trip_landmarks(client, result['first_landmark_uuid'], True)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert landmarks_cached == landmarks
|
@ -1,9 +1,9 @@
|
||||
"""Collection of tests to ensure correct implementation and track progress. """
|
||||
|
||||
import time
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from .test_utils import landmarks_to_osmid, load_trip_landmarks, log_trip_details
|
||||
from .test_utils import load_trip_landmarks, log_trip_details
|
||||
from ..main import app
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
@ -20,30 +20,41 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 15
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 20
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"nature": {"type": "nature", "score": 0},
|
||||
"shopping": {"type": "shopping", "score": 0},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.084588, 7.280405]
|
||||
# "start": [45.74445023349939, 4.8222687890538865]
|
||||
# "start": [45.75156398104873, 4.827154464827647]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert isinstance(landmarks, list) # check that the return type is a list
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
assert len(landmarks) > 2 # check that there is something to visit
|
||||
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
# assert 2!= 3
|
||||
|
||||
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
@ -53,7 +64,10 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
duration_minutes = 30
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 120
|
||||
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
@ -67,26 +81,238 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
osm_ids = landmarks_to_osmid(landmarks)
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
assert 136200148 in osm_ids # check for Cathédrale St. Jean in trip
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°3 : Custom test in Lyon centre to ensure shopping clusters are found.
|
||||
Test n°3 : Custom test in Cologne to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 240
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [50.942352665, 6.957777972392]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°4 : Custom test in Strasbourg to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 180
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.5846589226, 7.74078715721]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_zurich(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°5 : Custom test in Zurich to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 180
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [47.377884227, 8.5395114066]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_paris(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°6 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 200
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 0},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.85468881798671, 2.3423925755998374]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_new_york(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°7 : Custom test in New York to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 600
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [40.72592726802, -73.9920434795]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°8 : Custom test in Lyon centre to ensure shopping clusters are found.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 240
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
@ -100,29 +326,18 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
)
|
||||
result = response.json()
|
||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||
# osm_ids = landmarks_to_osmid(landmarks)
|
||||
|
||||
# Get computation time
|
||||
comp_time = time.time() - start_time
|
||||
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||
|
||||
# def test_new_trip_single_prefs(client):
|
||||
# response = client.post(
|
||||
# "/trip/new",
|
||||
# json={
|
||||
# "preferences": {"sightseeing": {"type": "sightseeing", "score": 1},
|
||||
# "nature": {"type": "nature", "score": 1},
|
||||
# "shopping": {"type": "shopping", "score": 1},
|
||||
# "max_time_minute": 360,
|
||||
# "detour_tolerance_minute": 0},
|
||||
# "start": [48.8566, 2.3522]
|
||||
# }
|
||||
# )
|
||||
# assert response.status_code == 200
|
||||
|
||||
|
||||
# def test_new_trip_matches_prefs(client):
|
||||
# pass
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
@ -3,14 +3,16 @@
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from ..structs.landmark import Toilets
|
||||
from ..structs.toilets import Toilets
|
||||
from ..main import app
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,radius,status_code",
|
||||
[
|
||||
@ -39,8 +41,6 @@ def test_invalid_input(client, location, radius, status_code): # pylint: disa
|
||||
assert response.status_code == status_code
|
||||
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,status_code",
|
||||
[
|
||||
@ -66,11 +66,10 @@ def test_no_toilets(client, location, status_code): # pylint: disable=redefin
|
||||
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert response.status_code == status_code # check for successful planning
|
||||
assert isinstance(toilets_list, list) # check that the return type is a list
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,status_code",
|
||||
[
|
||||
@ -97,6 +96,6 @@ def test_toilets(client, location, status_code): # pylint: disable=redefined-
|
||||
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert response.status_code == status_code # check for successful planning
|
||||
assert isinstance(toilets_list, list) # check that the return type is a list
|
||||
assert len(toilets_list) > 0
|
||||
assert len(toilets_list) > 0
|
||||
|
@ -1,10 +1,9 @@
|
||||
"""Helper methods for testing."""
|
||||
import logging
|
||||
from fastapi import HTTPException
|
||||
from pydantic import ValidationError
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..persistence import client as cache_client
|
||||
from ..cache import client as cache_client
|
||||
|
||||
|
||||
def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
|
||||
@ -23,45 +22,7 @@ def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
|
||||
|
||||
return ids
|
||||
|
||||
def fetch_landmark(client, landmark_uuid: str):
|
||||
"""
|
||||
Fetch landmark data from the API based on the landmark UUID.
|
||||
|
||||
Args:
|
||||
landmark_uuid (str): The UUID of the landmark.
|
||||
|
||||
Returns:
|
||||
dict: Landmark data fetched from the API.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
response = client.get(f"/landmark/{landmark_uuid}")
|
||||
|
||||
if response.status_code != 200:
|
||||
raise HTTPException(status_code=500,
|
||||
detail=f"Failed to fetch landmark with UUID {landmark_uuid}: {response.status_code}")
|
||||
|
||||
try:
|
||||
json_data = response.json()
|
||||
logger.info(f"API Response: {json_data}")
|
||||
except ValueError as e:
|
||||
logger.error(f"Failed to parse response as JSON: {response.text}")
|
||||
raise HTTPException(status_code=500, detail="Invalid response format from API")
|
||||
|
||||
# Try validating against the Landmark model here to ensure consistency
|
||||
try:
|
||||
landmark = Landmark(**json_data)
|
||||
except ValidationError as ve:
|
||||
logging.error(f"Validation error: {ve}")
|
||||
raise HTTPException(status_code=500, detail="Invalid data format received from API")
|
||||
|
||||
|
||||
if "detail" in json_data:
|
||||
raise HTTPException(status_code=500, detail=json_data["detail"])
|
||||
|
||||
return Landmark(**json_data)
|
||||
|
||||
|
||||
def fetch_landmark_cache(landmark_uuid: str):
|
||||
def fetch_landmark(landmark_uuid: str):
|
||||
"""
|
||||
Fetch landmark data from the cache based on the landmark UUID.
|
||||
|
||||
@ -75,26 +36,24 @@ def fetch_landmark_cache(landmark_uuid: str):
|
||||
|
||||
# Try to fetch the landmark data from the cache
|
||||
try:
|
||||
landmark = cache_client.get(f"landmark_{landmark_uuid}")
|
||||
landmark = cache_client.get(f'landmark_{landmark_uuid}')
|
||||
if not landmark :
|
||||
logger.warning(f"Cache miss for landmark UUID: {landmark_uuid}")
|
||||
raise HTTPException(status_code=404, detail=f"Landmark with UUID {landmark_uuid} not found in cache.")
|
||||
|
||||
logger.error(f'Cache miss for landmark UUID: {landmark_uuid}')
|
||||
raise HTTPException(status_code=404, detail=f'Landmark with UUID {landmark_uuid} not found in cache.')
|
||||
|
||||
# Validate that the fetched data is a dictionary
|
||||
if not isinstance(landmark, Landmark):
|
||||
logger.error(f"Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.")
|
||||
logger.error(f'Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.')
|
||||
raise HTTPException(status_code=500, detail="Invalid cache data format.")
|
||||
|
||||
return landmark
|
||||
|
||||
|
||||
except Exception as exc:
|
||||
logger.error(f"Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}")
|
||||
logger.error(f'Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}')
|
||||
raise HTTPException(status_code=500, detail="An unexpected error occurred while fetching the landmark from the cache") from exc
|
||||
|
||||
|
||||
|
||||
|
||||
def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landmark]:
|
||||
def load_trip_landmarks(client, first_uuid: str) -> list[Landmark]:
|
||||
"""
|
||||
Load all landmarks for a trip using the response from the API.
|
||||
|
||||
@ -108,10 +67,7 @@ def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landma
|
||||
next_uuid = first_uuid
|
||||
|
||||
while next_uuid is not None:
|
||||
if from_cache :
|
||||
landmark = fetch_landmark_cache(next_uuid)
|
||||
else :
|
||||
landmark = fetch_landmark(client, next_uuid)
|
||||
landmark = fetch_landmark(next_uuid)
|
||||
|
||||
landmarks.append(landmark)
|
||||
next_uuid = landmark.next_uuid # Prepare for the next iteration
|
||||
@ -122,14 +78,14 @@ def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landma
|
||||
def log_trip_details(request, landmarks: list[Landmark], duration: int, target_duration: int) :
|
||||
"""
|
||||
Allows to show the detailed trip in the html test report.
|
||||
|
||||
|
||||
Args:
|
||||
request:
|
||||
landmarks (list): the ordered list of visited landmarks
|
||||
duration (int): the total duration of this trip
|
||||
target_duration(int): the target duration of this trip
|
||||
"""
|
||||
trip_string = [f"{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}" for landmark in landmarks]
|
||||
trip_string = [f'{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}' for landmark in landmarks]
|
||||
|
||||
# Pass additional info to pytest for reporting
|
||||
request.node.trip_details = trip_string
|
||||
|
0
backend/src/toilets/__init__.py
Normal file
38
backend/src/toilets/toilet_routes.py
Normal file
@ -0,0 +1,38 @@
|
||||
"""Defines the endpoint for fetching toilet locations."""
|
||||
from fastapi import HTTPException, APIRouter, Query
|
||||
|
||||
from ..structs.toilets import Toilets
|
||||
from .toilets_manager import ToiletsManager
|
||||
|
||||
|
||||
# Define the API router
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/toilets/new")
|
||||
def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -> list[Toilets] :
|
||||
"""
|
||||
Endpoint to find toilets within a specified radius from a given location.
|
||||
|
||||
This endpoint expects the `location` and `radius` as **query parameters**, not in the request body.
|
||||
|
||||
Args:
|
||||
location (tuple[float, float]): The latitude and longitude of the location to search from.
|
||||
radius (int, optional): The radius (in meters) within which to search for toilets. Defaults to 500 meters.
|
||||
|
||||
Returns:
|
||||
list[Toilets]: A list of Toilets objects that meet the criteria.
|
||||
"""
|
||||
if location is None:
|
||||
raise HTTPException(status_code=406, detail="Coordinates not provided or invalid")
|
||||
if not (-90 <= location[0] <= 90 or -180 <= location[1] <= 180):
|
||||
raise HTTPException(status_code=422, detail="Start coordinates not in range")
|
||||
|
||||
toilets_manager = ToiletsManager(location, radius)
|
||||
|
||||
try :
|
||||
toilets_list = toilets_manager.generate_toilet_list()
|
||||
except KeyError as exc:
|
||||
raise HTTPException(status_code=404, detail="No toilets found") from exc
|
||||
|
||||
return toilets_list
|
122
backend/src/toilets/toilets_manager.py
Normal file
@ -0,0 +1,122 @@
|
||||
"""Module for finding public toilets around given coordinates."""
|
||||
import logging
|
||||
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..structs.toilets import Toilets
|
||||
from ..utils.bbox import create_bbox
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
|
||||
|
||||
class ToiletsManager:
|
||||
"""
|
||||
Manages the process of fetching and caching toilet information from
|
||||
OpenStreetMap (OSM) based on a specified location and radius.
|
||||
|
||||
This class is responsible for:
|
||||
- Fetching toilet data from OSM using Overpass API around a given set of
|
||||
coordinates (latitude, longitude).
|
||||
- Using a caching strategy to optimize requests by saving and retrieving
|
||||
data from a local cache.
|
||||
- Logging important events and errors related to data fetching.
|
||||
|
||||
Attributes:
|
||||
logger (logging.Logger): Logger for the class to capture events.
|
||||
location (tuple[float, float]): Latitude and longitude representing the
|
||||
location to search around.
|
||||
radius (int): The search radius in meters for finding nearby toilets.
|
||||
overpass (Overpass): The Overpass API instance used to query OSM.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
location: tuple[float, float]
|
||||
radius: int # radius in meters
|
||||
|
||||
|
||||
def __init__(self, location: tuple[float, float], radius : int) -> None:
|
||||
|
||||
self.radius = radius
|
||||
self.location = location
|
||||
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass()
|
||||
|
||||
|
||||
def generate_toilet_list(self) -> list[Toilets] :
|
||||
"""
|
||||
Generates a list of toilet locations by fetching data from OpenStreetMap (OSM)
|
||||
around the given coordinates stored in `self.location`.
|
||||
|
||||
Returns:
|
||||
list[Toilets]: A list of `Toilets` objects containing detailed information
|
||||
about the toilets found around the given coordinates.
|
||||
"""
|
||||
bbox = create_bbox(self.location, self.radius)
|
||||
osm_types = ['node', 'way', 'relation']
|
||||
toilets_list = []
|
||||
|
||||
query = Overpass.build_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = '"amenity"="toilets"',
|
||||
out = 'ids center tags'
|
||||
)
|
||||
try:
|
||||
result = self.overpass.fetch_data_from_api(query_str=query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching toilets: {e}")
|
||||
return None
|
||||
|
||||
toilets_list = self.to_toilets(result)
|
||||
|
||||
return toilets_list
|
||||
|
||||
|
||||
def to_toilets(self, elements: list) -> list[Toilets]:
|
||||
"""
|
||||
Parse the Overpass API result and extract landmarks.
|
||||
|
||||
This method processes the JSON elements returned by the Overpass API and
|
||||
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
|
||||
relevant information such as name, coordinates, and tags, and converts them
|
||||
into Landmark objects.
|
||||
|
||||
Args:
|
||||
list (osm elements): The root element of the JSON response from Overpass API.
|
||||
elem_type (str): The type of landmark (e.g., node, way, relation).
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects extracted from the JSON data.
|
||||
"""
|
||||
if elements is None :
|
||||
return []
|
||||
|
||||
toilets_list = []
|
||||
for elem in elements:
|
||||
osm_type = elem.get('type')
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is None :
|
||||
continue
|
||||
|
||||
toilets = Toilets(location=coords)
|
||||
|
||||
# Extract tags as a dictionary
|
||||
tags = elem.get('tags')
|
||||
|
||||
if 'wheelchair' in tags.keys() and tags['wheelchair'] == 'yes':
|
||||
toilets.wheelchair = True
|
||||
|
||||
if 'changing_table' in tags.keys() and tags['changing_table'] == 'yes':
|
||||
toilets.changing_table = True
|
||||
|
||||
if 'fee' in tags.keys() and tags['fee'] == 'yes':
|
||||
toilets.fee = True
|
||||
|
||||
if 'opening_hours' in tags.keys() :
|
||||
toilets.opening_hours = tags['opening_hours']
|
||||
|
||||
toilets_list.append(toilets)
|
||||
|
||||
return toilets_list
|
0
backend/src/utils/__init__.py
Normal file
27
backend/src/utils/bbox.py
Normal file
@ -0,0 +1,27 @@
|
||||
"""Various helper functions"""
|
||||
import math as m
|
||||
|
||||
def create_bbox(coords: tuple[float, float], radius: int):
|
||||
"""
|
||||
Create a bounding box around the given coordinates.
|
||||
|
||||
Args:
|
||||
coords (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
||||
radius (int): The half-side length of the bounding box in meters.
|
||||
|
||||
Returns:
|
||||
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
||||
defining the bounding box.
|
||||
"""
|
||||
# Earth's radius in meters
|
||||
R = 6378137
|
||||
lat, lon = coords
|
||||
d_lat = radius / R
|
||||
d_lon = radius / (R * m.cos(m.pi * lat / 180))
|
||||
|
||||
lat_min = lat - d_lat * 180 / m.pi
|
||||
lat_max = lat + d_lat * 180 / m.pi
|
||||
lon_min = lon - d_lon * 180 / m.pi
|
||||
lon_max = lon + d_lon * 180 / m.pi
|
||||
|
||||
return (lat_min, lon_min, lat_max, lon_max)
|
@ -1,283 +0,0 @@
|
||||
import logging
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from pydantic import BaseModel
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_separation import get_distance
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
|
||||
class ShoppingLocation(BaseModel):
|
||||
""""
|
||||
A classe representing an interesting area for shopping.
|
||||
|
||||
It can represent either a general area or a specifc route with start and end point.
|
||||
The importance represents the number of shops found in this cluster.
|
||||
|
||||
Attributes:
|
||||
type : either a 'street' or 'area' (representing a denser field of shops).
|
||||
importance : size of the cluster (number of points).
|
||||
centroid : center of the cluster.
|
||||
start : if the type is a street it goes from here...
|
||||
end : ...to here
|
||||
"""
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: tuple
|
||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||
# end: Optional[list] = None
|
||||
|
||||
|
||||
class ShoppingManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# NOTE: all points are in (lat, lon) format
|
||||
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
|
||||
all_points: list
|
||||
cluster_points: list
|
||||
cluster_labels: list
|
||||
shopping_locations: list[ShoppingLocation]
|
||||
|
||||
def __init__(self, bbox: tuple) -> None:
|
||||
"""
|
||||
Upon intialization, generate the point cloud used for cluster detection.
|
||||
The points represent bag/clothes shops and general boutiques.
|
||||
|
||||
Args:
|
||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
"""
|
||||
|
||||
# Initialize overpass and cache
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
# Initialize the points for cluster detection
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node'],
|
||||
selector = ['"shop"~"^(bag|boutique|clothes)$"'],
|
||||
includeCenter = True,
|
||||
out = 'skel'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
|
||||
if len(result.elements()) == 0 :
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
points = []
|
||||
for elem in result.elements() :
|
||||
points.append(tuple((elem.lat(), elem.lon())))
|
||||
|
||||
self.all_points = np.array(points)
|
||||
self.valid = True
|
||||
|
||||
|
||||
def generate_shopping_landmarks(self) -> list[Landmark]:
|
||||
"""
|
||||
Generate shopping landmarks based on clustered locations.
|
||||
|
||||
This method first generates clusters of locations and then extracts shopping-related
|
||||
locations from these clusters. It transforms each shopping location into a `Landmark` object.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of `Landmark` objects representing shopping locations.
|
||||
Returns an empty list if no clusters are found.
|
||||
"""
|
||||
|
||||
self.generate_clusters()
|
||||
|
||||
if len(set(self.cluster_labels)) == 0 :
|
||||
return [] # Return empty list if no clusters were found
|
||||
|
||||
# Then generate the shopping locations
|
||||
self.generate_shopping_locations()
|
||||
|
||||
# Transform the locations in landmarks and return the list
|
||||
shopping_landmarks = []
|
||||
for location in self.shopping_locations :
|
||||
shopping_landmarks.append(self.create_landmark(location))
|
||||
|
||||
return shopping_landmarks
|
||||
|
||||
|
||||
|
||||
def generate_clusters(self) :
|
||||
"""
|
||||
Generate clusters of points using DBSCAN.
|
||||
|
||||
This method applies the DBSCAN clustering algorithm with different
|
||||
parameters depending on the size of the city (number of points).
|
||||
It filters out noise points and keeps only the largest clusters.
|
||||
|
||||
The method updates:
|
||||
- `self.cluster_points`: The points belonging to clusters.
|
||||
- `self.cluster_labels`: The labels for the points in clusters.
|
||||
|
||||
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||
"""
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if len(self.all_points) > 200 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(self.all_points)
|
||||
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
|
||||
# filter the clusters to keep only the largest ones
|
||||
self.filter_clusters()
|
||||
|
||||
|
||||
def generate_shopping_locations(self) :
|
||||
"""
|
||||
Generate shopping locations based on clustered points.
|
||||
|
||||
This method iterates over the different clusters, calculates the centroid
|
||||
(as the mean of the points within each cluster), and assigns an importance
|
||||
based on the size of the cluster.
|
||||
|
||||
The generated shopping locations are stored in `self.shopping_locations`
|
||||
as a list of `ShoppingLocation` objects, each with:
|
||||
- `type`: Set to 'area'.
|
||||
- `centroid`: The calculated centroid of the cluster.
|
||||
- `importance`: The number of points in the cluster.
|
||||
"""
|
||||
|
||||
locations = []
|
||||
|
||||
# loop through the different clusters
|
||||
for label in set(self.cluster_labels):
|
||||
|
||||
# Extract points belonging to the current cluster
|
||||
current_cluster = self.cluster_points[self.cluster_labels == label]
|
||||
|
||||
# Calculate the centroid as the mean of the points
|
||||
centroid = np.mean(current_cluster, axis=0)
|
||||
|
||||
locations.append(ShoppingLocation(
|
||||
type='area',
|
||||
centroid=centroid,
|
||||
importance = len(current_cluster)
|
||||
))
|
||||
|
||||
self.shopping_locations = locations
|
||||
|
||||
|
||||
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
|
||||
"""
|
||||
Create a Landmark object based on the given shopping location.
|
||||
|
||||
This method queries the Overpass API for nearby neighborhoods and shopping malls
|
||||
within a 1000m radius around the shopping location centroid. It selects the closest
|
||||
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||
|
||||
Parameters:
|
||||
shopping_location (ShoppingLocation): A ShoppingLocation object containing
|
||||
the centroid and importance of the area.
|
||||
|
||||
Returns:
|
||||
Landmark: A Landmark object containing details such as the name, type,
|
||||
location, attractiveness, and OSM details.
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
lat, lon = shopping_location.centroid
|
||||
bbox = ("around:1000", str(lat), str(lon))
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
|
||||
|
||||
min_dist = float('inf')
|
||||
new_name = 'Shopping Area'
|
||||
new_name_en = None
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
|
||||
for sel in selectors :
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
selector = sel,
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
for elem in result.elements():
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
if location[0] is None :
|
||||
location = (elem.lat(), elem.lon())
|
||||
if location[0] is None :
|
||||
continue
|
||||
|
||||
d = get_distance(shopping_location.centroid, location)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = elem.tag('name')
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# Add english name if it exists
|
||||
try :
|
||||
new_name_en = elem.tag('name:en')
|
||||
except:
|
||||
pass
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type='shopping',
|
||||
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
|
||||
attractiveness=shopping_location.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
name_en=new_name_en
|
||||
)
|
||||
|
||||
|
||||
def filter_clusters(self):
|
||||
"""
|
||||
Filter clusters to retain only the 5 largest clusters by point count.
|
||||
|
||||
This method calculates the size of each cluster and filters out all but the
|
||||
5 largest clusters. It then updates the cluster points and labels to reflect
|
||||
only those from the top 5 clusters.
|
||||
"""
|
||||
label_counts = np.bincount(self.cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# update the cluster points and labels with the filtered data
|
||||
self.cluster_points = np.vstack(filtered_cluster_points)
|
||||
self.cluster_labels = np.concatenate(filtered_cluster_labels)
|
||||
|
@ -1,8 +1,10 @@
|
||||
import yaml
|
||||
"""Contains various helper functions to help with distance or score computations."""
|
||||
from math import sin, cos, sqrt, atan2, radians
|
||||
import yaml
|
||||
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
DETOUR_FACTOR = parameters['detour_factor']
|
||||
@ -10,6 +12,7 @@ with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
|
||||
EARTH_RADIUS_KM = 6373
|
||||
|
||||
|
||||
def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
"""
|
||||
Calculate the time in minutes to travel from one location to another.
|
||||
@ -21,25 +24,23 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
# if p1 == p2:
|
||||
# return 0
|
||||
# else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
if p1 == p2:
|
||||
return 0
|
||||
else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
distance = EARTH_RADIUS_KM * c
|
||||
distance = EARTH_RADIUS_KM * c
|
||||
|
||||
# Consider the detour factor for average an average city
|
||||
walk_distance = distance * DETOUR_FACTOR
|
||||
@ -47,7 +48,7 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
# Time to walk this distance (in minutes)
|
||||
walk_time = walk_distance / AVERAGE_WALKING_SPEED * 60
|
||||
|
||||
return round(walk_time)
|
||||
return min(round(walk_time), 32765)
|
||||
|
||||
|
||||
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
@ -61,22 +62,19 @@ def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
|
||||
|
||||
if p1 == p2:
|
||||
return 0
|
||||
else:
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
# Compute the distance in km along the surface of the Earth
|
||||
# (assume spherical Earth)
|
||||
# this is the haversine formula, stolen from stackoverflow
|
||||
# in order to not use any external libraries
|
||||
lat1, lon1 = radians(p1[0]), radians(p1[1])
|
||||
lat2, lon2 = radians(p2[0]), radians(p2[1])
|
||||
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
dlon = lon2 - lon1
|
||||
dlat = lat2 - lat1
|
||||
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1 - a))
|
||||
|
||||
return EARTH_RADIUS_KM * c
|
||||
return EARTH_RADIUS_KM * c
|
@ -1,386 +0,0 @@
|
||||
import math, yaml, logging
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_processing import ShoppingManager
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
|
||||
|
||||
|
||||
class LandmarkManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
radius_close_to: int # radius in meters
|
||||
church_coeff: float # coeff to adjsut score of churches
|
||||
nature_coeff: float # coeff to adjust score of parks
|
||||
overall_coeff: float # coeff to adjust weight of tags
|
||||
N_important: int # number of important landmarks to consider
|
||||
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
||||
with AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
self.amenity_selectors = yaml.safe_load(f)
|
||||
|
||||
with LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.max_bbox_side = parameters['city_bbox_side']
|
||||
self.radius_close_to = parameters['radius_close_to']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.nature_coeff = parameters['nature_coeff']
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
self.tag_exponent = parameters['tag_exponent']
|
||||
self.image_bonus = parameters['image_bonus']
|
||||
self.name_bonus = parameters['name_bonus']
|
||||
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
self.N_important = parameters['N_important']
|
||||
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
|
||||
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
||||
"""
|
||||
Generate and prioritize a list of landmarks based on user preferences.
|
||||
|
||||
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
|
||||
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
||||
landmarks based on a predefined criterion.
|
||||
|
||||
Args:
|
||||
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
|
||||
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
|
||||
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique
|
||||
bbox = tuple((f"around:{reachable_bbox_side/2}", str(center_coordinates[0]), str(center_coordinates[1])))
|
||||
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks : landmark.duration = 30
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ShoppingManager(bbox)
|
||||
if shopping_manager.valid :
|
||||
shopping_clusters = shopping_manager.generate_shopping_landmarks()
|
||||
for landmark in shopping_clusters : landmark.duration = 45
|
||||
all_landmarks.update(shopping_clusters)
|
||||
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
|
||||
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
|
||||
|
||||
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
|
||||
"""
|
||||
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
|
||||
|
||||
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
|
||||
OpenStreetMap data to count the number of elements within that bounding box.
|
||||
|
||||
Args:
|
||||
coordinates (tuple[float, float]): The latitude and longitude of the location to search around.
|
||||
|
||||
Returns:
|
||||
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
|
||||
are found or if an error occurs during the query.
|
||||
"""
|
||||
|
||||
lat = coordinates[0]
|
||||
lon = coordinates[1]
|
||||
|
||||
radius = self.radius_close_to
|
||||
|
||||
alpha = (180 * radius) / (6371000 * math.pi)
|
||||
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
||||
|
||||
# Build the query to find elements within the radius
|
||||
radius_query = overpassQueryBuilder(
|
||||
bbox=[bbox['latLower'],
|
||||
bbox['lonLower'],
|
||||
bbox['latHigher'],
|
||||
bbox['lonHigher']],
|
||||
elementType=['node', 'way', 'relation']
|
||||
)
|
||||
|
||||
try:
|
||||
radius_result = self.overpass.query(radius_query)
|
||||
N_elem = radius_result.countWays() + radius_result.countRelations()
|
||||
self.logger.debug(f"There are {N_elem} ways/relations within 50m")
|
||||
if N_elem is None:
|
||||
return 0
|
||||
return N_elem
|
||||
except:
|
||||
return 0
|
||||
|
||||
|
||||
# def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
|
||||
# """
|
||||
# Create a bounding box around the given coordinates.
|
||||
|
||||
# Args:
|
||||
# coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
||||
# reachable_bbox_side (int): The side length of the bounding box in meters.
|
||||
|
||||
# Returns:
|
||||
# tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
||||
# defining the bounding box.
|
||||
# """
|
||||
|
||||
# # Half the side length in m (since it's a square bbox)
|
||||
# half_side_length_m = reachable_bbox_side / 2
|
||||
|
||||
# return tuple((f"around:{half_side_length_m}", str(coordinates[0]), str(coordinates[1])))
|
||||
|
||||
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
- Scores are assigned to landmarks based on their attributes and surrounding elements.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = []
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
# query_conditions = ['count_tags()>5']
|
||||
# if landmarktype == 'shopping' : # use this later for shopping clusters
|
||||
# element_types = ['node']
|
||||
element_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = []
|
||||
element_types.append('node')
|
||||
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = element_types,
|
||||
# selector can in principle be a list already,
|
||||
# but it generates the intersection of the queries
|
||||
# we want the union
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name')
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# TODO: exclude these from the get go
|
||||
# handle unprecise and no-name locations
|
||||
if name is None or location[0] is None:
|
||||
if osm_type == 'node' and 'viewpoint' in elem.tags().values():
|
||||
name = 'Viewpoint'
|
||||
name_en = 'Viewpoint'
|
||||
location = (elem.lat(), elem.lon())
|
||||
else :
|
||||
continue
|
||||
|
||||
# skip if part of another building
|
||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||
continue
|
||||
|
||||
elem_type = landmarktype # Add the landmark type as 'sightseeing,
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
score = n_tags**self.tag_exponent # Add score
|
||||
website_url = None
|
||||
image_url = None
|
||||
name_en = None
|
||||
|
||||
# Adjust scoring, browse through tag keys
|
||||
skip = False
|
||||
for tag_key in elem.tags().keys():
|
||||
if "pay" in tag_key:
|
||||
# payment options are misleading and should not count for the scoring.
|
||||
score += self.pay_bonus
|
||||
|
||||
if "disused" in tag_key:
|
||||
# skip disused amenities
|
||||
skip = True
|
||||
break
|
||||
|
||||
if "boundary" in tag_key:
|
||||
# skip "areas" like administrative boundaries and stuff
|
||||
skip = True
|
||||
break
|
||||
|
||||
if "historic" in tag_key and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']:
|
||||
# skip useless amenities
|
||||
skip = True
|
||||
break
|
||||
|
||||
if "name" in tag_key :
|
||||
score += self.name_bonus
|
||||
|
||||
if "wiki" in tag_key:
|
||||
# wikipedia entries count more
|
||||
score += self.wikipedia_bonus
|
||||
|
||||
if "image" in tag_key:
|
||||
# images must count more
|
||||
score += self.image_bonus
|
||||
|
||||
if elem_type != "nature":
|
||||
if "leisure" in tag_key and elem.tag('leisure') == "park":
|
||||
elem_type = "nature"
|
||||
|
||||
if landmarktype != "shopping":
|
||||
if "shop" in tag_key:
|
||||
skip = True
|
||||
break
|
||||
|
||||
if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
||||
skip = True
|
||||
break
|
||||
|
||||
# Extract image, website and english name
|
||||
if tag_key in ['website', 'contact:website']:
|
||||
website_url = elem.tag(tag_key)
|
||||
if tag_key == 'image':
|
||||
image_url = elem.tag('image')
|
||||
if tag_key =='name:en':
|
||||
name_en = elem.tag('name:en')
|
||||
|
||||
if skip:
|
||||
continue
|
||||
|
||||
# Don't visit random apartments
|
||||
if 'apartments' in elem.tags().values():
|
||||
continue
|
||||
|
||||
score = score_function(score)
|
||||
if "place_of_worship" in elem.tags().values():
|
||||
score = score * self.church_coeff
|
||||
duration = 10
|
||||
|
||||
if 'viewpoint' in elem.tags().values() :
|
||||
# viewpoints must count more
|
||||
score += self.viewpoint_bonus
|
||||
duration = 10
|
||||
|
||||
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
|
||||
duration = 60
|
||||
|
||||
else:
|
||||
duration = 5
|
||||
|
||||
# finally create our own landmark object
|
||||
landmark = Landmark(
|
||||
name = name,
|
||||
type = elem_type,
|
||||
location = location,
|
||||
osm_type = osm_type,
|
||||
osm_id = osm_id,
|
||||
attractiveness = int(score),
|
||||
must_do = False,
|
||||
n_tags = int(n_tags),
|
||||
duration = int(duration),
|
||||
name_en = name_en,
|
||||
image_url = image_url,
|
||||
website_url = website_url
|
||||
)
|
||||
return_list.append(landmark)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
||||
Args:
|
||||
d (dict): A dictionary of key-value pairs representing the selector.
|
||||
|
||||
Returns:
|
||||
list: A list of strings representing the Overpass query selectors.
|
||||
"""
|
||||
return_list = []
|
||||
for key, value in d.items():
|
||||
if type(value) == list:
|
||||
val = '|'.join(value)
|
||||
return_list.append(f'{key}~"^({val})$"')
|
||||
elif type(value) == str and len(value) == 0:
|
||||
return_list.append(f'{key}')
|
||||
else:
|
||||
return_list.append(f'{key}={value}')
|
||||
return return_list
|
@ -1,524 +0,0 @@
|
||||
import yaml, logging
|
||||
import numpy as np
|
||||
|
||||
from scipy.optimize import linprog
|
||||
from collections import defaultdict, deque
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from .get_time_separation import get_time
|
||||
from ..constants import OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Optimizer:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
detour: int = None # accepted max detour time (in minutes)
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks: int # max number of landmarks to visit
|
||||
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
|
||||
|
||||
|
||||
def __init__(self) :
|
||||
|
||||
# load parameters from file
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
self.average_walking_speed = parameters['average_walking_speed']
|
||||
self.max_landmarks = parameters['max_landmarks']
|
||||
self.overshoot = parameters['overshoot']
|
||||
|
||||
|
||||
|
||||
# Prevent the use of a particular solution
|
||||
def prevent_config(self, resx):
|
||||
"""
|
||||
Prevent the use of a particular solution by adding constraints to the optimization.
|
||||
|
||||
Args:
|
||||
resx (list[float]): List of edge weights.
|
||||
|
||||
Returns:
|
||||
tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
|
||||
"""
|
||||
|
||||
for i, elem in enumerate(resx):
|
||||
resx[i] = round(elem)
|
||||
|
||||
N = len(resx) # Number of edges
|
||||
L = int(np.sqrt(N)) # Number of landmarks
|
||||
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funky so I use the [0]
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
ind_a = nonzero_tup[0].tolist()
|
||||
vertices_visited = ind_a
|
||||
vertices_visited.remove(0)
|
||||
|
||||
ones = [1]*L
|
||||
h = [0]*N
|
||||
for i in range(L) :
|
||||
if i in vertices_visited :
|
||||
h[i*L:i*L+L] = ones
|
||||
|
||||
return h, [len(vertices_visited)-1]
|
||||
|
||||
|
||||
# Prevents the creation of the same circle (both directions)
|
||||
def prevent_circle(self, circle_vertices: list, L: int) :
|
||||
"""
|
||||
Prevent circular paths by by adding constraints to the optimization.
|
||||
|
||||
Args:
|
||||
circle_vertices (list): List of vertices forming a circle.
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
|
||||
"""
|
||||
|
||||
l1 = [0]*L*L
|
||||
l2 = [0]*L*L
|
||||
for i, node in enumerate(circle_vertices[:-1]) :
|
||||
next = circle_vertices[i+1]
|
||||
|
||||
l1[node*L + next] = 1
|
||||
l2[next*L + node] = 1
|
||||
|
||||
s = circle_vertices[0]
|
||||
g = circle_vertices[-1]
|
||||
|
||||
l1[g*L + s] = 1
|
||||
l2[s*L + g] = 1
|
||||
|
||||
return np.vstack((l1, l2)), [0, 0]
|
||||
|
||||
|
||||
def is_connected(self, resx) :
|
||||
"""
|
||||
Determine the order of visits and detect any circular paths in the given configuration.
|
||||
|
||||
Args:
|
||||
resx (list): List of edge weights.
|
||||
|
||||
Returns:
|
||||
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
|
||||
"""
|
||||
|
||||
# first round the results to have only 0-1 values
|
||||
for i, elem in enumerate(resx):
|
||||
resx[i] = round(elem)
|
||||
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
ind_a = nonzero_tup[0].tolist()
|
||||
ind_b = nonzero_tup[1].tolist()
|
||||
|
||||
# Step 1: Create a graph representation
|
||||
graph = defaultdict(list)
|
||||
for a, b in zip(ind_a, ind_b):
|
||||
graph[a].append(b)
|
||||
|
||||
# Step 2: Function to perform BFS/DFS to extract journeys
|
||||
def get_journey(start):
|
||||
journey_nodes = []
|
||||
visited = set()
|
||||
stack = deque([start])
|
||||
|
||||
while stack:
|
||||
node = stack.pop()
|
||||
if node not in visited:
|
||||
visited.add(node)
|
||||
journey_nodes.append(node)
|
||||
for neighbor in graph[node]:
|
||||
if neighbor not in visited:
|
||||
stack.append(neighbor)
|
||||
|
||||
return journey_nodes
|
||||
|
||||
# Step 3: Extract all journeys
|
||||
all_journeys_nodes = []
|
||||
visited_nodes = set()
|
||||
|
||||
for node in ind_a:
|
||||
if node not in visited_nodes:
|
||||
journey_nodes = get_journey(node)
|
||||
all_journeys_nodes.append(journey_nodes)
|
||||
visited_nodes.update(journey_nodes)
|
||||
|
||||
for l in all_journeys_nodes :
|
||||
if 0 in l :
|
||||
order = l
|
||||
all_journeys_nodes.remove(l)
|
||||
break
|
||||
|
||||
if len(all_journeys_nodes) == 0 :
|
||||
return order, None
|
||||
|
||||
return order, all_journeys_nodes
|
||||
|
||||
|
||||
|
||||
def init_ub_dist(self, landmarks: list[Landmark], max_time: int):
|
||||
"""
|
||||
Initialize the objective function coefficients and inequality constraints for the optimization problem.
|
||||
|
||||
This function computes the distances between all landmarks and stores their attractiveness to maximize sightseeing.
|
||||
The goal is to maximize the objective function subject to the constraints A*x < b and A_eq*x = b_eq.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): List of landmarks.
|
||||
max_time (int): Maximum time of visit allowed.
|
||||
|
||||
Returns:
|
||||
tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
|
||||
"""
|
||||
|
||||
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
|
||||
c = []
|
||||
# Coefficients of inequality constraints (left-hand side)
|
||||
A_ub = []
|
||||
|
||||
for spot1 in landmarks :
|
||||
dist_table = [0]*len(landmarks)
|
||||
c.append(-spot1.attractiveness)
|
||||
for j, spot2 in enumerate(landmarks) :
|
||||
t = get_time(spot1.location, spot2.location) + spot1.duration
|
||||
dist_table[j] = t
|
||||
closest = sorted(dist_table)[:25]
|
||||
for i, dist in enumerate(dist_table) :
|
||||
if dist not in closest :
|
||||
dist_table[i] = 32700
|
||||
A_ub += dist_table
|
||||
c = c*len(landmarks)
|
||||
|
||||
return c, A_ub, [max_time*self.overshoot]
|
||||
|
||||
|
||||
def respect_number(self, L, max_landmarks: int):
|
||||
"""
|
||||
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
|
||||
|
||||
Args:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
ones = [1]*L
|
||||
zeros = [0]*L
|
||||
A = ones + zeros*(L-1)
|
||||
b = [1]
|
||||
for i in range(L-1) :
|
||||
h_new = zeros*i + ones + zeros*(L-1-i)
|
||||
A = np.vstack((A, h_new))
|
||||
b.append(1)
|
||||
|
||||
A = np.vstack((A, ones*L))
|
||||
b.append(max_landmarks+1)
|
||||
|
||||
return A, b
|
||||
|
||||
|
||||
# Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements
|
||||
def break_sym(self, L):
|
||||
"""
|
||||
Generate constraints to prevent simultaneous travel between two landmarks in both directions.
|
||||
|
||||
Args:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
upper_ind = np.triu_indices(L,0,L)
|
||||
|
||||
up_ind_x = upper_ind[0]
|
||||
up_ind_y = upper_ind[1]
|
||||
|
||||
A = [0]*L*L
|
||||
b = [1]
|
||||
|
||||
for i, _ in enumerate(up_ind_x[1:]) :
|
||||
l = [0]*L*L
|
||||
if up_ind_x[i] != up_ind_y[i] :
|
||||
l[up_ind_x[i]*L + up_ind_y[i]] = 1
|
||||
l[up_ind_y[i]*L + up_ind_x[i]] = 1
|
||||
|
||||
A = np.vstack((A,l))
|
||||
b.append(1)
|
||||
|
||||
return A, b
|
||||
|
||||
|
||||
def init_eq_not_stay(self, L: int):
|
||||
"""
|
||||
Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.).
|
||||
|
||||
Args:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
|
||||
"""
|
||||
|
||||
l = [0]*L*L
|
||||
|
||||
for i in range(L) :
|
||||
for j in range(L) :
|
||||
if j == i :
|
||||
l[j + i*L] = 1
|
||||
|
||||
l = np.array(np.array(l), dtype=np.int8)
|
||||
|
||||
return [l], [0]
|
||||
|
||||
|
||||
def respect_user_must_do(self, landmarks: list[Landmark]) :
|
||||
"""
|
||||
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
L = len(landmarks)
|
||||
A = [0]*L*L
|
||||
b = [0]
|
||||
|
||||
for i, elem in enumerate(landmarks[1:]) :
|
||||
if elem.must_do is True and elem.name not in ['finish', 'start']:
|
||||
l = [0]*L*L
|
||||
l[i*L:i*L+L] = [1]*L # set mandatory departures from landmarks tagged as 'must_do'
|
||||
|
||||
A = np.vstack((A,l))
|
||||
b.append(1)
|
||||
|
||||
return A, b
|
||||
|
||||
|
||||
def respect_user_must_avoid(self, landmarks: list[Landmark]) :
|
||||
"""
|
||||
Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
L = len(landmarks)
|
||||
A = [0]*L*L
|
||||
b = [0]
|
||||
|
||||
for i, elem in enumerate(landmarks[1:]) :
|
||||
if elem.must_avoid is True and elem.name not in ['finish', 'start']:
|
||||
l = [0]*L*L
|
||||
l[i*L:i*L+L] = [1]*L
|
||||
|
||||
A = np.vstack((A,l))
|
||||
b.append(0) # prevent departures from landmarks tagged as 'must_do'
|
||||
|
||||
return A, b
|
||||
|
||||
|
||||
# Constraint to ensure start at start and finish at goal
|
||||
def respect_start_finish(self, L: int):
|
||||
"""
|
||||
Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark.
|
||||
|
||||
Args:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
|
||||
l_start[L-1] = 0 # prevents the jump from start to finish
|
||||
l_goal = [0]*L*L # sets arrivals only for finish (vertical ones)
|
||||
l_L = [0]*L*(L-1) + [1]*L # prevents arrivals at start and departures from goal
|
||||
for k in range(L-1) : # sets only vertical ones for goal (go to)
|
||||
l_L[k*L] = 1
|
||||
if k != 0 :
|
||||
l_goal[k*L+L-1] = 1
|
||||
|
||||
A = np.vstack((l_start, l_goal))
|
||||
b = [1, 1]
|
||||
A = np.vstack((A,l_L))
|
||||
b.append(0)
|
||||
|
||||
return A, b
|
||||
|
||||
|
||||
def respect_order(self, L: int):
|
||||
"""
|
||||
Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles.
|
||||
|
||||
Args:
|
||||
L (int): Number of landmarks.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
|
||||
"""
|
||||
|
||||
A = [0]*L*L
|
||||
b = [0]
|
||||
for i in range(L-1) : # Prevent stacked ones
|
||||
if i == 0 or i == L-1: # Don't touch start or finish
|
||||
continue
|
||||
else :
|
||||
l = [0]*L
|
||||
l[i] = -1
|
||||
l = l*L
|
||||
for j in range(L) :
|
||||
l[i*L + j] = 1
|
||||
|
||||
A = np.vstack((A,l))
|
||||
b.append(0)
|
||||
|
||||
return A, b
|
||||
|
||||
|
||||
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
|
||||
"""
|
||||
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
|
||||
|
||||
Args:
|
||||
order (list[int]): List of indices representing the order of landmarks to visit.
|
||||
landmarks (list[Landmark]): List of all landmarks.
|
||||
|
||||
Returns:
|
||||
list[Landmark]]: The updated linked list of landmarks with travel times
|
||||
"""
|
||||
|
||||
L = []
|
||||
j = 0
|
||||
while j < len(order)-1 :
|
||||
# get landmarks involved
|
||||
elem = landmarks[order[j]]
|
||||
next = landmarks[order[j+1]]
|
||||
|
||||
# get attributes
|
||||
elem.time_to_reach_next = get_time(elem.location, next.location)
|
||||
elem.must_do = True
|
||||
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
|
||||
elem.next_uuid = next.uuid
|
||||
L.append(elem)
|
||||
j += 1
|
||||
|
||||
next.location = (round(next.location[0], 5), round(next.location[1], 5))
|
||||
next.must_do = True
|
||||
L.append(next)
|
||||
|
||||
return L
|
||||
|
||||
|
||||
# Main optimization pipeline
|
||||
def solve_optimization(
|
||||
self,
|
||||
max_time: int,
|
||||
landmarks: list[Landmark],
|
||||
max_landmarks: int = None
|
||||
) -> list[Landmark]:
|
||||
"""
|
||||
Main optimization pipeline to solve the landmark visiting problem.
|
||||
|
||||
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
|
||||
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
|
||||
|
||||
Args:
|
||||
max_time (int): Maximum time allowed for the tour in minutes.
|
||||
landmarks (list[Landmark]): List of landmarks to visit.
|
||||
max_landmarks (int): Maximum number of landmarks visited
|
||||
Returns:
|
||||
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
|
||||
"""
|
||||
if max_landmarks is None :
|
||||
max_landmarks = self.max_landmarks
|
||||
|
||||
L = len(landmarks)
|
||||
|
||||
# SET CONSTRAINTS FOR INEQUALITY
|
||||
c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time) # Add the distances from each landmark to the other
|
||||
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
|
||||
A_ub = np.vstack((A_ub, A), dtype=np.int16)
|
||||
b_ub += b
|
||||
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
|
||||
A_ub = np.vstack((A_ub, A), dtype=np.int16)
|
||||
b_ub += b
|
||||
|
||||
|
||||
# SET CONSTRAINTS FOR EQUALITY
|
||||
A_eq, b_eq = self.init_eq_not_stay(L) # Force solution not to stay in same place
|
||||
A, b = self.respect_user_must_do(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||
A_eq = np.vstack((A_eq, A), dtype=np.int8)
|
||||
b_eq += b
|
||||
A, b = self.respect_user_must_avoid(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||
A_eq = np.vstack((A_eq, A), dtype=np.int8)
|
||||
b_eq += b
|
||||
A, b = self.respect_start_finish(L) # Force start and finish positions
|
||||
A_eq = np.vstack((A_eq, A), dtype=np.int8)
|
||||
b_eq += b
|
||||
A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
|
||||
A_eq = np.vstack((A_eq, A), dtype=np.int8)
|
||||
b_eq += b
|
||||
|
||||
# SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1)
|
||||
x_bounds = [(0, 1)]*L*L
|
||||
|
||||
# Solve linear programming problem
|
||||
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
|
||||
|
||||
# Raise error if no solution is found
|
||||
if not res.success :
|
||||
raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).")
|
||||
|
||||
# If there is a solution, we're good to go, just check for connectiveness
|
||||
order, circles = self.is_connected(res.x)
|
||||
#nodes, edges = is_connected(res.x)
|
||||
i = 0
|
||||
timeout = 80
|
||||
while circles is not None and i < timeout:
|
||||
A, b = self.prevent_config(res.x)
|
||||
A_ub = np.vstack((A_ub, A))
|
||||
b_ub += b
|
||||
#A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub)
|
||||
for circle in circles :
|
||||
A, b = self.prevent_circle(circle, L)
|
||||
A_eq = np.vstack((A_eq, A))
|
||||
b_eq += b
|
||||
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
|
||||
if not res.success :
|
||||
raise ArithmeticError("Solving failed because of overconstrained problem")
|
||||
return None
|
||||
order, circles = self.is_connected(res.x)
|
||||
#nodes, edges = is_connected(res.x)
|
||||
if circles is None :
|
||||
break
|
||||
# print(i)
|
||||
i += 1
|
||||
|
||||
if i == timeout :
|
||||
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
|
||||
|
||||
#sort the landmarks in the order of the solution
|
||||
tour = [landmarks[i] for i in order]
|
||||
|
||||
self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}")
|
||||
return tour
|
@ -1,3 +1,4 @@
|
||||
"""Helper function to return only the major landmarks from a large list."""
|
||||
from ..structs.landmark import Landmark
|
||||
|
||||
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:
|
||||
|
@ -1,78 +0,0 @@
|
||||
import logging, yaml
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.landmark import Toilets
|
||||
from ..constants import LANDMARK_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
|
||||
|
||||
class ToiletsManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
location: tuple[float, float]
|
||||
radius: int # radius in meters
|
||||
|
||||
|
||||
def __init__(self, location: tuple[float, float], radius : int) -> None:
|
||||
|
||||
self.radius = radius
|
||||
self.location = location
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
|
||||
def generate_toilet_list(self) -> list[Toilets] :
|
||||
|
||||
|
||||
# Create a bbox using the around technique
|
||||
bbox = tuple((f"around:{self.radius}", str(self.location[0]), str(self.location[1])))
|
||||
toilets_list = []
|
||||
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
# selector can in principle be a list already,
|
||||
# but it generates the intersection of the queries
|
||||
# we want the union
|
||||
selector = ['"amenity"="toilets"'],
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
return None
|
||||
|
||||
for elem in result.elements():
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
# handle unprecise and no-name locations
|
||||
if location[0] is None:
|
||||
location = (elem.lat(), elem.lon())
|
||||
else :
|
||||
continue
|
||||
|
||||
toilets = Toilets(location=location)
|
||||
|
||||
if 'wheelchair' in elem.tags().keys() and elem.tag('wheelchair') == 'yes':
|
||||
toilets.wheelchair = True
|
||||
|
||||
if 'changing_table' in elem.tags().keys() and elem.tag('changing_table') == 'yes':
|
||||
toilets.changing_table = True
|
||||
|
||||
if 'fee' in elem.tags().keys() and elem.tag('fee') == 'yes':
|
||||
toilets.fee = True
|
||||
|
||||
if 'opening_hours' in elem.tags().keys() :
|
||||
toilets.opening_hours = elem.tag('opening_hours')
|
||||
|
||||
toilets_list.append(toilets)
|
||||
|
||||
return toilets_list
|
@ -39,7 +39,7 @@ jobs:
|
||||
# remove the 'v' prefix from the tag name
|
||||
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
|
||||
|
||||
- name: Load secrets from github
|
||||
- name: Put selected secrets into files
|
||||
run: |
|
||||
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
|
||||
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
|
||||
@ -51,8 +51,9 @@ jobs:
|
||||
working-directory: android
|
||||
|
||||
- name: Run fastlane lane
|
||||
run: bundle exec fastlane deploy_testing
|
||||
run: bundle exec fastlane deploy_release
|
||||
working-directory: android
|
||||
env:
|
||||
BUILD_NUMBER: ${{ github.run_number }}
|
||||
# BUILD_NAME is implicitly available
|
||||
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}
|
||||
|
64
frontend/.github/workflows/build_app_ios.yaml
vendored
Normal file
@ -0,0 +1,64 @@
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: macos-latest
|
||||
env:
|
||||
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
|
||||
BUNDLE_GEMFILE: ${{ github.workspace }}/ios/Gemfile
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up ruby env
|
||||
uses: ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: 3.3
|
||||
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
|
||||
|
||||
- name: Install Flutter
|
||||
uses: subosito/flutter-action@v2
|
||||
with:
|
||||
channel: stable
|
||||
flutter-version: 3.22.0
|
||||
cache: true
|
||||
|
||||
- name: Infer version number from git tag
|
||||
id: version
|
||||
env:
|
||||
REF_NAME: ${{ github.ref_name }}
|
||||
run:
|
||||
# remove the 'v' prefix from the tag name
|
||||
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
|
||||
|
||||
- name: Setup SSH key for match git repo
|
||||
# and mark the host as known
|
||||
run: |
|
||||
echo $MATCH_REPO_SSH_KEY | base64 --decode > ~/.ssh/id_rsa
|
||||
chmod 600 ~/.ssh/id_rsa
|
||||
ssh-keyscan -p 2222 git.kluster.moll.re > ~/.ssh/known_hosts
|
||||
env:
|
||||
MATCH_REPO_SSH_KEY: ${{ secrets.IOS_MATCH_REPO_SSH_KEY_BASE64 }}
|
||||
|
||||
- name: Install dependencies and clean up
|
||||
run: |
|
||||
flutter pub get
|
||||
bundle exec pod install
|
||||
flutter clean
|
||||
bundle exec pod cache clean --all
|
||||
working-directory: ios
|
||||
|
||||
- name: Run fastlane lane
|
||||
run: bundle exec fastlane deploy_release --verbose
|
||||
working-directory: ios
|
||||
env:
|
||||
BUILD_NUMBER: ${{ github.run_number }}
|
||||
# BUILD_NAME is implicitly available
|
||||
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}
|
||||
IOS_ASC_KEY_ID: ${{ secrets.IOS_ASC_KEY_ID }}
|
||||
IOS_ASC_ISSUER_ID: ${{ secrets.IOS_ASC_ISSUER_ID }}
|
||||
IOS_ASC_KEY: ${{ secrets.IOS_ASC_KEY }}
|
||||
MATCH_PASSWORD: ${{ secrets.IOS_MATCH_PASSWORD }}
|
||||
IOS_GOOGLE_MAPS_API_KEY: ${{ secrets.IOS_GOOGLE_MAPS_API_KEY }}
|
@ -4,7 +4,7 @@
|
||||
# This file should be version controlled and should not be manually edited.
|
||||
|
||||
version:
|
||||
revision: "54e66469a933b60ddf175f858f82eaeb97e48c8d"
|
||||
revision: "09de023485e95e6d1225c2baa44b8feb85e0d45f"
|
||||
channel: "stable"
|
||||
|
||||
project_type: app
|
||||
@ -13,26 +13,11 @@ project_type: app
|
||||
migration:
|
||||
platforms:
|
||||
- platform: root
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
- platform: android
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
- platform: ios
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
create_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
|
||||
base_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
|
||||
- platform: linux
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
- platform: macos
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
- platform: web
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
- platform: windows
|
||||
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
|
||||
create_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
|
||||
base_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
|
||||
|
||||
# User provided section
|
||||
|
||||
|
@ -46,12 +46,16 @@ bundle exec fastlane <lane>
|
||||
```
|
||||
This is reused in the CI/CD pipeline to automate the deployment process.
|
||||
|
||||
Fastlane assumes mutliple secrets to be present as files in the platform directories. These are:
|
||||
- for android:
|
||||
- `secrets.properties` used by gradle to load secrets needed at execution time
|
||||
- `release.keystore` used by gradle to sign the apk
|
||||
- `google-key.json` used by fastlane to authenticate with the Google Play Store
|
||||
- for ios:
|
||||
- TODO
|
||||
Secrets used by fastlane are stored on hashicorp vault and are fetched by the CI/CD pipeline. See below.
|
||||
|
||||
These files are stored as secrets in the GitHub repository so that the CI pipeline can access them.
|
||||
## Secrets
|
||||
These are mostly used by the CI/CD pipeline to deploy the application. The main usage for github actions is documented under [https://github.com/hashicorp/vault-action](https://github.com/hashicorp/vault-action).
|
||||
|
||||
**Platform-specific secrets** are used by the CI/CD pipeline to deploy to the respective app stores.
|
||||
- `GOOGLE_MAPS_API_KEY` is used to authenticate with the Google Maps API and is scoped to the android platform
|
||||
- `ANDROID_KEYSTORE` is used to sign the android apk
|
||||
- `ANDROID_GOOGLE_KEY` is used to authenticate with the Google Play Store api
|
||||
- `IOS_GOOGLE_MAPS_API_KEY` is used to authenticate with the Google Maps API and is scoped to the ios platform
|
||||
- `IOS_GOOGLE_...`
|
||||
- `IOS_GOOGLE_...`
|
||||
- `IOS_GOOGLE_...`
|
@ -1,220 +0,0 @@
|
||||
GEM
|
||||
remote: https://rubygems.org/
|
||||
specs:
|
||||
CFPropertyList (3.0.7)
|
||||
base64
|
||||
nkf
|
||||
rexml
|
||||
addressable (2.8.7)
|
||||
public_suffix (>= 2.0.2, < 7.0)
|
||||
artifactory (3.0.17)
|
||||
atomos (0.1.3)
|
||||
aws-eventstream (1.3.0)
|
||||
aws-partitions (1.970.0)
|
||||
aws-sdk-core (3.202.2)
|
||||
aws-eventstream (~> 1, >= 1.3.0)
|
||||
aws-partitions (~> 1, >= 1.651.0)
|
||||
aws-sigv4 (~> 1.9)
|
||||
jmespath (~> 1, >= 1.6.1)
|
||||
aws-sdk-kms (1.88.0)
|
||||
aws-sdk-core (~> 3, >= 3.201.0)
|
||||
aws-sigv4 (~> 1.5)
|
||||
aws-sdk-s3 (1.159.0)
|
||||
aws-sdk-core (~> 3, >= 3.201.0)
|
||||
aws-sdk-kms (~> 1)
|
||||
aws-sigv4 (~> 1.5)
|
||||
aws-sigv4 (1.9.1)
|
||||
aws-eventstream (~> 1, >= 1.0.2)
|
||||
babosa (1.0.4)
|
||||
base64 (0.2.0)
|
||||
claide (1.1.0)
|
||||
colored (1.2)
|
||||
colored2 (3.1.2)
|
||||
commander (4.6.0)
|
||||
highline (~> 2.0.0)
|
||||
declarative (0.0.20)
|
||||
digest-crc (0.6.5)
|
||||
rake (>= 12.0.0, < 14.0.0)
|
||||
domain_name (0.6.20240107)
|
||||
dotenv (2.8.1)
|
||||
emoji_regex (3.2.3)
|
||||
excon (0.111.0)
|
||||
faraday (1.10.3)
|
||||
faraday-em_http (~> 1.0)
|
||||
faraday-em_synchrony (~> 1.0)
|
||||
faraday-excon (~> 1.1)
|
||||
faraday-httpclient (~> 1.0)
|
||||
faraday-multipart (~> 1.0)
|
||||
faraday-net_http (~> 1.0)
|
||||
faraday-net_http_persistent (~> 1.0)
|
||||
faraday-patron (~> 1.0)
|
||||
faraday-rack (~> 1.0)
|
||||
faraday-retry (~> 1.0)
|
||||
ruby2_keywords (>= 0.0.4)
|
||||
faraday-cookie_jar (0.0.7)
|
||||
faraday (>= 0.8.0)
|
||||
http-cookie (~> 1.0.0)
|
||||
faraday-em_http (1.0.0)
|
||||
faraday-em_synchrony (1.0.0)
|
||||
faraday-excon (1.1.0)
|
||||
faraday-httpclient (1.0.1)
|
||||
faraday-multipart (1.0.4)
|
||||
multipart-post (~> 2)
|
||||
faraday-net_http (1.0.2)
|
||||
faraday-net_http_persistent (1.2.0)
|
||||
faraday-patron (1.0.0)
|
||||
faraday-rack (1.0.0)
|
||||
faraday-retry (1.0.3)
|
||||
faraday_middleware (1.2.0)
|
||||
faraday (~> 1.0)
|
||||
fastimage (2.3.1)
|
||||
fastlane (2.222.0)
|
||||
CFPropertyList (>= 2.3, < 4.0.0)
|
||||
addressable (>= 2.8, < 3.0.0)
|
||||
artifactory (~> 3.0)
|
||||
aws-sdk-s3 (~> 1.0)
|
||||
babosa (>= 1.0.3, < 2.0.0)
|
||||
bundler (>= 1.12.0, < 3.0.0)
|
||||
colored (~> 1.2)
|
||||
commander (~> 4.6)
|
||||
dotenv (>= 2.1.1, < 3.0.0)
|
||||
emoji_regex (>= 0.1, < 4.0)
|
||||
excon (>= 0.71.0, < 1.0.0)
|
||||
faraday (~> 1.0)
|
||||
faraday-cookie_jar (~> 0.0.6)
|
||||
faraday_middleware (~> 1.0)
|
||||
fastimage (>= 2.1.0, < 3.0.0)
|
||||
gh_inspector (>= 1.1.2, < 2.0.0)
|
||||
google-apis-androidpublisher_v3 (~> 0.3)
|
||||
google-apis-playcustomapp_v1 (~> 0.1)
|
||||
google-cloud-env (>= 1.6.0, < 2.0.0)
|
||||
google-cloud-storage (~> 1.31)
|
||||
highline (~> 2.0)
|
||||
http-cookie (~> 1.0.5)
|
||||
json (< 3.0.0)
|
||||
jwt (>= 2.1.0, < 3)
|
||||
mini_magick (>= 4.9.4, < 5.0.0)
|
||||
multipart-post (>= 2.0.0, < 3.0.0)
|
||||
naturally (~> 2.2)
|
||||
optparse (>= 0.1.1, < 1.0.0)
|
||||
plist (>= 3.1.0, < 4.0.0)
|
||||
rubyzip (>= 2.0.0, < 3.0.0)
|
||||
security (= 0.1.5)
|
||||
simctl (~> 1.6.3)
|
||||
terminal-notifier (>= 2.0.0, < 3.0.0)
|
||||
terminal-table (~> 3)
|
||||
tty-screen (>= 0.6.3, < 1.0.0)
|
||||
tty-spinner (>= 0.8.0, < 1.0.0)
|
||||
word_wrap (~> 1.0.0)
|
||||
xcodeproj (>= 1.13.0, < 2.0.0)
|
||||
xcpretty (~> 0.3.0)
|
||||
xcpretty-travis-formatter (>= 0.0.3, < 2.0.0)
|
||||
gh_inspector (1.1.3)
|
||||
google-apis-androidpublisher_v3 (0.54.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-apis-core (0.11.3)
|
||||
addressable (~> 2.5, >= 2.5.1)
|
||||
googleauth (>= 0.16.2, < 2.a)
|
||||
httpclient (>= 2.8.1, < 3.a)
|
||||
mini_mime (~> 1.0)
|
||||
representable (~> 3.0)
|
||||
retriable (>= 2.0, < 4.a)
|
||||
rexml
|
||||
google-apis-iamcredentials_v1 (0.17.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-apis-playcustomapp_v1 (0.13.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-apis-storage_v1 (0.31.0)
|
||||
google-apis-core (>= 0.11.0, < 2.a)
|
||||
google-cloud-core (1.7.1)
|
||||
google-cloud-env (>= 1.0, < 3.a)
|
||||
google-cloud-errors (~> 1.0)
|
||||
google-cloud-env (1.6.0)
|
||||
faraday (>= 0.17.3, < 3.0)
|
||||
google-cloud-errors (1.4.0)
|
||||
google-cloud-storage (1.47.0)
|
||||
addressable (~> 2.8)
|
||||
digest-crc (~> 0.4)
|
||||
google-apis-iamcredentials_v1 (~> 0.1)
|
||||
google-apis-storage_v1 (~> 0.31.0)
|
||||
google-cloud-core (~> 1.6)
|
||||
googleauth (>= 0.16.2, < 2.a)
|
||||
mini_mime (~> 1.0)
|
||||
googleauth (1.8.1)
|
||||
faraday (>= 0.17.3, < 3.a)
|
||||
jwt (>= 1.4, < 3.0)
|
||||
multi_json (~> 1.11)
|
||||
os (>= 0.9, < 2.0)
|
||||
signet (>= 0.16, < 2.a)
|
||||
highline (2.0.3)
|
||||
http-cookie (1.0.7)
|
||||
domain_name (~> 0.5)
|
||||
httpclient (2.8.3)
|
||||
jmespath (1.6.2)
|
||||
json (2.7.2)
|
||||
jwt (2.8.2)
|
||||
base64
|
||||
mini_magick (4.13.2)
|
||||
mini_mime (1.1.5)
|
||||
multi_json (1.15.0)
|
||||
multipart-post (2.4.1)
|
||||
nanaimo (0.3.0)
|
||||
naturally (2.2.1)
|
||||
nkf (0.2.0)
|
||||
optparse (0.5.0)
|
||||
os (1.1.4)
|
||||
plist (3.7.1)
|
||||
public_suffix (6.0.1)
|
||||
rake (13.2.1)
|
||||
representable (3.2.0)
|
||||
declarative (< 0.1.0)
|
||||
trailblazer-option (>= 0.1.1, < 0.2.0)
|
||||
uber (< 0.2.0)
|
||||
retriable (3.1.2)
|
||||
rexml (3.3.6)
|
||||
strscan
|
||||
rouge (2.0.7)
|
||||
ruby2_keywords (0.0.5)
|
||||
rubyzip (2.3.2)
|
||||
security (0.1.5)
|
||||
signet (0.19.0)
|
||||
addressable (~> 2.8)
|
||||
faraday (>= 0.17.5, < 3.a)
|
||||
jwt (>= 1.5, < 3.0)
|
||||
multi_json (~> 1.10)
|
||||
simctl (1.6.10)
|
||||
CFPropertyList
|
||||
naturally
|
||||
strscan (3.1.0)
|
||||
terminal-notifier (2.0.0)
|
||||
terminal-table (3.0.2)
|
||||
unicode-display_width (>= 1.1.1, < 3)
|
||||
trailblazer-option (0.1.2)
|
||||
tty-cursor (0.7.1)
|
||||
tty-screen (0.8.2)
|
||||
tty-spinner (0.9.3)
|
||||
tty-cursor (~> 0.7)
|
||||
uber (0.1.0)
|
||||
unicode-display_width (2.5.0)
|
||||
word_wrap (1.0.0)
|
||||
xcodeproj (1.25.0)
|
||||
CFPropertyList (>= 2.3.3, < 4.0)
|
||||
atomos (~> 0.1.3)
|
||||
claide (>= 1.0.2, < 2.0)
|
||||
colored2 (~> 3.1)
|
||||
nanaimo (~> 0.3.0)
|
||||
rexml (>= 3.3.2, < 4.0)
|
||||
xcpretty (0.3.0)
|
||||
rouge (~> 2.0.7)
|
||||
xcpretty-travis-formatter (1.0.1)
|
||||
xcpretty (~> 0.2, >= 0.0.7)
|
||||
|
||||
PLATFORMS
|
||||
ruby
|
||||
x86_64-linux
|
||||
|
||||
DEPENDENCIES
|
||||
fastlane
|
||||
|
||||
BUNDLED WITH
|
||||
2.5.18
|
@ -63,11 +63,3 @@ Compared to the flutter template application, a few changes have to be made:
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### Using the credentials in CI
|
||||
- Add the secret files to the repository secrets (e.g. `ANDROID_SECRETS_PROPERTIES`).
|
||||
|
||||
- temporarily write them back to files during the CI execution:
|
||||
```bash
|
||||
echo {{ secrets.ANDROID_SECRETS }} >> android/secrets.properties
|
||||
```
|
||||
|
@ -65,7 +65,7 @@ android {
|
||||
}
|
||||
|
||||
defaultConfig {
|
||||
// TODO: Specify your own unique Application ID (https://developer.android.com/studio/build/application-id.html).
|
||||
|
||||
applicationId "com.anydev.anyway"
|
||||
// You can update the following values to match your application needs.
|
||||
// For more information, see: https://docs.flutter.dev/deployment/android#reviewing-the-gradle-build-configuration.
|
||||
@ -77,7 +77,7 @@ android {
|
||||
versionCode flutterVersionCode.toInteger()
|
||||
versionName flutterVersionName
|
||||
// // Placeholders of keys that are replaced by the build system.
|
||||
manifestPlaceholders += ['MAPS_API_KEY': secretProperties.getProperty('MAPS_API_KEY')]
|
||||
manifestPlaceholders += ['MAPS_API_KEY': System.getenv('ANDROID_GOOGLE_MAPS_API_KEY')]
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,3 +1,2 @@
|
||||
# This file mirrors the state of secrets.properties as a reference for the developer.
|
||||
# And as a fallback for build.gradle
|
||||
MAPS_API_KEY=Key
|
@ -1,12 +1,9 @@
|
||||
# Uncomment the line if you want fastlane to automatically update itself
|
||||
# update_fastlane
|
||||
|
||||
default_platform(:android)
|
||||
|
||||
platform :android do
|
||||
|
||||
desc "Deploy a new version to closed testing"
|
||||
lane :deploy_testing do
|
||||
desc "Deploy a new version to closed testing (play store)"
|
||||
lane :deploy_beta do
|
||||
build_name = ENV["BUILD_NAME"]
|
||||
build_number = ENV["BUILD_NUMBER"]
|
||||
|
||||
@ -21,6 +18,7 @@ platform :android do
|
||||
|
||||
upload_to_play_store(
|
||||
track: 'alpha',
|
||||
# upload aab files intstead
|
||||
skip_upload_apk: true,
|
||||
skip_upload_changelogs: true,
|
||||
aab: "../build/app/outputs/bundle/release/app-release.aab",
|
||||
@ -30,24 +28,26 @@ platform :android do
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
desc "Deploy a new version as a full release"
|
||||
lane :deploy_release do
|
||||
gradle(
|
||||
task: "clean assembleRelease",
|
||||
# todo update to a flutter call
|
||||
properties: {
|
||||
# loaded from environment
|
||||
"android.injected.version.name" => ENV["VERSION_NAME"],
|
||||
}
|
||||
build_name = ENV["BUILD_NAME"]
|
||||
build_number = ENV["BUILD_NUMBER"]
|
||||
|
||||
sh(
|
||||
"flutter",
|
||||
"build",
|
||||
"appbundle",
|
||||
"--release",
|
||||
"--build-name=#{build_name}",
|
||||
"--build-number=#{build_number}",
|
||||
)
|
||||
|
||||
upload_to_play_store(
|
||||
track: "production",
|
||||
track: 'production',
|
||||
skip_upload_apk: true,
|
||||
skip_upload_changelogs: true,
|
||||
aab: "../build/app/outputs/bundle/release/app-release.aab",
|
||||
# this is the default output of flutter build ... --release
|
||||
# in particular this the build folder lies in the flutter root folder
|
||||
# this is the parent folder for the android folder
|
||||
)
|
||||
)
|
||||
end
|
||||
end
|
||||
|
@ -19,7 +19,7 @@ pluginManagement {
|
||||
|
||||
plugins {
|
||||
id "dev.flutter.flutter-plugin-loader" version "1.0.0"
|
||||
id "com.android.application" version "7.3.0" apply false
|
||||
id "com.android.application" version "8.1.0" apply false
|
||||
id "org.jetbrains.kotlin.android" version "2.0.20" apply false
|
||||
}
|
||||
|
||||
|
2
frontend/assets/README.md
Normal file
@ -0,0 +1,2 @@
|
||||
## Vector assets
|
||||
As per https://www.svgrepo.com/collection/pixellove-bordered-vectors/ these icons are licensed under CC0.
|
@ -1,107 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
viewBox="0 0 500 500" style="enable-background:new 0 0 500 500;" xml:space="preserve">
|
||||
<g id="OBJECTS">
|
||||
<g>
|
||||
<path style="fill:#F2DBDE;" d="M381.005,363.01c-53.963,8.445-84.441,11.1-138.832,6.101
|
||||
c-54.388-4.998-109.48-25.844-144.743-67.555c-23.468-27.759-36.728-62.943-43.732-98.613c-3.745-19.07-5.754-39.21,0.433-57.635
|
||||
c7.513-22.378,26.565-39.569,48.136-49.156c21.572-9.589,45.552-12.365,69.151-12.944c47.753-1.172,95.706,6.26,140.863,21.831
|
||||
c35.603,12.277,69.954,29.937,96.972,56.171c27.019,26.233,46.213,61.723,47.963,99.341
|
||||
C458.967,298.17,438.434,354.022,381.005,363.01z"/>
|
||||
<g>
|
||||
<path style="fill:#F2BFC6;" d="M314.479,248.209c-22.398,36.41-29.246,81.831-19.597,123.401
|
||||
c27.302-0.242,52.026-3.263,86.124-8.6c57.429-8.989,77.961-64.84,76.211-102.458c-1.503-32.308-15.881-63.041-37.024-87.694
|
||||
C375.546,184.337,337.241,211.21,314.479,248.209z"/>
|
||||
<path style="fill:#F2BFC6;" d="M60.074,229.111c2.232,7.566,4.802,15.029,7.749,22.32c40.138-5.931,78.066-26.379,104.834-56.907
|
||||
c26.459-30.176,41.716-69.876,42.677-109.969c-14.6-1.246-29.267-1.705-43.916-1.345c-11.908,0.292-23.911,1.147-35.655,3.151
|
||||
C136.569,142.478,107.155,198.423,60.074,229.111z"/>
|
||||
<path style="fill:#F2BFC6;" d="M365.131,128.557c-16.748-9.529-34.631-17.233-52.85-23.516
|
||||
c-6.45-2.224-12.962-4.262-19.517-6.153c-1.712,23.304-4.543,46.555-11.914,68.659c-9.236,27.692-26.464,53.808-52.01,67.931
|
||||
c-22.973,12.7-50.376,14.689-74.443,25.169c-21.624,9.417-39.587,25.305-54.36,43.893c8.346,9.381,17.714,17.663,27.862,24.902
|
||||
c16.736-21.461,41.874-37.166,67.161-48.559c35.578-16.03,74.129-26.682,105.739-49.566
|
||||
C334.357,207.023,357.577,169.22,365.131,128.557z"/>
|
||||
</g>
|
||||
</g>
|
||||
<ellipse style="opacity:0.15;fill:#2D3038;" cx="250.223" cy="394.224" rx="109.236" ry="18.917"/>
|
||||
<g>
|
||||
<path style="fill:#2D3038;" d="M305.132,388.442c-0.168,1.158-0.626,2.243-1.458,3.061c-1.863,1.832-4.823,1.724-7.427,1.538
|
||||
c-17.939-1.285-36.017-0.625-53.815,1.965c-7.053,3.155-16.423,3.233-25.275,2.004c-8.853-1.231-17.514-3.684-26.397-4.661
|
||||
c-8.885-0.976-21.867-0.33-26.499,2.758c0,0-7.266,3.996-12.907,12.021c-3.367,4.789-4.105,11.306-2.377,16.899
|
||||
c2.452,7.945,10.312,13.334,18.475,14.912c8.163,1.579,16.603-0.053,24.6-2.327c22.82-6.49,43.805-18.134,66.018-26.468
|
||||
c22.213-8.334,47.017-13.282,69.546-5.844c3.96,1.306,7.879,3.033,10.941,5.866c3.062,2.832,5.173,6.927,4.813,11.081
|
||||
c-0.464,5.356-4.97,9.719-10.061,11.444c-5.092,1.726-10.658,1.275-15.953,0.346c-5.296-0.93-10.554-2.17-15.926-2.414
|
||||
c-20.08-0.909-38.455,4.247-56.124,10.857c-17.669,6.608-35.096,14.21-53.56,18.085c-18.463,3.874-35.807,8.106-51.682-4.186
|
||||
c-20.345-15.753-19.603-41.137-8.091-63.296c5.521-10.629,12.589-18.637,19.416-27.732c-1.72-12.542-6.898-24.945-9.467-37.525
|
||||
c-4.135-20.25-1.309-41.854,7.666-61.314c5.614-15.439,11.257-30.942,19.093-45.38c7.835-14.438,18.007-27.88,31.297-37.536
|
||||
c13.289-9.656,29.927-15.279,46.993-13.222c7.787-8.403,16.038-16.377,24.703-23.871c-1.319-7.29-1.183-14.637,0.584-20.961
|
||||
c-4.077-8.872-8.2-17.907-9.54-27.579c-0.835-6.027-0.441-12.408,1.577-17.991c1.878-5.198,8.452-6.799,12.542-3.08
|
||||
c6.673,6.07,12.683,12.869,17.891,20.235c18.398-4.802,38.164-4.231,56.264,1.583c6.473-8.017,14.398-14.861,23.286-20.075
|
||||
c2.366-1.388,5.533-2.613,7.657-0.875c1.683,1.377,1.736,3.89,1.592,6.059c-0.815,12.217-3.418,24.313-8.016,36.577
|
||||
c4.862,15.779,0.82,33.862-9.812,46.412c-2.168,11.956,1.193,24.438,2.504,36.665c2.294,21.385-1.98,43.411-12.271,62.744
|
||||
c-2.4,4.508-5.754,8.444-9.863,11.477c-1.71,1.263-3.38,2.581-5.006,3.951c-5.172,20.881-10.139,41.311-15.351,62.281
|
||||
c2.061,7.78,4.487,15.496,7.272,23.126c3.209-0.899,6.478-1.696,9.816-1.809c3.896-0.132,7.942,0.744,11.024,3.131
|
||||
c2.308,1.785,3.979,4.375,4.658,7.212c0.484,2.028,0.445,4.26-0.563,6.086c-0.663,1.203-1.81,2.171-3.102,2.583
|
||||
c0.454,1.78,0.565,3.616,0.106,5.385c-0.778,3.004-3.622,5.6-6.675,5.375c-0.047,0.112-0.097,0.223-0.151,0.333
|
||||
c-0.979,1.985-3.08,3.228-5.239,3.714c-2.063,0.464-4.207,0.333-6.319,0.174c-0.138,0.225-0.3,0.437-0.489,0.633
|
||||
c-1.556,1.603-4.16,1.338-6.346,0.87c-3.015-0.645-6.04-1.471-8.688-3.051c-2.647-1.583-4.906-4.013-5.707-6.991
|
||||
c-1.237-4.607,2.111-10.097,0.151-14.313c-3.538-7.609-7.733-14.893-12.004-22.126c-8.712,7.077-18.162,13.242-28.147,18.367
|
||||
c6.95-0.974,14.248-1.345,21.476-0.293c3.273,0.475,6.596,1.283,9.285,3.208c2.689,1.924,4.631,5.173,4.214,8.453
|
||||
c-0.34,2.664-2.596,5.054-5.156,5.449"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M151.465,379.089
|
||||
c0.578-3.877,0.614-7.729,0.28-11.566"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M296.431,98.602
|
||||
c1.739,2.591,3.381,5.247,4.918,7.962"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M273.736,153.553
|
||||
c-0.645-1.929-1.188-3.891-1.625-5.865"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.23,106.811
|
||||
c-4.87-7.904-10.55-15.309-16.923-22.061c-1.834-1.943-4.156-3.987-6.799-3.598c-2.928,0.431-4.574,3.626-5.147,6.53
|
||||
c-1.629,8.254,1.474,16.627,4.521,24.47"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M352.846,98.327
|
||||
c1.084,0.372,2.162,0.763,3.232,1.174"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.545,168.179
|
||||
c-1.077,1.107-2.211,2.161-3.399,3.155"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.583,130.136
|
||||
c3.86-4.907,10.772-7.181,16.791-5.521c6.019,1.659,10.791,7.151,11.446,13.054c-4.594,3.601-11.6,3.717-16.311,0.268
|
||||
c-3.162-2.315-5.105-6.101-5.423-9.993"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.109,126.785
|
||||
c-1.79-2.631-5.159-4.002-8.321-3.646c-3.162,0.356-6.042,2.317-7.787,4.979c-1.743,2.662-2.395,5.96-1.828,9.854
|
||||
c4.738,1.952,10.727,0.164,13.621-4.066c1.462-2.137,2.057-4.785,1.832-7.36"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M350.957,171.048
|
||||
c-4.278,4.378-10.749,6.497-16.787,5.499"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.68,282.717
|
||||
c-5.42,4.867-10.31,10.327-14.541,16.258"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M333.834,368.351
|
||||
c0.757,2.017,1.54,4.028,2.348,6.032c2.26-0.589,4.541-1.183,6.876-1.268c2.333-0.084,4.757,0.381,6.656,1.74
|
||||
c1.559,1.116,2.664,2.753,3.552,4.452c0.261,0.499,0.505,1.013,0.727,1.536"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M317.138,283.315
|
||||
c0.476,18.805,3.038,37.553,7.633,55.961"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M337.823,376.837
|
||||
c2.877-0.595,5.878,0.99,7.67,3.316c1.791,2.327,2.567,5.273,3.025,8.174c0.191,1.214,0.327,2.48,0.209,3.695"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M327.236,380.633
|
||||
c3.086-0.38,6.102,1.606,7.733,4.252c1.632,2.645,2.112,5.835,2.285,8.939c0.04,0.721,0.054,1.476-0.027,2.204"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M305.059,385.808
|
||||
c-0.036-0.193-0.079-0.385-0.128-0.573c-1.058-4.111-4.728-7.422-8.927-8.052"/>
|
||||
<g>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M250.442,264.812
|
||||
c-1.67-3.125-3.183-6.325-4.488-9.622c-5.098-12.883-6.92-27.047-5.248-40.801"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M302.266,351.248
|
||||
c-7.667-12.944-15.022-25.405-19.496-39.762"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M272.435,372.065
|
||||
c-3.368,0.554-6.637,1.226-9.757,1.918c10.852-22.715,21.971-46.794,19.913-71.883c-0.826-10.055-4.036-20.316-11.156-27.463
|
||||
c-8.522-8.553-21.576-11.406-33.547-9.827c-22.022,2.903-41.327,20.57-46.167,42.248"/>
|
||||
</g>
|
||||
<g>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M328.579,152.076
|
||||
c1.379-0.341,2.796,0.501,3.736,1.565c0.942,1.065,1.588,2.366,2.551,3.41c0.963,1.044,2.43,1.826,3.784,1.398
|
||||
c1.002-0.317,1.702-1.217,2.207-2.139c0.504-0.921,0.888-1.923,1.572-2.721c1.237-1.447,3.432-1.978,5.192-1.258"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M360.735,158.173
|
||||
c-2.16,5.007-7.325,8.57-12.773,8.812c-1.946,0.086-3.967-0.245-5.593-1.317c-1.872-1.234-2.979-3.253-3.85-5.361
|
||||
c-0.089,1.146-0.496,2.29-1.133,3.25c-1.229,1.854-3.175,3.116-5.189,4.059c-3.3,1.546-7.007,2.373-10.616,1.879
|
||||
c-3.611-0.495-7.099-2.413-9.07-5.477"/>
|
||||
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.276,158.534
|
||||
c0,0,0.176,1.073,0.244,1.773"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 9.5 KiB |
79
frontend/assets/cel-snow-globe.svg
Normal file
@ -0,0 +1,79 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
|
||||
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
|
||||
<title>cel-snow-globe</title>
|
||||
<desc>Created with Sketch.</desc>
|
||||
<defs>
|
||||
|
||||
</defs>
|
||||
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<g id="SLICES-64px" transform="translate(-450.000000, 0.000000)">
|
||||
|
||||
</g>
|
||||
<g id="ICONS" transform="translate(-445.000000, 5.000000)">
|
||||
<g id="cel-snow-globe" transform="translate(450.000000, 2.000000)">
|
||||
<path d="M46,44 C48.209,44 50,45.791 50,48 L50,52 L2,52 L2,48 C2,45.791 3.791,44 6,44 L46,44 Z" id="Fill-1055" fill="#EEC261">
|
||||
|
||||
</path>
|
||||
<path d="M7.2402,44.002 C2.7562,39.33 0.0002,32.987 0.0002,26 C0.0002,11.641 11.6402,0 26.0002,0 C40.3592,0 52.0002,11.641 52.0002,26 C52.0002,32.986 49.2442,39.33 44.7602,44.001 L7.2402,44.002 Z" id="Fill-1056" fill="#B6E0F2">
|
||||
|
||||
</path>
|
||||
<path d="M38,37 C38,33.134 34.866,30 31,30 C27.134,30 24,33.134 24,37 C24,40.866 27.134,44 31,44 C34.866,44 38,40.866 38,37" id="Fill-1057" fill="#E9EFFA">
|
||||
|
||||
</path>
|
||||
<path d="M26,25 C26,22.238 28.239,20 31,20 C33.761,20 36,22.238 36,25 C36,27.762 33.761,30 31,30 C28.239,30 26,27.762 26,25" id="Fill-1058" fill="#E9EFFA">
|
||||
|
||||
</path>
|
||||
<path d="M38,37 C38,33.134 34.866,30 31,30 C27.134,30 24,33.134 24,37 C24,40.866 27.134,44 31,44 C34.866,44 38,40.866 38,37 Z" id="Stroke-1059" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M26,25 C26,22.238 28.239,20 31,20 C33.761,20 36,22.238 36,25 C36,27.762 33.761,30 31,30 C28.239,30 26,27.762 26,25 Z" id="Stroke-1060" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M46,44 C48.209,44 50,45.791 50,48 L50,52 L2,52 L2,48 C2,45.791 3.791,44 6,44 L46,44 Z" id="Stroke-1061" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M7.2402,44.002 C2.7562,39.33 0.0002,32.987 0.0002,26 C0.0002,11.641 11.6402,0 26.0002,0 C40.3592,0 52.0002,11.641 52.0002,26 C52.0002,32.986 49.2442,39.33 44.7602,44.001" id="Stroke-1062" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M8,24 C8,14.059 16.059,6 26,6" id="Stroke-1063" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M20,28 L26.061,32.04" id="Stroke-1064" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M42,28 L35.939,32.04" id="Stroke-1065" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M42,25 L42,28" id="Stroke-1066" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M45,28 L42,28" id="Stroke-1067" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M20,25 L20,28" id="Stroke-1068" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M17,28 L20,28" id="Stroke-1069" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M10.02,31.0098 C10.02,31.5688 9.568,32.0208 9.01,32.0208 C8.452,32.0208 8,31.5688 8,31.0098 C8,30.4518 8.452,29.9998 9.01,29.9998 C9.568,29.9998 10.02,30.4518 10.02,31.0098 Z" id="Stroke-1070" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M22.02,15.0098 C22.02,15.5688 21.568,16.0208 21.01,16.0208 C20.452,16.0208 20,15.5688 20,15.0098 C20,14.4518 20.452,13.9998 21.01,13.9998 C21.568,13.9998 22.02,14.4518 22.02,15.0098 Z" id="Stroke-1071" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M44.02,17.0098 C44.02,17.5688 43.568,18.0208 43.01,18.0208 C42.452,18.0208 42,17.5688 42,17.0098 C42,16.4518 42.452,15.9998 43.01,15.9998 C43.568,15.9998 44.02,16.4518 44.02,17.0098 Z" id="Stroke-1072" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M18.02,37.0098 C18.02,37.5688 17.568,38.0208 17.01,38.0208 C16.452,38.0208 16,37.5688 16,37.0098 C16,36.4518 16.452,35.9998 17.01,35.9998 C17.568,35.9998 18.02,36.4518 18.02,37.0098 Z" id="Stroke-1073" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M36.02,9.0098 C36.02,9.5688 35.568,10.0208 35.01,10.0208 C34.452,10.0208 34,9.5688 34,9.0098 C34,8.4518 34.452,7.9998 35.01,7.9998 C35.568,7.9998 36.02,8.4518 36.02,9.0098 Z" id="Stroke-1074" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 5.1 KiB |
@ -1,273 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
viewBox="0 0 1000 700" style="enable-background:new 0 0 1000 700;" xml:space="preserve">
|
||||
<g id="Shadow">
|
||||
<g style="opacity:0.1;">
|
||||
<path style="fill:#38415C;" d="M186.919,556.734c0,0.331,0.541,0.599,1.208,0.599c0.667,0,1.208-0.268,1.208-0.599
|
||||
c0-0.331-0.541-0.599-1.208-0.599C187.46,556.135,186.919,556.403,186.919,556.734z"/>
|
||||
<path style="fill:#38415C;" d="M957.699,446.328h-12.196h-37.267h-8.131h-4.525h-22.106h-29.729h-8.01h-8.921h-7.462H777.69h-5.38
|
||||
h-8.517h-13.921h-24.898h-0.367h-35.201h-33.29h-13.405h-8.642h-18.387h-20.084H584.19h-2.542h-5.421h-37.944h-7.453h-2.757
|
||||
h-2.757h-1.428h-8.748h-5.514h-10.175h-0.905h-4.609h-10.175h-5.514h-10.175h-2.757h-2.757h-27.938h-8.05h-29.96h-6.713h-18.964
|
||||
h-11.234h-48.644h-12.099h-10.229h-20.764h-12.382h-3.512h-23.242h-5.943h-13.266h-10.795h-35.413h-16.467h-4.656h-8.696h-25.877
|
||||
H89.054h-4.763H72.026h-7.508H53.821H42.302v9.376h11.519v6.41h10.696v6.835h19.774v2.177h20.658v9.405h17.084v-5.919h11.557
|
||||
v10.475h3.789v11.69h11.18v9.823h-4.017v1.763h7.066v4.785h23.433v28.254h-1.845v1.897h4.028v2.429h4.636v0.913v2.777v2.41h5.594
|
||||
v4.306h0.673l0,0h0.673v-4.306h3.015l1.823-2.41h12.206v-3.69h31.948V543.3h4.028v-1.897h-1.845V484.37h15.302v40.617h1.509v3.023
|
||||
h2.811v10.012h1.016v-10.012h2.287v7.997h1.017v-7.997h4.828v-3.023h6.098v-10.569h11.445v-0.743h-1.492v-2.116h7.56v32.974
|
||||
h-1.078v0.849h7.678v5.101h-0.992v0.817h7.047v2.933h-1.099v0.627h3.502v2.77h3.348v5.513h0.402h0.398h0.314v-5.513h1.354v9.889
|
||||
h0.402h0.399h0.314v-9.889h0.451h2.897v-2.77h3.034v-0.627h-0.632v-2.933h7.047v-0.817h-0.992v-5.101h7.678v-0.849h-1.078v-43.096
|
||||
h23.505v-5.982h8.399v31.88h-4.954v0.806h4.954v1.443h6.279v2.37h30.344v27.318h7.165v21.803h13.871V593h1.952v-11.927h4.298
|
||||
v9.528h1.952v-9.528h21.941v-12.964h3.982v-8.839h11.148v-32.999h4.318v-7.629l6.342,0.769v1.742h5.514v-1.073l10.175,1.234v1.969
|
||||
h5.514v-1.3l9.332,1.131v9.523h2.491v16.539h11.982v6.297h6.46v5.29h2.267v9.068h0.586v-9.068h2.267v-5.29h6.46v-6.297h12.075
|
||||
v-16.539h2.399v-45.67l5.467,13.925h5.729v12.219h-2.645v0.527h31.278v6.75h-3.52v0.763h-1.791v2.08h8.284v2.313h-1.087v0.668
|
||||
h18.198v-0.668h-1.087v-2.313h23.966c0.802,1.935,2.023,3.811,3.668,5.596l-3.992,0.913c-0.688-0.732-2.184-1.239-3.92-1.239
|
||||
c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143c2.388,0,4.324-0.96,4.324-2.143
|
||||
c0-0.239-0.08-0.468-0.225-0.683l4.015-0.919c2.595,2.749,6.165,5.281,10.623,7.491c0.352,0.174,0.709,0.346,1.069,0.515
|
||||
l-3.154,1.668c-0.76-0.329-1.753-0.528-2.841-0.528c-2.388,0-4.324,0.959-4.324,2.143s1.936,2.143,4.324,2.143
|
||||
c2.388,0,4.324-0.959,4.324-2.143c0-0.559-0.432-1.068-1.139-1.449l3.16-1.671c5.36,2.471,11.576,4.337,18.308,5.527l-1.744,2.453
|
||||
c-0.378-0.054-0.777-0.083-1.19-0.083c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143
|
||||
c2.388,0,4.324-0.96,4.324-2.143c0-0.895-1.107-1.662-2.68-1.982l1.743-2.451c5.551,0.953,11.445,1.449,17.493,1.449
|
||||
c0.498,0,0.995-0.003,1.491-0.01l0.198,3.017c-2.096,0.148-3.707,1.041-3.707,2.121c0,1.183,1.936,2.143,4.324,2.143
|
||||
c2.388,0,4.324-0.96,4.324-2.143c0-1.184-1.936-2.143-4.324-2.143c-0.046,0-0.091,0.001-0.137,0.002l-0.197-3.004
|
||||
c2.456-0.044,4.881-0.173,7.265-0.378l-2.223,24.735l79.948-8.225v-43.336h13.883v22.309h24.985v8.902h1.355v-8.902h2.795v16.446
|
||||
h1.355v-16.446h3.219v11.855h1.355v-11.855h4.235v-54.059h12.874V506.6h2.033v3.715h2.033v2.582h14.483v-2.582h2.033V506.6h7.369
|
||||
v1.594h3.557V506.6h1.259v4.262h5.082V506.6h1.452l3.161-11.593h11.528v5.526h0.762v-5.526h4.32v6.746h0.762v-6.746h6.25v-1.567
|
||||
h-1.592v-17.317h12.874l1.507-4.997h10.931v-9.012h11.954v-6.86h12.196V446.328z M653.829,518.335l-11.117,0.179v-7.937h2.055
|
||||
v-0.76h-2.055v-0.593l13.295,2.426c-1.417,1.94-2.19,4.031-2.19,6.21C653.816,518.019,653.821,518.177,653.829,518.335z
|
||||
M689.289,499.58c-4.354,0.083-8.516,0.542-12.36,1.312l-5.314-6.414v-0.42h5.082v4.786h5.082v-4.786h7.148L689.289,499.58z
|
||||
M702.329,517.554l-8.713,0.14c-0.026-0.114-0.079-0.224-0.155-0.328l9.073-2.076L702.329,517.554z M666.025,494.058v0.401
|
||||
c-0.325,0.085-0.657,0.163-0.979,0.251l-0.713-0.651H666.025z M666.025,495.263v0.341l-0.291-0.266
|
||||
C665.83,495.311,665.929,495.289,666.025,495.263z M666.025,496.603v2.241h2.454l3.554,3.247c-2.98,0.871-5.693,1.943-8.062,3.179
|
||||
l-10.904-5.064c0.33-0.173,0.666-0.344,1.007-0.513c3.276-1.624,6.914-3.003,10.823-4.12L666.025,496.603z M672.377,502.405
|
||||
l15.07,13.768l-22.95-10.659C666.813,504.306,669.465,503.258,672.377,502.405z M669.572,498.844h2.043v-3.739l4.87,5.877
|
||||
c-1.242,0.259-2.449,0.55-3.618,0.872L669.572,498.844z M691.664,494.058v4.786h12.332l-1.224,1.721
|
||||
c-3.776-0.648-7.828-1.001-12.044-1.001c-0.32,0-0.64,0.002-0.959,0.006l-0.361-5.512H691.664z M703.939,499.641l-0.101,1.127
|
||||
c-0.206-0.039-0.404-0.087-0.612-0.124L703.939,499.641z M702.896,511.25l-8.307,4.394l8.619-7.874L702.896,511.25z
|
||||
M702.863,511.616l-0.306,3.407l-9.299,2.127c-0.053-0.046-0.11-0.09-0.172-0.133l0.598-0.547L702.863,511.616z M693.364,518.468
|
||||
l8.74,1.595l-0.252,2.801l-8.846-4.108C693.147,518.667,693.268,518.571,693.364,518.468z M693.53,518.245
|
||||
c0.056-0.1,0.091-0.205,0.102-0.312l8.676-0.14l-0.182,2.021L693.53,518.245z M656.116,486.551l-11.415-10.428h11.415V486.551z
|
||||
M656.116,487.55v4.746h-1.779v1.763h8.903l0.969,0.885c-4.029,1.15-7.778,2.571-11.154,4.243
|
||||
c-0.352,0.175-0.698,0.352-1.039,0.53l-3.311-1.538c0.63-0.372,1.01-0.852,1.01-1.376c0-1.184-1.936-2.143-4.324-2.143
|
||||
c-1.018,0-1.941,0.182-2.68,0.473v-5.035h2.055v-0.76h-2.055v-9.479h2.055v-0.76h-2.055v-2.977h0.897L656.116,487.55z
|
||||
M642.711,500.338h2.055v-0.76h-2.055v-1.104c0.739,0.292,1.662,0.473,2.68,0.473c1.158,0,2.209-0.226,2.985-0.593l3.31,1.537
|
||||
c-3.677,1.959-6.684,4.15-8.975,6.503V500.338z M642.711,508.163c2.337-2.844,5.703-5.479,10.027-7.784l10.906,5.065
|
||||
c-3.215,1.722-5.771,3.749-7.47,5.983l-13.463-2.457V508.163z M664.17,505.688l24.004,11.148l0.198,0.181
|
||||
c-0.107,0.074-0.2,0.152-0.279,0.235l-31.242-5.701C658.515,509.362,661.02,507.375,664.17,505.688z M673.21,502.168
|
||||
c1.146-0.316,2.33-0.602,3.548-0.855l12.647,15.264c-0.111,0.028-0.218,0.06-0.32,0.094L673.21,502.168z M677.203,501.222
|
||||
c3.766-0.755,7.844-1.204,12.11-1.286l1.082,16.492c-0.187,0.011-0.369,0.03-0.544,0.057L677.203,501.222z M689.793,499.928
|
||||
c0.311-0.004,0.623-0.006,0.935-0.006c4.131,0,8.103,0.346,11.804,0.981l-11.067,15.563c-0.19-0.025-0.388-0.04-0.591-0.045
|
||||
L689.793,499.928z M702.985,500.982c0.278,0.05,0.543,0.112,0.818,0.165l-0.497,5.535l-10.935,9.99
|
||||
c-0.142-0.048-0.294-0.09-0.453-0.126L702.985,500.982z M692.678,518.929l9.146,4.247l-0.629,7.002l-9.143-11.035
|
||||
C692.279,519.085,692.49,519.013,692.678,518.929z M656.683,511.774l31.244,5.702c-0.056,0.1-0.091,0.204-0.102,0.312
|
||||
l-33.276,0.536c-0.008-0.154-0.012-0.309-0.012-0.464C654.537,515.724,655.295,513.675,656.683,511.774z M687.841,518.026
|
||||
c0.026,0.114,0.079,0.224,0.155,0.328l-30.225,6.916c-1.892-2.059-3.018-4.325-3.204-6.708L687.841,518.026z M688.199,518.57
|
||||
c0.106,0.092,0.231,0.178,0.373,0.257l-22.753,12.035c-3.243-1.527-5.915-3.348-7.845-5.376L688.199,518.57z M688.923,518.989
|
||||
c0.188,0.074,0.394,0.137,0.616,0.186l-11.067,15.563c-4.604-0.824-8.776-2.098-12.301-3.714L688.923,518.989z M689.992,519.254
|
||||
c0.19,0.024,0.388,0.04,0.591,0.045l1.082,16.493c-0.311,0.004-0.623,0.006-0.936,0.006c-4.131,0-8.102-0.346-11.804-0.98
|
||||
L689.992,519.254z M691.063,519.291c0.187-0.011,0.369-0.03,0.544-0.057l9.537,11.51l-0.39,4.342
|
||||
c-2.753,0.394-5.632,0.641-8.61,0.697L691.063,519.291z M640.035,523.229h7.987v-2.08h-1.791v-0.763h-3.52v-1.635l11.136-0.179
|
||||
c0.189,2.432,1.339,4.745,3.27,6.846l-13.578,3.106C641.982,526.835,640.816,525.059,640.035,523.229z M654.074,536.027
|
||||
c-4.336-2.149-7.809-4.612-10.333-7.285l13.579-3.107c1.969,2.07,4.697,3.929,8.007,5.487l-10.218,5.404
|
||||
C654.761,536.362,654.415,536.196,654.074,536.027z M655.459,536.689l10.219-5.405c3.597,1.65,7.855,2.95,12.553,3.791
|
||||
l-4.97,6.989C666.716,540.907,660.672,539.092,655.459,536.689z M690.728,543.552c-5.882,0-11.614-0.483-17.013-1.409l4.97-6.989
|
||||
c3.776,0.648,7.828,1.001,12.043,1.001c0.321,0,0.64-0.002,0.959-0.006l0.485,7.393
|
||||
C691.692,543.549,691.211,543.552,690.728,543.552z M692.653,543.535l-0.485-7.395c2.956-0.057,5.813-0.299,8.553-0.681
|
||||
l-0.69,7.679C697.611,543.354,695.148,543.49,692.653,543.535z"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="Object">
|
||||
<g style="opacity:0.3;">
|
||||
<linearGradient id="SVGID_1_" gradientUnits="userSpaceOnUse" x1="207.5072" y1="393.376" x2="207.5072" y2="229.7061">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
|
||||
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
|
||||
<stop offset="0.5479" style="stop-color:#626262"/>
|
||||
<stop offset="1" style="stop-color:#646464"/>
|
||||
</linearGradient>
|
||||
<polygon style="fill:url(#SVGID_1_);" points="175.04,393.376 239.974,393.376 239.974,259.43 241.819,259.43 241.819,255.601
|
||||
237.792,255.601 237.792,250.701 205.844,250.701 205.844,243.255 193.638,243.255 191.815,238.393 188.799,238.393
|
||||
188.799,229.706 188.126,229.706 187.454,229.706 187.454,238.393 181.859,238.393 181.859,243.255 181.859,248.859
|
||||
181.859,250.701 177.223,250.701 177.223,255.601 173.195,255.601 173.195,259.43 175.04,259.43 "/>
|
||||
|
||||
<linearGradient id="SVGID_00000000931258187104496080000017865145222397382034_" gradientUnits="userSpaceOnUse" x1="188.1266" y1="229.7061" x2="188.1266" y2="227.2891">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
|
||||
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
|
||||
<stop offset="0.5479" style="stop-color:#626262"/>
|
||||
<stop offset="1" style="stop-color:#646464"/>
|
||||
</linearGradient>
|
||||
<path style="fill:url(#SVGID_00000000931258187104496080000017865145222397382034_);" d="M189.335,228.498
|
||||
c0-0.668-0.541-1.209-1.209-1.209c-0.667,0-1.208,0.541-1.208,1.209c0,0.667,0.541,1.208,1.208,1.208
|
||||
C188.794,229.706,189.335,229.165,189.335,228.498z"/>
|
||||
|
||||
<linearGradient id="SVGID_00000036247364810958532620000001993945857249512106_" gradientUnits="userSpaceOnUse" x1="508.9194" y1="421.4165" x2="508.9194" y2="155.3276">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
|
||||
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
|
||||
<stop offset="0.5479" style="stop-color:#626262"/>
|
||||
<stop offset="1" style="stop-color:#646464"/>
|
||||
</linearGradient>
|
||||
<polygon style="fill:url(#SVGID_00000036247364810958532620000001993945857249512106_);" points="777.689,401.218 777.689,221.14
|
||||
697.741,204.545 706.501,401.218 471.904,401.218 471.904,289.958 467.586,289.958 467.586,223.38 456.438,223.38
|
||||
456.438,205.547 452.456,205.547 452.456,179.391 430.514,179.391 430.514,160.168 428.562,160.168 428.562,179.391
|
||||
424.264,179.391 424.264,155.328 422.311,155.328 422.311,179.391 408.44,179.391 408.44,223.38 401.275,223.38 401.275,289.958
|
||||
395.133,289.958 395.133,401.218 332.748,401.218 332.748,253.114 333.825,253.114 333.825,251.402 326.147,251.402
|
||||
326.147,241.111 327.14,241.111 327.14,239.463 320.092,239.463 320.092,233.547 320.725,233.547 320.725,232.282 317.69,232.282
|
||||
317.69,226.693 314.794,226.693 314.343,226.693 314.343,206.742 314.029,206.742 313.63,206.742 313.228,206.742
|
||||
313.228,226.693 311.874,226.693 311.874,215.571 311.56,215.571 311.161,215.571 310.759,215.571 310.759,226.693
|
||||
307.411,226.693 307.411,232.282 303.909,232.282 303.909,233.547 305.009,233.547 305.009,239.463 297.962,239.463
|
||||
297.962,241.111 298.954,241.111 298.954,251.402 291.276,251.402 291.276,253.114 292.354,253.114 292.354,401.218
|
||||
84.29,401.218 84.29,421.417 933.548,421.417 933.548,401.218 "/>
|
||||
</g>
|
||||
|
||||
<linearGradient id="SVGID_00000121963338060960119620000016097684000583641491_" gradientUnits="userSpaceOnUse" x1="499.6613" y1="451.2495" x2="499.6613" y2="202.0752">
|
||||
<stop offset="0.0815" style="stop-color:#403E40"/>
|
||||
<stop offset="0.4715" style="stop-color:#444244"/>
|
||||
<stop offset="0.8768" style="stop-color:#504F50"/>
|
||||
<stop offset="1" style="stop-color:#555455"/>
|
||||
</linearGradient>
|
||||
<path style="fill:url(#SVGID_00000121963338060960119620000016097684000583641491_);" d="M918.278,419.4v-18.183h-25.56
|
||||
l-9.674-71.571h-1.452v-8.598h-5.082v8.598h-1.259v-3.216h-3.557v3.216h-7.369v-7.496h-2.033v-5.209h-14.483v5.209h-2.033v7.496
|
||||
h-2.033v42.986h-12.874V263.564h-4.235v-23.92h-1.355v23.92h-3.219v-33.181h-1.355v33.181h-2.795v-17.961h-1.355v17.961h-24.985
|
||||
v77.418h-27.78v50.154h-25.944l-20.601-37.972c3.473-2,6.738-4.405,9.735-7.193l4.225,4.508c-0.907,0.793-1.481,1.957-1.481,3.256
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-0.916,0-1.764,0.285-2.463,0.771l-4.255-4.54c0.36-0.341,0.717-0.687,1.069-1.039c4.458-4.459,8.028-9.568,10.623-15.114
|
||||
l4.705,2.172c-0.086,0.339-0.131,0.693-0.131,1.059c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-1.852,0-3.432,1.165-4.048,2.803l-4.648-2.146c2.866-6.273,4.489-13.092,4.744-20.153
|
||||
l5.065,0.165c0.062,2.334,1.972,4.207,4.321,4.207c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.266,0-4.123,1.743-4.308,3.961l-5.064-0.165c0.013-0.496,0.021-0.993,0.021-1.491c0-6.303-1.088-12.438-3.173-18.192
|
||||
l4.231-1.558c0.664,1.533,2.191,2.606,3.968,2.606c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.388,0-4.324,1.936-4.324,4.324c0,0.44,0.066,0.866,0.189,1.267l-4.229,1.557c-2.41-6.464-6.085-12.437-10.898-17.611
|
||||
l3.31-3.102c0.776,0.741,1.827,1.197,2.985,1.197c2.388,0,4.324-1.935,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.388,0-4.324,1.936-4.324,4.324c0,1.057,0.38,2.025,1.01,2.776l-3.31,3.102c-0.341-0.36-0.687-0.717-1.039-1.069
|
||||
c-5.012-5.013-10.848-8.903-17.201-11.546l1.821-4.434c0.413,0.131,0.853,0.203,1.309,0.203c2.388,0,4.324-1.936,4.324-4.324
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,1.762,1.054,3.276,2.566,3.95l-1.816,4.423
|
||||
c-5.685-2.304-11.775-3.615-18.057-3.842l0.197-6.06c0.046,0.001,0.091,0.003,0.137,0.003c2.388,0,4.324-1.936,4.324-4.324
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.179,1.611,3.98,3.707,4.279l-0.198,6.086
|
||||
c-0.496-0.014-0.993-0.021-1.491-0.021c-6.048,0-11.942,1.001-17.493,2.925l-1.743-4.946c1.573-0.647,2.68-2.193,2.68-4
|
||||
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324
|
||||
c0.413,0,0.812-0.059,1.19-0.167l1.744,4.948c-6.732,2.401-12.948,6.166-18.308,11.152l-3.16-3.372
|
||||
c0.707-0.77,1.139-1.796,1.139-2.923c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.935-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c1.088,0,2.081-0.402,2.841-1.065l3.154,3.366c-0.36,0.341-0.717,0.688-1.069,1.04
|
||||
c-4.458,4.458-8.028,9.568-10.623,15.114l-4.015-1.854c0.146-0.433,0.225-0.896,0.225-1.377c0-2.388-1.936-4.324-4.324-4.324
|
||||
c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324c1.736,0,3.232-1.023,3.92-2.5l3.992,1.843
|
||||
c-2.865,6.273-4.489,13.093-4.744,20.153l-5.154-0.167c-0.064-2.333-1.973-4.204-4.321-4.204c-2.388,0-4.324,1.936-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.267,0,4.125-1.744,4.308-3.963l5.153,0.167c-0.013,0.496-0.021,0.993-0.021,1.491
|
||||
c0,6.302,1.088,12.438,3.173,18.191l-4.231,1.558c-0.664-1.533-2.191-2.606-3.969-2.606c-2.388,0-4.324,1.936-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-0.44-0.066-0.866-0.189-1.266l4.229-1.557
|
||||
c2.409,6.464,6.084,12.436,10.898,17.611l-3.31,3.102c-0.776-0.741-1.827-1.197-2.985-1.197c-2.388,0-4.324,1.935-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.057-0.38-2.025-1.01-2.776l3.311-3.102
|
||||
c0.341,0.36,0.687,0.717,1.039,1.069c3.376,3.375,7.125,6.242,11.154,8.561l-20.601,37.972h-16.685v-25.743h-6.801v-48.882h2.645
|
||||
v-1.063H564.32v1.063h2.645v24.652h-5.729l-5.467,28.096v-92.143h-2.399v-33.37h-12.075v-12.705h-6.46V220.37h-2.267v-18.294
|
||||
h-0.586v18.294h-2.267v10.672h-6.46v12.705h-11.982v33.37h-2.491V337.7h-18.579v53.436h-61.639V287.814h4.954v-1.626h-4.954v-2.911
|
||||
h-6.279v-4.781h-51.354v4.781h-6.279v2.911h-4.954v1.626h4.954v64.319h-8.4v-12.069h-51.819v14.737h-11.298v27.442h-18.294V292.55
|
||||
h-6.098v-6.099h-4.828v-16.134h-1.017v16.134h-2.287v-20.2h-1.016v20.2h-2.811v6.099h-1.509v89.693h-37.859v-52.597h1.779v-3.557
|
||||
h-11.688v-9.655h-5.59v9.655h-5.082v-9.655h-5.082v9.655h-9.885v-9.655h-30.261v9.655h-7.066v3.557h4.017v19.819h-11.18v44.72
|
||||
h-15.346v-11.942h-17.084v26.044H84.29V419.4H53.82v31.849h891.682V419.4H918.278z M716.559,351.896l-7.135-13.152
|
||||
c2.287-1.349,4.417-2.938,6.354-4.731l10.219,10.906C723.091,347.622,719.925,349.955,716.559,351.896z M689.85,309.7
|
||||
c0.175,0.055,0.357,0.094,0.544,0.116l-1.082,33.274c-4.266-0.165-8.344-1.071-12.11-2.594L689.85,309.7z M676.758,340.314
|
||||
c-1.218-0.512-2.402-1.089-3.548-1.726l15.875-29.261c0.102,0.07,0.209,0.133,0.32,0.19L676.758,340.314z M690.874,309.832
|
||||
c0.203-0.01,0.401-0.041,0.591-0.091l11.067,31.4c-3.701,1.281-7.673,1.978-11.804,1.978c-0.313,0-0.625-0.004-0.936-0.012
|
||||
L690.874,309.832z M691.917,309.581c0.159-0.072,0.311-0.157,0.453-0.254l15.875,29.261c-1.677,0.932-3.435,1.734-5.261,2.394
|
||||
L691.917,309.581z M694.589,311.399l20.697,22.088c-1.893,1.751-3.973,3.303-6.206,4.623L694.589,311.399z M693.683,309.731
|
||||
l-0.598-1.103c0.062-0.086,0.119-0.176,0.172-0.268l30.224,13.952c-1.93,4.091-4.602,7.766-7.844,10.847L693.683,309.731z
|
||||
M693.46,307.925c0.077-0.21,0.129-0.432,0.156-0.662l33.274,1.082c-0.186,4.809-1.313,9.38-3.204,13.534L693.46,307.925z
|
||||
M693.631,306.783c-0.011-0.217-0.046-0.428-0.102-0.63l31.244-11.503c1.388,3.836,2.146,7.971,2.146,12.279
|
||||
c0,0.313-0.004,0.624-0.012,0.936L693.631,306.783z M693.364,305.702c-0.097-0.207-0.217-0.401-0.358-0.579l24.281-22.752
|
||||
c3.15,3.404,5.654,7.411,7.319,11.828L693.364,305.702z M692.678,304.772c-0.188-0.17-0.399-0.315-0.627-0.433l12.647-30.797
|
||||
c4.661,1.958,8.83,4.864,12.261,8.477L692.678,304.772z M691.606,304.157c-0.175-0.055-0.357-0.094-0.544-0.116l1.082-33.273
|
||||
c4.265,0.164,8.344,1.071,12.11,2.594L691.606,304.157z M690.582,304.025c-0.203,0.01-0.401,0.041-0.591,0.09l-11.067-31.4
|
||||
c3.701-1.281,7.672-1.978,11.804-1.978c0.313,0,0.625,0.004,0.936,0.012L690.582,304.025z M689.539,304.276
|
||||
c-0.221,0.099-0.428,0.226-0.616,0.375L666.17,280.37c3.525-3.261,7.697-5.832,12.301-7.494L689.539,304.276z M688.572,304.978
|
||||
c-0.143,0.158-0.268,0.332-0.373,0.518l-30.224-13.953c1.929-4.091,4.602-7.766,7.845-10.847L688.572,304.978z M687.996,305.932
|
||||
c-0.077,0.211-0.129,0.432-0.156,0.662l-33.274-1.082c0.186-4.809,1.313-9.38,3.204-13.534L687.996,305.932z M687.825,307.075
|
||||
c0.011,0.217,0.046,0.427,0.102,0.629l-31.244,11.503c-1.388-3.836-2.146-7.97-2.146-12.279c0-0.313,0.004-0.625,0.012-0.936
|
||||
L687.825,307.075z M688.092,308.155c0.078,0.168,0.171,0.326,0.279,0.474l-0.198,0.365l-24.004,22.492
|
||||
c-3.15-3.404-5.654-7.411-7.319-11.828L688.092,308.155z M687.446,310.332l-15.07,27.777c-2.912-1.72-5.564-3.835-7.88-6.272
|
||||
L687.446,310.332z M672.866,339.221c1.169,0.649,2.376,1.238,3.618,1.759l-5.681,13.833c-1.732-0.721-3.424-1.537-5.07-2.445
|
||||
L672.866,339.221z M676.929,341.163c3.843,1.555,8.006,2.479,12.36,2.647l-0.485,14.92c-6.107-0.221-12.028-1.496-17.555-3.735
|
||||
L676.929,341.163z M689.769,343.828c0.319,0.008,0.638,0.013,0.959,0.013c4.215,0,8.267-0.712,12.043-2.02l4.97,14.101
|
||||
c-5.399,1.87-11.131,2.844-17.013,2.844c-0.482,0-0.964-0.007-1.444-0.021L689.769,343.828z M703.225,341.661
|
||||
c1.862-0.672,3.655-1.49,5.365-2.44l7.133,13.148c-2.417,1.333-4.933,2.468-7.528,3.394L703.225,341.661z M727.382,343.582
|
||||
c-0.341,0.341-0.686,0.676-1.035,1.007l-10.217-10.904c3.31-3.144,6.038-6.895,8.007-11.07l13.579,6.269
|
||||
C735.191,334.277,731.718,339.247,727.382,343.582z M737.917,328.448l-13.578-6.268c1.931-4.239,3.081-8.904,3.27-13.813
|
||||
l14.921,0.485C742.281,315.718,740.702,322.349,737.917,328.448z M742.565,306.929c0,0.482-0.007,0.963-0.02,1.444l-14.917-0.485
|
||||
c0.008-0.319,0.012-0.639,0.012-0.959c0-4.397-0.774-8.615-2.19-12.528l14.03-5.165
|
||||
C741.507,294.832,742.565,300.799,742.565,306.929z M728.718,271.66c4.68,5.032,8.253,10.839,10.596,17.124l-14.032,5.167
|
||||
c-1.699-4.508-4.255-8.598-7.47-12.072L728.718,271.66z M727.382,270.274c0.341,0.341,0.676,0.686,1.007,1.035l-10.904,10.217
|
||||
c-3.502-3.687-7.756-6.653-12.513-8.65l5.681-13.833C716.831,261.615,722.507,265.399,727.382,270.274z M692.652,255.126
|
||||
c6.107,0.221,12.028,1.496,17.555,3.735l-5.681,13.833c-3.843-1.555-8.006-2.479-12.36-2.647L692.652,255.126z M690.728,255.092
|
||||
c0.482,0,0.964,0.007,1.444,0.02l-0.485,14.917c-0.319-0.008-0.638-0.012-0.959-0.012c-4.215,0-8.267,0.712-12.043,2.019
|
||||
l-4.97-14.101C679.114,256.065,684.846,255.092,690.728,255.092z M673.261,258.094l4.97,14.102
|
||||
c-4.698,1.696-8.956,4.319-12.553,7.648l-10.219-10.906C660.671,264.091,666.716,260.43,673.261,258.094z M654.074,270.274
|
||||
c0.341-0.341,0.687-0.676,1.035-1.007l10.218,10.904c-3.31,3.144-6.038,6.895-8.007,11.071l-13.579-6.269
|
||||
C646.265,279.58,649.738,274.61,654.074,270.274z M643.539,285.409l13.578,6.268c-1.931,4.239-3.081,8.905-3.27,13.813
|
||||
l-14.921-0.485C639.175,298.14,640.754,291.509,643.539,285.409z M638.891,306.929c0-0.482,0.007-0.964,0.02-1.444l14.917,0.485
|
||||
c-0.008,0.318-0.012,0.638-0.012,0.959c0,4.396,0.774,8.614,2.19,12.528l-14.03,5.166
|
||||
C639.949,319.025,638.891,313.058,638.891,306.929z M652.738,342.197c-4.68-5.032-8.253-10.839-10.597-17.124l14.032-5.167
|
||||
c1.699,4.508,4.255,8.598,7.47,12.072L652.738,342.197z M654.074,343.582c-0.341-0.341-0.676-0.686-1.007-1.035l10.904-10.217
|
||||
c2.368,2.494,5.082,4.656,8.062,6.414l-7.135,13.152C660.988,349.642,657.35,346.859,654.074,343.582z M665.046,353.636
|
||||
c1.692,0.934,3.431,1.771,5.21,2.512l-1.821,4.434c-0.413-0.131-0.853-0.202-1.309-0.202c-2.388,0-4.324,1.936-4.324,4.324
|
||||
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.762-1.054-3.276-2.566-3.95l1.816-4.423
|
||||
c5.685,2.304,11.775,3.615,18.057,3.842l-0.148,4.534c-2.341,0.053-4.224,1.967-4.224,4.321c0,2.388,1.936,4.324,4.324,4.324
|
||||
c2.388,0,4.324-1.936,4.324-4.324c0-2.26-1.734-4.113-3.944-4.306l0.148-4.535c0.496,0.014,0.993,0.021,1.491,0.021
|
||||
c6.048,0,11.942-1.001,17.493-2.925l1.554,4.408c-1.471,0.69-2.491,2.184-2.491,3.916c0,2.388,1.936,4.324,4.324,4.324
|
||||
c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324c-0.485,0-0.951,0.081-1.387,0.229l-1.547-4.388
|
||||
c2.667-0.952,5.252-2.117,7.736-3.487l20.345,37.5h-92.055L665.046,353.636z"/>
|
||||
<g>
|
||||
|
||||
<linearGradient id="SVGID_00000121273610027325662480000007068999652675512506_" gradientUnits="userSpaceOnUse" x1="815.83" y1="285.1626" x2="815.83" y2="287.5796">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="1" style="stop-color:#161F21"/>
|
||||
</linearGradient>
|
||||
<path style="fill:url(#SVGID_00000121273610027325662480000007068999652675512506_);" d="M816.844,286.371
|
||||
c0-0.667-0.454-1.208-1.014-1.208c-0.56,0-1.014,0.541-1.014,1.208c0,0.668,0.454,1.208,1.014,1.208
|
||||
C816.39,287.58,816.844,287.039,816.844,286.371z"/>
|
||||
|
||||
<linearGradient id="SVGID_00000011738580747612097720000010840228285618223286_" gradientUnits="userSpaceOnUse" x1="500" y1="287.5796" x2="500" y2="451.2495">
|
||||
<stop offset="0" style="stop-color:#403E40"/>
|
||||
<stop offset="1" style="stop-color:#161F21"/>
|
||||
</linearGradient>
|
||||
<polygon style="fill:url(#SVGID_00000011738580747612097720000010840228285618223286_);" points="927.404,433.241 921.11,391.136
|
||||
908.236,391.136 908.236,356.197 909.828,356.197 909.828,353.036 903.578,353.036 903.578,339.427 902.815,339.427
|
||||
902.815,353.036 898.496,353.036 898.496,341.887 897.734,341.887 897.734,353.036 871.695,353.036 871.695,356.197
|
||||
873.474,356.197 873.474,427.088 843.745,427.088 843.745,395.334 826.815,395.334 826.815,317.303 828.363,317.303
|
||||
828.363,313.475 824.982,313.475 824.982,308.574 821.091,308.574 821.091,306.732 821.091,301.129 821.091,296.267
|
||||
816.395,296.267 816.395,287.58 815.83,287.58 815.265,287.58 815.265,296.267 812.734,296.267 811.204,301.129 800.958,301.129
|
||||
800.958,308.574 774.141,308.574 774.141,313.475 770.76,313.475 770.76,317.303 772.309,317.303 772.309,368.073
|
||||
749.871,368.073 749.871,417.957 724.973,406.925 724.973,358.507 728.991,358.507 728.991,354.95 721.924,354.95
|
||||
721.924,345.294 691.664,345.294 691.664,354.95 681.778,354.95 681.778,345.294 676.696,345.294 676.696,354.95 671.615,354.95
|
||||
671.615,345.294 666.025,345.294 666.025,354.95 654.337,354.95 654.337,358.507 656.115,358.507 656.115,425.617
|
||||
644.765,425.617 644.765,424.913 642.711,424.913 642.711,405.789 644.765,405.789 644.765,404.255 642.711,404.255
|
||||
642.711,385.13 644.765,385.13 644.765,383.597 642.711,383.597 642.711,364.472 644.765,364.472 644.765,362.939
|
||||
642.711,362.939 642.711,343.814 644.765,343.814 644.765,342.28 642.711,342.28 642.711,323.156 644.765,323.156
|
||||
644.765,321.622 642.711,321.622 642.711,301.83 646.231,301.83 646.231,300.291 648.021,300.291 648.021,296.095
|
||||
614.595,296.095 614.595,291.429 615.682,291.429 615.682,290.081 597.484,290.081 597.484,291.429 598.571,291.429
|
||||
598.571,296.095 590.287,296.095 590.287,300.291 592.078,300.291 592.078,301.83 595.598,301.83 595.598,321.622
|
||||
593.543,321.622 593.543,323.156 595.598,323.156 595.598,342.28 593.543,342.28 593.543,343.814 595.598,343.814
|
||||
595.598,362.939 593.543,362.939 593.543,364.472 595.598,364.472 595.598,383.597 593.543,383.597 593.543,385.13
|
||||
595.598,385.13 595.598,404.255 593.543,404.255 593.543,405.789 595.598,405.789 595.598,424.913 593.543,424.913
|
||||
593.543,426.447 595.598,426.447 595.598,442.075 584.189,442.075 584.189,381.685 538.283,381.685 538.283,425.617
|
||||
530.83,425.617 530.83,288.763 525.315,288.763 525.315,292.286 515.14,294.775 515.14,292.487 509.625,292.487 509.625,296.124
|
||||
499.45,298.612 499.45,295.989 493.936,295.989 493.936,299.961 483.76,302.45 483.76,300.286 478.246,300.286 478.246,303.799
|
||||
468.071,306.288 468.071,304.423 462.557,304.423 462.557,438.816 454.799,438.816 454.799,367.168 426.065,367.168
|
||||
426.065,411.227 396.608,411.227 396.608,373.655 392.979,373.655 392.979,361.316 395.133,361.316 395.133,360.077
|
||||
385.601,360.077 385.601,356.197 384.584,356.197 384.584,360.077 381.535,360.077 381.535,340.162 380.773,340.162
|
||||
380.773,360.077 376.802,360.077 376.802,361.316 379.138,361.316 379.138,373.655 359.697,373.655 359.697,402.316
|
||||
340.771,402.316 330.886,438.816 311.053,438.816 311.053,319.642 284.794,319.642 284.794,315.373 286.286,315.373
|
||||
286.286,313.875 266.397,313.875 266.397,315.373 267.961,315.373 267.961,319.642 267.961,326.508 267.961,408.127
|
||||
255.579,408.127 255.579,377.289 259.98,377.289 259.98,374.497 228.825,374.497 228.825,355.867 222.882,355.867
|
||||
222.882,352.039 209.616,352.039 209.616,355.867 198.821,355.867 198.821,422.389 163.408,422.389 163.408,373.052
|
||||
133.589,373.052 133.589,412.021 107.712,412.021 107.712,436.954 89.054,436.954 89.054,405.609 64.517,405.609 64.517,432.333
|
||||
42.301,432.333 42.301,451.25 64.517,451.25 72.025,451.25 84.29,451.25 89.054,451.25 107.712,451.25 133.589,451.25
|
||||
142.285,451.25 146.941,451.25 163.408,451.25 198.821,451.25 209.616,451.25 222.882,451.25 228.825,451.25 252.067,451.25
|
||||
255.579,451.25 267.961,451.25 288.725,451.25 298.954,451.25 311.053,451.25 359.697,451.25 370.931,451.25 389.895,451.25
|
||||
396.608,451.25 426.568,451.25 434.618,451.25 462.557,451.25 465.314,451.25 468.071,451.25 478.246,451.25 483.76,451.25
|
||||
493.936,451.25 498.545,451.25 499.45,451.25 509.625,451.25 515.14,451.25 523.887,451.25 525.315,451.25 528.072,451.25
|
||||
530.83,451.25 538.283,451.25 576.227,451.25 581.647,451.25 584.189,451.25 595.598,451.25 615.682,451.25 634.069,451.25
|
||||
642.711,451.25 656.115,451.25 689.405,451.25 724.606,451.25 724.973,451.25 749.871,451.25 763.792,451.25 772.309,451.25
|
||||
777.689,451.25 819.353,451.25 826.815,451.25 835.736,451.25 843.745,451.25 873.474,451.25 895.58,451.25 900.105,451.25
|
||||
908.236,451.25 957.698,451.25 957.698,433.241 "/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 28 KiB |
64
frontend/assets/cld-server.svg
Normal file
@ -0,0 +1,64 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
|
||||
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
|
||||
<title>cld-server</title>
|
||||
<desc>Created with Sketch.</desc>
|
||||
<defs>
|
||||
|
||||
</defs>
|
||||
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<g id="SLICES-64px" transform="translate(-810.000000, -200.000000)">
|
||||
|
||||
</g>
|
||||
<g id="ICONS" transform="translate(-805.000000, -195.000000)">
|
||||
<g id="cld-server" transform="translate(810.000000, 204.000000)">
|
||||
<path d="M48,12 C51.313,12 54,9.313 54,6 C54,2.687 51.313,0 48,0 L6,0 C2.687,0 0,2.687 0,6 C0,9.313 2.687,12 6,12 L48,12 Z" id="Fill-424" fill="#969CE3">
|
||||
|
||||
</path>
|
||||
<path d="M10,6 C10,7.104 9.104,8 8,8 C6.896,8 6,7.104 6,6 C6,4.896 6.896,4 8,4 C9.104,4 10,4.896 10,6" id="Fill-425" fill="#7BBDEC">
|
||||
|
||||
</path>
|
||||
<path d="M48,30 C51.313,30 54,27.313 54,24 C54,20.687 51.313,18 48,18 L6,18 C2.687,18 0,20.687 0,24 C0,27.313 2.687,30 6,30 L48,30 Z" id="Fill-426" fill="#969CE3">
|
||||
|
||||
</path>
|
||||
<path d="M10,24 C10,25.104 9.104,26 8,26 C6.896,26 6,25.104 6,24 C6,22.896 6.896,22 8,22 C9.104,22 10,22.896 10,24" id="Fill-427" fill="#7BBDEC">
|
||||
|
||||
</path>
|
||||
<path d="M48,48 C51.313,48 54,45.313 54,42 C54,38.687 51.313,36 48,36 L6,36 C2.687,36 0,38.687 0,42 C0,45.313 2.687,48 6,48 L48,48 Z" id="Fill-428" fill="#969CE3">
|
||||
|
||||
</path>
|
||||
<path d="M10,42 C10,43.104 9.104,44 8,44 C6.896,44 6,43.104 6,42 C6,40.896 6.896,40 8,40 C9.104,40 10,40.896 10,42" id="Fill-429" fill="#7BBDEC">
|
||||
|
||||
</path>
|
||||
<path d="M48,12 C51.313,12 54,9.313 54,6 C54,2.687 51.313,0 48,0 L6,0 C2.687,0 0,2.687 0,6 C0,9.313 2.687,12 6,12 L48,12 Z" id="Stroke-430" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M10,6 C10,7.104 9.104,8 8,8 C6.896,8 6,7.104 6,6 C6,4.896 6.896,4 8,4 C9.104,4 10,4.896 10,6 Z" id="Stroke-431" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M48,6 L36,6" id="Stroke-432" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M48,30 C51.313,30 54,27.313 54,24 C54,20.687 51.313,18 48,18 L6,18 C2.687,18 0,20.687 0,24 C0,27.313 2.687,30 6,30 L48,30 Z" id="Stroke-433" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M10,24 C10,25.104 9.104,26 8,26 C6.896,26 6,25.104 6,24 C6,22.896 6.896,22 8,22 C9.104,22 10,22.896 10,24 Z" id="Stroke-434" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M48,24 L36,24" id="Stroke-435" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M48,48 C51.313,48 54,45.313 54,42 C54,38.687 51.313,36 48,36 L6,36 C2.687,36 0,38.687 0,42 C0,45.313 2.687,48 6,48 L48,48 Z" id="Stroke-436" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M10,42 C10,43.104 9.104,44 8,44 C6.896,44 6,43.104 6,42 C6,40.896 6.896,40 8,40 C9.104,40 10,40.896 10,42 Z" id="Stroke-437" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M48,42 L36,42" id="Stroke-438" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 3.7 KiB |
64
frontend/assets/con-drill.svg
Normal file
@ -0,0 +1,64 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
|
||||
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
|
||||
<title>con-drill</title>
|
||||
<desc>Created with Sketch.</desc>
|
||||
<defs>
|
||||
|
||||
</defs>
|
||||
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<g id="SLICES-64px" transform="translate(-450.000000, -300.000000)">
|
||||
|
||||
</g>
|
||||
<g id="ICONS" transform="translate(-445.000000, -295.000000)">
|
||||
<g id="con-drill" transform="translate(452.000000, 306.000000)">
|
||||
<path d="M4,46 L20,46 C21.104,46 22,45.104 22,44 L22,36 C22,34.896 21.104,34 20,34 L13.375,34 L2,34 L2,44 C2,45.104 2.896,46 4,46" id="Fill-680" fill="#99A5B7">
|
||||
|
||||
</path>
|
||||
<path d="M40,4 L34,4 L34,12 L40,12 C41.104,12 42,11.104 42,10 L42,6 C42,4.896 41.104,4 40,4" id="Fill-681" fill="#E9EFFA">
|
||||
|
||||
</path>
|
||||
<path d="M30,16 C32.209,16 34,14.209 34,12 L34,4 C34,1.791 32.209,0 30,0 L4,0 C1.791,0 0,1.791 0,4 L0,12 C0,14.209 1.791,16 4,16 L30,16 Z" id="Fill-682" fill="#D3D873">
|
||||
|
||||
</path>
|
||||
<path d="M12.71,22 L18,22 C16.354,20.354 17.87,17.918 19,16 L14,16 L12.71,22 Z" id="Fill-683" fill="#F16963">
|
||||
|
||||
</path>
|
||||
<path d="M13.375,34 C11.926,34 10.75,32.824 10.75,31.375 C10.75,31.12 10.786,30.874 10.854,30.641 L14,16 L6,16 L2,34 L13.375,34 Z" id="Fill-684" fill="#AEC14A">
|
||||
|
||||
</path>
|
||||
<path d="M12.71,22 L18,22 C16.354,20.354 17.87,17.918 19,16" id="Stroke-685" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M42,8 L54,8" id="Stroke-686" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M34,4 L40,4 C41.104,4 42,4.896 42,6 L42,10 C42,11.104 41.104,12 40,12 L34,12" id="Stroke-687" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M2,34 L6,16" id="Stroke-688" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M6,8 L14,8" id="Stroke-689" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M6,4 L14,4" id="Stroke-690" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M2,34 L2,44 C2,45.104 2.896,46 4,46 L20,46 C21.104,46 22,45.104 22,44 L22,36 C22,34.896 21.104,34 20,34 L13.375,34" id="Stroke-691" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M13.375,34 C11.926,34 10.75,32.824 10.75,31.375 C10.75,31.12 10.786,30.874 10.854,30.641 L14,16" id="Stroke-692" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M2,34 L14,34" id="Stroke-693" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M30,16 C32.209,16 34,14.209 34,12 L34,4 C34,1.791 32.209,0 30,0 L4,0 C1.791,0 0,1.791 0,4 L0,12 C0,14.209 1.791,16 4,16 L30,16 Z" id="Stroke-694" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 3.4 KiB |
37
frontend/assets/con-warning.svg
Normal file
@ -0,0 +1,37 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
|
||||
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
|
||||
<title>con-warning</title>
|
||||
<desc>Created with Sketch.</desc>
|
||||
<defs>
|
||||
|
||||
</defs>
|
||||
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<g id="SLICES-64px" transform="translate(-720.000000, -300.000000)">
|
||||
|
||||
</g>
|
||||
<g id="ICONS" transform="translate(-715.000000, -295.000000)">
|
||||
<g id="con-warning" transform="translate(718.000000, 302.000000)">
|
||||
<path d="M50,46 C53.313,46 56,43.313 56,40 C56,38.751 55.358,37.299 55.358,37.299 L32.878,2.51 L32.88,2.509 C31.791,0.99 30.011,1.13686838e-13 28,1.13686838e-13 C25.989,1.13686838e-13 24.209,0.99 23.12,2.509 L23.122,2.51 L0.642,37.299 C0.642,37.299 0,38.751 0,40 C0,43.313 2.687,46 6,46 L50,46 Z" id="Fill-390" fill="#F3E777">
|
||||
|
||||
</path>
|
||||
<path d="M26,36 C26,34.896 26.896,34 28,34 C29.104,34 30,34.896 30,36 C30,37.104 29.104,38 28,38 C26.896,38 26,37.104 26,36" id="Fill-391" fill="#F16963">
|
||||
|
||||
</path>
|
||||
<path d="M32,16 C32,13.791 30.209,12 28,12 C25.791,12 24,13.791 24,16 L26,28 C26,29.104 26.896,30 28,30 C29.104,30 30,29.104 30,28 L32,16 Z" id="Fill-392" fill="#F16963">
|
||||
|
||||
</path>
|
||||
<path d="M26,36 C26,34.896 26.896,34 28,34 C29.104,34 30,34.896 30,36 C30,37.104 29.104,38 28,38 C26.896,38 26,37.104 26,36 Z" id="Stroke-393" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M32,16 C32,13.791 30.209,12 28,12 C25.791,12 24,13.791 24,16 L26,28 C26,29.104 26.896,30 28,30 C29.104,30 30,29.104 30,28 L32,16 Z" id="Stroke-394" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M50,46 C53.313,46 56,43.313 56,40 C56,38.751 55.358,37.299 55.358,37.299 L32.878,2.51 L32.88,2.509 C31.791,0.99 30.011,1.13686838e-13 28,1.13686838e-13 C25.989,1.13686838e-13 24.209,0.99 23.12,2.509 L23.122,2.51 L0.642,37.299 C0.642,37.299 0,38.751 0,40 C0,43.313 2.687,46 6,46 L50,46 Z" id="Stroke-395" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 2.4 KiB |
76
frontend/assets/gen-lifebelt.svg
Normal file
@ -0,0 +1,76 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
|
||||
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
|
||||
<title>gen-lifebelt</title>
|
||||
<desc>Created with Sketch.</desc>
|
||||
<defs>
|
||||
|
||||
</defs>
|
||||
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<g id="SLICES-64px">
|
||||
|
||||
</g>
|
||||
<g id="ICONS" transform="translate(5.000000, 5.000000)">
|
||||
<g id="gen-lifebelt" transform="translate(0.000000, 2.000000)">
|
||||
<path d="M26.0001,40 C18.2681,40 12.0001,33.732 12.0001,26 C12.0001,18.267 18.2681,12 26.0001,12 C33.7321,12 40.0001,18.267 40.0001,26 C40.0001,33.732 33.7321,40 26.0001,40 M26.0001,0 C11.6411,0 0.0001,11.64 0.0001,26 C0.0001,40.359 11.6411,52 26.0001,52 C40.3591,52 52.0001,40.359 52.0001,26 C52.0001,11.64 40.3591,0 26.0001,0" id="Fill-464" fill="#F16963">
|
||||
|
||||
</path>
|
||||
<path d="M3.0025,13.8716 L13.6385,19.4216 L13.6485,19.4116 C14.9905,16.9016 17.0765,14.8566 19.6105,13.5526 L19.6385,13.5256 L13.8725,3.0026 C9.2455,5.4476 5.4475,9.2456 3.0025,13.8716" id="Fill-465" fill="#F1F0E2">
|
||||
|
||||
</path>
|
||||
<path d="M38.128,3.0022 L32.361,13.5252 L32.39,13.5532 C34.923,14.8562 37.01,16.9012 38.352,19.4122 L38.361,19.4212 L48.998,13.8712 C46.553,9.2452 42.754,5.4472 38.128,3.0022" id="Fill-466" fill="#F1F0E2">
|
||||
|
||||
</path>
|
||||
<path d="M13.648,32.5872 L13.639,32.5782 L3.002,38.1282 C5.447,42.7542 9.246,46.5532 13.872,48.9972 L19.639,38.4742 L19.611,38.4472 C17.077,37.1442 14.99,35.0982 13.648,32.5872" id="Fill-467" fill="#F1F0E2">
|
||||
|
||||
</path>
|
||||
<path d="M48.9976,38.1284 L38.3616,32.5774 L38.3516,32.5864 C37.0106,35.0974 34.9236,37.1434 32.3896,38.4474 L32.3616,38.4744 L38.1276,48.9974 C42.7546,46.5524 46.5526,42.7544 48.9976,38.1284" id="Fill-468" fill="#F1F0E2">
|
||||
|
||||
</path>
|
||||
<path d="M2.9971,13.8689 C2.3621,12.7229 2.0001,11.4029 2.0001,9.9999 C2.0001,5.5819 5.5821,1.9999 10.0001,1.9999 C11.4031,1.9999 12.7231,2.3619 13.8691,2.9969" id="Stroke-469" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M49.003,13.8689 C49.638,12.7229 50,11.4029 50,9.9999 C50,5.5819 46.418,1.9999 42,1.9999 C40.597,1.9999 39.277,2.3619 38.131,2.9969" id="Stroke-470" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M2.9971,38.1311 C2.3621,39.2771 2.0001,40.5961 2.0001,42.0001 C2.0001,46.4171 5.5821,50.0001 10.0001,50.0001 C11.4031,50.0001 12.7231,49.6381 13.8691,49.0031" id="Stroke-471" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M49.003,38.1311 C49.638,39.2771 50,40.5961 50,42.0001 C50,46.4171 46.418,50.0001 42,50.0001 C40.597,50.0001 39.277,49.6381 38.131,49.0031" id="Stroke-472" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M52.0001,26 C52.0001,11.64 40.3591,0 26.0001,0 C11.6411,0 0.0001,11.64 0.0001,26 C0.0001,40.359 11.6411,52 26.0001,52 C40.3591,52 52.0001,40.359 52.0001,26 Z" id="Stroke-473" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M40.0001,26 C40.0001,33.732 33.7321,40 26.0001,40 C18.2681,40 12.0001,33.732 12.0001,26 C12.0001,18.267 18.2681,12 26.0001,12 C33.7321,12 40.0001,18.267 40.0001,26 Z" id="Stroke-474" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M13.8692,2.9968 L19.6392,13.5248" id="Stroke-475" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M13.6387,19.4216 L2.9967,13.8686" id="Stroke-476" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M38.1309,2.9968 L32.3609,13.5248" id="Stroke-477" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M38.3614,19.4216 L49.0034,13.8686" id="Stroke-478" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M13.8692,49.0027 L19.6392,38.4747" id="Stroke-479" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M13.6387,32.5779 L2.9967,38.1309" id="Stroke-480" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M38.1309,49.0027 L32.3609,38.4747" id="Stroke-481" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
<path d="M38.3614,32.5779 L49.0034,38.1309" id="Stroke-482" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
||||
|
||||
</path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 5.0 KiB |
@ -1,161 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
|
||||
viewBox="0 0 2200 2200" style="enable-background:new 0 0 2200 2200;" xml:space="preserve">
|
||||
|
||||
<g id="Objects">
|
||||
<g>
|
||||
<path style="fill:#788D8E;" d="M1202.178,2002.073c-5.328,0-9.648-4.319-9.649-9.647c-0.001-5.328,4.319-9.649,9.647-9.649
|
||||
c9.63-0.001,19.271-0.006,28.918-0.014c0.003,0,0.006,0,0.009,0c5.325,0,9.643,4.314,9.647,9.639
|
||||
c0.005,5.328-4.311,9.651-9.639,9.656C1221.458,2002.068,1211.813,2002.072,1202.178,2002.073z M1144.298,2002.03
|
||||
c-0.006,0-0.01,0-0.016,0c-9.658-0.015-19.305-0.036-28.94-0.061c-5.328-0.014-9.636-4.345-9.622-9.673
|
||||
c0.014-5.319,4.331-9.622,9.648-9.622c0.008,0,0.017,0,0.025,0c9.628,0.025,19.269,0.046,28.919,0.061
|
||||
c5.328,0.009,9.641,4.335,9.632,9.663C1153.937,1997.721,1149.619,2002.03,1144.298,2002.03z M1288.979,2001.966
|
||||
c-5.317,0-9.634-4.306-9.647-9.626c-0.012-5.328,4.298-9.657,9.626-9.669c9.634-0.022,19.274-0.047,28.923-0.075
|
||||
c5.297,0.018,9.66,4.292,9.676,9.619c0.015,5.328-4.291,9.66-9.619,9.676c-9.652,0.028-19.299,0.054-28.936,0.075
|
||||
C1288.994,2001.966,1288.986,2001.966,1288.979,2001.966z M1057.498,2001.759c-0.015,0-0.03,0-0.045,0
|
||||
c-9.659-0.044-19.306-0.095-28.939-0.152c-5.328-0.031-9.622-4.376-9.591-9.704c0.031-5.309,4.344-9.591,9.646-9.591
|
||||
c0.02,0,0.04,0,0.058,0c9.625,0.057,19.263,0.107,28.914,0.152c5.328,0.025,9.628,4.364,9.603,9.692
|
||||
C1067.12,1997.468,1062.805,2001.759,1057.498,2001.759z M1375.787,2001.691c-5.31,0-9.625-4.293-9.647-9.609
|
||||
c-0.022-5.328,4.281-9.665,9.609-9.686c9.636-0.039,19.28-0.079,28.928-0.123c0.015,0,0.029,0,0.044,0
|
||||
c5.308,0,9.623,4.291,9.647,9.604c0.024,5.328-4.276,9.666-9.604,9.691c-9.651,0.043-19.297,0.084-28.937,0.122
|
||||
C1375.813,2001.691,1375.8,2001.691,1375.787,2001.691z M1462.601,2001.29c-5.305,0-9.619-4.287-9.647-9.598
|
||||
c-0.027-5.328,4.27-9.67,9.598-9.698c9.641-0.05,19.285-0.102,28.932-0.156c0.018,0,0.037,0,0.056,0
|
||||
c5.302,0,9.616,4.284,9.646,9.594c0.029,5.328-4.266,9.671-9.594,9.701c-9.649,0.054-19.297,0.105-28.94,0.156
|
||||
C1462.635,2001.29,1462.618,2001.29,1462.601,2001.29z M970.707,2001.198c-0.027,0-0.054,0-0.081,0
|
||||
c-9.662-0.079-19.308-0.166-28.939-0.259c-5.328-0.052-9.605-4.413-9.554-9.741c0.052-5.296,4.361-9.554,9.646-9.554
|
||||
c0.032,0,0.063,0,0.095,0.001c9.621,0.093,19.258,0.179,28.911,0.258c5.328,0.044,9.612,4.399,9.568,9.727
|
||||
C980.31,1996.93,975.998,2001.198,970.707,2001.198z M1549.42,2000.802c-5.301,0-9.614-4.281-9.646-9.59
|
||||
c-0.032-5.328,4.262-9.673,9.59-9.705l28.936-0.176c0.021,0,0.042,0,0.061,0c5.301,0,9.614,4.279,9.647,9.587
|
||||
c0.033,5.328-4.259,9.674-9.587,9.708l-28.942,0.176C1549.459,2000.802,1549.439,2000.802,1549.42,2000.802z M883.923,2000.297
|
||||
c-0.041,0-0.083,0-0.124-0.001c-9.663-0.122-19.308-0.25-28.935-0.385c-5.328-0.075-9.586-4.454-9.511-9.782
|
||||
c0.075-5.328,4.464-9.604,9.782-9.511c9.617,0.136,19.254,0.264,28.907,0.385c5.328,0.067,9.592,4.44,9.525,9.768
|
||||
C893.501,1996.057,889.195,2000.297,883.923,2000.297z M1636.244,2000.264c-5.3,0-9.612-4.279-9.646-9.586
|
||||
c-0.034-5.328,4.258-9.675,9.586-9.709l28.943-0.184c0.021,0,0.042,0,0.062,0c5.3,0,9.613,4.279,9.647,9.586
|
||||
c0.034,5.328-4.259,9.675-9.586,9.709l-28.943,0.184C1636.286,2000.264,1636.265,2000.264,1636.244,2000.264z M1723.075,1999.719
|
||||
c-5.3,0-9.614-4.28-9.647-9.588c-0.033-5.328,4.26-9.674,9.588-9.707l28.946-0.177c0.02,0,0.04,0,0.059,0
|
||||
c5.301,0,9.615,4.28,9.647,9.589c0.032,5.328-4.261,9.674-9.589,9.706l-28.945,0.177
|
||||
C1723.115,1999.719,1723.095,1999.719,1723.075,1999.719z M1809.912,1999.201c-5.303,0-9.616-4.283-9.647-9.593
|
||||
c-0.03-5.328,4.265-9.672,9.593-9.702l28.952-0.16c0.018,0,0.036,0,0.053,0c5.304,0,9.618,4.285,9.647,9.596
|
||||
c0.028,5.328-4.268,9.67-9.596,9.699l-28.947,0.16C1809.949,1999.201,1809.931,1999.201,1809.912,1999.201z M797.15,1998.997
|
||||
c-0.057,0-0.115-0.001-0.172-0.002c-9.665-0.169-19.31-0.346-28.935-0.531c-5.327-0.103-9.562-4.504-9.459-9.832
|
||||
c0.104-5.327,4.48-9.533,9.832-9.459c9.612,0.186,19.245,0.363,28.899,0.531c5.327,0.092,9.57,4.487,9.477,9.814
|
||||
C806.701,1994.788,802.399,1998.997,797.15,1998.997z M1896.756,1998.75c-5.307,0-9.621-4.29-9.647-9.602
|
||||
c-0.025-5.328,4.274-9.667,9.602-9.693c9.658-0.045,19.31-0.089,28.958-0.129c0.014,0,0.027,0,0.041,0
|
||||
c5.309,0,9.624,4.292,9.647,9.607c0.023,5.328-4.279,9.666-9.607,9.688c-9.644,0.041-19.294,0.084-28.948,0.129
|
||||
C1896.787,1998.75,1896.771,1998.75,1896.756,1998.75z M710.388,1997.237c-0.076,0-0.152-0.001-0.228-0.003
|
||||
c-9.667-0.223-19.311-0.457-28.932-0.7c-5.326-0.135-9.535-4.562-9.401-9.889c0.133-5.243,4.425-9.404,9.64-9.404
|
||||
c0.083,0,0.166,0.001,0.249,0.003c9.607,0.243,19.237,0.477,28.891,0.7c5.327,0.122,9.545,4.541,9.421,9.868
|
||||
C719.907,1993.064,715.612,1997.237,710.388,1997.237z M623.642,1994.948c-0.096,0-0.193-0.001-0.29-0.004
|
||||
c-9.67-0.287-19.314-0.585-28.929-0.894c-5.326-0.172-9.503-4.628-9.333-9.953c0.171-5.325,4.65-9.465,9.953-9.333
|
||||
c9.6,0.309,19.227,0.607,28.88,0.892c5.326,0.158,9.516,4.604,9.357,9.93C633.126,1990.815,628.838,1994.948,623.642,1994.948z
|
||||
M536.937,1991.683c-0.226,0-0.453-0.007-0.682-0.024c-10.955-0.765-20.624-1.8-29.559-3.167
|
||||
c-5.267-0.806-8.883-5.728-8.078-10.995c0.805-5.268,5.725-8.888,10.995-8.078c8.408,1.286,17.563,2.264,27.985,2.992
|
||||
c5.316,0.371,9.323,4.981,8.952,10.296C546.196,1987.794,541.959,1991.683,536.937,1991.683z M452.936,1972.044
|
||||
c-1.444,0-2.91-0.325-4.291-1.012c-5.129-2.553-10.134-5.398-14.875-8.458c-3.821-2.466-7.597-5.17-11.224-8.036
|
||||
c-4.179-3.305-4.889-9.372-1.585-13.552c3.305-4.18,9.371-4.889,13.552-1.585c3.144,2.486,6.415,4.828,9.719,6.961
|
||||
c4.142,2.673,8.519,5.162,13.01,7.397c4.77,2.373,6.713,8.165,4.34,12.935C459.893,1970.083,456.481,1972.044,452.936,1972.044z
|
||||
M390.843,1913.094c-3.257,0-6.436-1.65-8.252-4.636c-5.088-8.366-9.753-17.406-13.866-26.869
|
||||
c-2.125-4.886,0.115-10.57,5.002-12.693c4.884-2.125,10.569,0.114,12.694,5.002c3.765,8.661,8.023,16.915,12.657,24.534
|
||||
c2.768,4.552,1.323,10.487-3.23,13.256C394.28,1912.639,392.55,1913.094,390.843,1913.094z M360.798,1832.103
|
||||
c-4.545,0-8.593-3.227-9.469-7.857c-1.832-9.681-3.208-19.642-4.092-29.605c-0.471-5.307,3.45-9.991,8.757-10.463
|
||||
c5.305-0.466,9.991,3.449,10.462,8.757c0.828,9.335,2.117,18.663,3.831,27.724c0.99,5.236-2.451,10.282-7.686,11.272
|
||||
C361.996,1832.047,361.393,1832.103,360.798,1832.103z M357.3,1745.636c-0.337,0-0.677-0.018-1.02-0.054
|
||||
c-5.299-0.557-9.143-5.304-8.586-10.603c1.051-10.004,2.612-19.95,4.636-29.561c1.098-5.214,6.217-8.55,11.429-7.451
|
||||
c5.214,1.099,8.55,6.215,7.451,11.429c-1.889,8.965-3.345,18.252-4.327,27.6C366.362,1741.952,362.175,1745.636,357.3,1745.636z
|
||||
M379.592,1662.099c-1.292,0-2.604-0.261-3.863-0.812c-4.881-2.136-7.107-7.824-4.97-12.706
|
||||
c3.967-9.067,8.429-18.064,13.26-26.742c2.591-4.655,8.466-6.329,13.122-3.737c4.656,2.592,6.329,8.466,3.737,13.122
|
||||
c-4.533,8.143-8.72,16.585-12.442,25.091C386.85,1659.939,383.308,1662.099,379.592,1662.099z M425.149,1588.527
|
||||
c-2.174,0-4.36-0.73-6.162-2.228c-4.097-3.407-4.658-9.489-1.252-13.587c6.291-7.567,13.033-14.977,20.039-22.024
|
||||
c3.756-3.78,9.865-3.796,13.644-0.039c3.778,3.756,3.796,9.865,0.039,13.643c-6.604,6.642-12.958,13.624-18.884,20.754
|
||||
C430.666,1587.342,427.917,1588.527,425.149,1588.527z M488.757,1529.81c-3.021,0-5.994-1.414-7.875-4.063
|
||||
c-3.085-4.345-2.062-10.367,2.282-13.452c8.036-5.705,16.424-11.148,24.935-16.182c4.587-2.711,10.502-1.194,13.215,3.393
|
||||
c2.712,4.586,1.194,10.503-3.393,13.215c-8.051,4.762-15.987,9.912-23.588,15.308
|
||||
C492.639,1529.232,490.688,1529.81,488.757,1529.81z M565.026,1488.849c-3.858,0-7.5-2.33-8.989-6.14
|
||||
c-1.939-4.962,0.513-10.558,5.476-12.497c8.996-3.515,18.386-6.814,27.91-9.805c5.085-1.593,10.499,1.23,12.094,6.314
|
||||
c1.597,5.083-1.229,10.498-6.313,12.095c-9.107,2.86-18.081,6.012-26.67,9.368
|
||||
C567.381,1488.636,566.194,1488.849,565.026,1488.849z M648.419,1465.236c-4.529,0-8.569-3.204-9.462-7.816
|
||||
c-1.012-5.232,2.408-10.293,7.639-11.306c9.243-1.788,18.981-3.446,28.945-4.926c5.268-0.786,10.177,2.855,10.961,8.125
|
||||
c0.783,5.27-2.855,10.178-8.125,10.961c-9.686,1.439-19.145,3.049-28.114,4.784
|
||||
C649.644,1465.178,649.027,1465.236,648.419,1465.236z M734.448,1453.776c-4.949,0-9.161-3.786-9.599-8.809
|
||||
c-0.464-5.308,3.463-9.987,8.771-10.45c8.927-0.779,18.419-1.521,29.019-2.265c5.285-0.369,9.926,3.633,10.3,8.948
|
||||
c0.373,5.315-3.633,9.926-8.948,10.299c-10.489,0.737-19.875,1.469-28.691,2.239
|
||||
C735.013,1453.764,734.729,1453.776,734.448,1453.776z M821.074,1447.866c-5.059,0-9.308-3.941-9.621-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.341-0.318,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.766C821.471,1447.86,821.272,1447.866,821.074,1447.866z M907.74,1442.568c-5.059,0-9.308-3.941-9.621-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.344-0.326,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.218
|
||||
l-28.889,1.767C908.137,1442.562,907.938,1442.568,907.74,1442.568z M994.406,1437.269c-5.059,0-9.307-3.941-9.62-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.345-0.309,9.893,3.722,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.767C994.805,1437.263,994.604,1437.269,994.406,1437.269z M1081.072,1431.969c-5.059,0-9.307-3.941-9.62-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.322-0.318,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.767C1081.47,1431.964,1081.27,1431.969,1081.072,1431.969z M1167.738,1426.671c-5.059,0-9.307-3.941-9.62-9.059
|
||||
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.349-0.326,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
|
||||
l-28.889,1.766C1168.135,1426.665,1167.936,1426.671,1167.738,1426.671z M1254.358,1420.693c-4.914,0-9.115-3.738-9.592-8.73
|
||||
c-0.508-5.304,3.38-10.015,8.685-10.523c10.205-0.975,19.481-2.043,28.357-3.264c5.276-0.72,10.146,2.966,10.872,8.244
|
||||
c0.725,5.279-2.966,10.146-8.244,10.872c-9.142,1.257-18.676,2.354-29.148,3.356
|
||||
C1254.976,1420.678,1254.665,1420.693,1254.358,1420.693z M1339.835,1406.05c-4.233,0-8.115-2.807-9.295-7.086
|
||||
c-1.416-5.136,1.6-10.448,6.735-11.864c9.242-2.549,18.223-5.456,26.694-8.639c4.994-1.875,10.551,0.65,12.425,5.636
|
||||
c1.875,4.988-0.649,10.55-5.636,12.425c-9.014,3.388-18.553,6.476-28.353,9.178
|
||||
C1341.548,1405.937,1340.684,1406.05,1339.835,1406.05z M1418.99,1371.212c-3.131,0-6.201-1.522-8.057-4.329
|
||||
c-2.938-4.445-1.716-10.43,2.729-13.368c7.542-4.985,14.948-10.622,22.014-16.754c4.022-3.493,10.115-3.063,13.609,0.962
|
||||
c3.493,4.024,3.062,10.117-0.962,13.609c-7.698,6.683-15.781,12.832-24.022,18.28
|
||||
C1422.663,1370.694,1420.817,1371.212,1418.99,1371.212z M1480.743,1310.868c-1.931,0-3.882-0.578-5.577-1.782
|
||||
c-4.344-3.086-5.366-9.108-2.281-13.452c5.366-7.558,10.318-15.487,14.721-23.567c2.549-4.679,8.41-6.406,13.087-3.856
|
||||
c4.679,2.549,6.406,8.409,3.856,13.087c-4.765,8.747-10.126,17.328-15.932,25.506
|
||||
C1486.737,1309.454,1483.762,1310.868,1480.743,1310.868z M1517.216,1232.602c-0.778,0-1.568-0.094-2.356-0.292
|
||||
c-5.169-1.297-8.306-6.538-7.009-11.707c2.256-8.984,3.898-18.121,4.878-27.155c0.575-5.299,5.342-9.13,10.632-8.55
|
||||
c5.298,0.575,9.126,5.335,8.55,10.633c-1.076,9.911-2.875,19.928-5.346,29.771
|
||||
C1525.467,1229.681,1521.535,1232.602,1517.216,1232.602z M1520.169,1146.498c-4.554,0-8.606-3.239-9.472-7.879
|
||||
c-1.672-8.957-4.032-17.905-7.015-26.593c-1.731-5.04,0.953-10.527,5.992-12.257c5.036-1.729,10.528,0.953,12.257,5.992
|
||||
c3.287,9.575,5.889,19.438,7.733,29.318c0.978,5.237-2.475,10.276-7.713,11.254
|
||||
C1521.352,1146.444,1520.757,1146.498,1520.169,1146.498z M1486.631,1067.128c-3.053,0-6.055-1.445-7.93-4.142
|
||||
c-5.223-7.514-11.025-14.791-17.243-21.63c-3.585-3.942-3.295-10.044,0.647-13.629c3.942-3.584,10.044-3.295,13.628,0.648
|
||||
c6.781,7.457,13.11,15.396,18.811,23.597c3.041,4.375,1.961,10.387-2.415,13.428
|
||||
C1490.452,1066.568,1488.532,1067.128,1486.631,1067.128z M1424.593,1007.152c-1.794,0-3.608-0.499-5.227-1.546
|
||||
c-7.728-4.995-15.75-9.441-23.845-13.217l-0.314-0.146c-4.827-2.257-6.911-7.999-4.653-12.826c2.257-4.826,8-6.91,12.825-4.653
|
||||
l0.276,0.129c8.915,4.158,17.716,9.036,26.183,14.508c4.475,2.892,5.758,8.864,2.866,13.339
|
||||
C1430.859,1005.596,1427.759,1007.152,1424.593,1007.152z M1344.533,974.803c-0.7,0-1.41-0.076-2.123-0.236
|
||||
c-8.759-1.966-18.077-3.643-27.693-4.985c-5.277-0.736-8.958-5.611-8.222-10.888c0.737-5.277,5.615-8.957,10.888-8.222
|
||||
c10.137,1.415,19.98,3.187,29.254,5.268c5.199,1.167,8.467,6.327,7.3,11.527C1352.93,971.754,1348.947,974.803,1344.533,974.803z
|
||||
M274.324,966.773c-5.318,0-9.634-4.305-9.647-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.023,0
|
||||
c5.317,0,9.634,4.305,9.647,9.625c0.012,5.328-4.297,9.657-9.625,9.67l-28.943,0.066
|
||||
C274.339,966.773,274.331,966.773,274.324,966.773z M361.152,966.573c-5.318,0-9.635-4.305-9.647-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.338-0.002,9.657,4.297,9.67,9.625s-4.297,9.657-9.625,9.67l-28.943,0.066
|
||||
C361.167,966.573,361.16,966.573,361.152,966.573z M447.979,966.373c-5.318,0-9.634-4.305-9.647-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.942-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.942,0.066C447.995,966.373,447.987,966.373,447.979,966.373z M534.808,966.174
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C534.823,966.174,534.815,966.174,534.808,966.174z M621.636,965.973c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C621.651,965.973,621.643,965.973,621.636,965.973z M708.463,965.774
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C708.478,965.774,708.471,965.774,708.463,965.774z M795.291,965.574c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.292,0.018,9.658,4.297,9.67,9.625c0.012,5.328-4.297,9.657-9.626,9.67
|
||||
l-28.943,0.066C795.306,965.574,795.299,965.574,795.291,965.574z M882.12,965.374c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.317,0,9.634,4.305,9.647,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C882.135,965.374,882.127,965.374,882.12,965.374z M968.947,965.174
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C968.962,965.174,968.955,965.174,968.947,965.174z M1258.376,965.13c-0.103,0-0.204-0.001-0.307-0.005
|
||||
c-8.629-0.27-17.745-0.424-28.69-0.483c-5.328-0.029-9.623-4.372-9.595-9.7c0.029-5.31,4.342-9.595,9.647-9.595
|
||||
c0.018,0,0.036,0,0.054,0c11.114,0.06,20.389,0.216,29.188,0.492c5.326,0.167,9.508,4.619,9.341,9.945
|
||||
C1267.849,961.007,1263.564,965.13,1258.376,965.13z M1055.775,964.974c-5.318,0-9.635-4.305-9.648-9.625
|
||||
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.318,0,9.634,4.305,9.647,9.625
|
||||
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C1055.79,964.974,1055.783,964.974,1055.775,964.974z M1142.603,964.775
|
||||
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.007,0,0.015,0,0.023,0
|
||||
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
|
||||
C1142.619,964.775,1142.611,964.775,1142.603,964.775z"/>
|
||||
<path style="fill:#D13737;" d="M462.452,197.927c-156.647,0-283.638,126.991-283.638,283.638
|
||||
c0,251.801,283.638,464.048,283.638,464.048S746.09,733.366,746.09,481.565C746.09,324.918,619.099,197.927,462.452,197.927z
|
||||
M462.316,679.485c-109.374,0-198.045-88.671-198.045-198.055c0-109.374,88.671-198.045,198.045-198.045
|
||||
c109.384,0,198.055,88.671,198.055,198.045C660.371,590.814,571.701,679.485,462.316,679.485z"/>
|
||||
<path style="fill:#18ACB7;" d="M1737.548,1228.212c-156.647,0-283.638,126.991-283.638,283.638
|
||||
c0,251.801,283.638,464.048,283.638,464.048s283.638-212.246,283.638-464.048
|
||||
C2021.187,1355.203,1894.196,1228.212,1737.548,1228.212z M1737.413,1709.77c-109.374,0-198.045-88.671-198.045-198.055
|
||||
c0-109.374,88.671-198.045,198.045-198.045c109.384,0,198.055,88.671,198.055,198.045
|
||||
C1935.468,1621.1,1846.797,1709.77,1737.413,1709.77z"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 16 KiB |
126
frontend/assets/terms_and_conditions.md
Normal file
@ -0,0 +1,126 @@
|
||||
# Terms and Conditions
|
||||
|
||||
> Last updated: January 09, 2025
|
||||
>
|
||||
> Also see: https://anydev.info/terms-and-conditions/
|
||||
|
||||
Please read these terms and conditions carefully before using our Service.
|
||||
|
||||
## Interpretation and Definitions
|
||||
### Interpretation
|
||||
|
||||
The words of which the initial letter is capitalized have meanings defined under the following conditions. The following definitions shall have the same meaning regardless of whether they appear in singular or in plural.
|
||||
|
||||
### Definitions
|
||||
|
||||
For the purposes of these Terms and Conditions:
|
||||
- **Application** means the software program provided by the Company downloaded by You on any electronic device, named AnyWay
|
||||
- **Application Store** means the digital distribution service operated and developed by Apple Inc. (Apple App Store) or Google Inc. (Google Play Store) in which the Application has been downloaded.
|
||||
- **Affiliate** means an entity that controls, is controlled by or is under common control with a party, where "control" means ownership of 50% or more of the shares, equity interest or other securities entitled to vote for election of directors or other managing authority.
|
||||
- **Country** refers to: Switzerland
|
||||
- **Company** (referred to as either "the Company", "We", "Us" or "Our" in this Agreement) refers to AnyDev.
|
||||
- **Device** means any device that can access the Service such as a computer, a cellphone or a digital tablet.
|
||||
- **Service** refers to the Application.
|
||||
- **Terms and Conditions** (also referred as "Terms") mean these Terms and Conditions that form the entire agreement between You and the Company regarding the use of the Service. This Terms and Conditions agreement has been created with the help of the Terms and Conditions Generator.
|
||||
- **Third-party Social Media Service** means any services or content (including data, information, products or services) provided by a third-party that may be displayed, included or made available by the Service.
|
||||
- **You** means the individual accessing or using the Service, or the company, or other legal entity on behalf of which such individual is accessing or using the Service, as applicable.
|
||||
|
||||
## Acknowledgment
|
||||
|
||||
These are the Terms and Conditions governing the use of this Service and the agreement that operates between You and the Company. These Terms and Conditions set out the rights and obligations of all users regarding the use of the Service.
|
||||
|
||||
Your access to and use of the Service is conditioned on Your acceptance of and compliance with these Terms and Conditions. These Terms and Conditions apply to all visitors, users and others who access or use the Service.
|
||||
|
||||
By accessing or using the Service You agree to be bound by these Terms and Conditions. If You disagree with any part of these Terms and Conditions then You may not access the Service.
|
||||
|
||||
You represent that you are over the age of 18. The Company does not permit those under 18 to use the Service.
|
||||
|
||||
Your access to and use of the Service is also conditioned on Your acceptance of and compliance with the Privacy Policy of the Company. Our Privacy Policy describes Our policies and procedures on the collection, use and disclosure of Your personal information when You use the Application or the Website and tells You about Your privacy rights and how the law protects You. Please read Our Privacy Policy carefully before using Our Service.
|
||||
|
||||
|
||||
## Links to Other Websites
|
||||
|
||||
Our Service may contain links to third-party web sites or services that are not owned or controlled by the Company.
|
||||
|
||||
The Company has no control over, and assumes no responsibility for, the content, privacy policies, or practices of any third party web sites or services. You further acknowledge and agree that the Company shall not be responsible or liable, directly or indirectly, for any damage or loss caused or alleged to be caused by or in connection with the use of or reliance on any such content, goods or services available on or through any such web sites or services.
|
||||
|
||||
We strongly advise You to read the terms and conditions and privacy policies of any third-party web sites or services that You visit.
|
||||
|
||||
|
||||
## Termination
|
||||
|
||||
We may terminate or suspend Your access immediately, without prior notice or liability, for any reason whatsoever, including without limitation if You breach these Terms and Conditions.
|
||||
|
||||
Upon termination, Your right to use the Service will cease immediately.
|
||||
|
||||
|
||||
## Limitation of Liability
|
||||
|
||||
Notwithstanding any damages that You might incur, the entire liability of the Company and any of its suppliers under any provision of this Terms and Your exclusive remedy for all of the foregoing shall be limited to the amount actually paid by You through the Service or 100 USD if You haven't purchased anything through the Service.
|
||||
|
||||
To the maximum extent permitted by applicable law, in no event shall the Company or its suppliers be liable for any special, incidental, indirect, punitive, or consequential damages whatsoever (including, but not limited to, damages for loss of profits, loss of data, loss of use, loss of goodwill, business interruption, personal injury, loss of privacy, or any other pecuniary or non-pecuniary loss or damage) arising out of or in any way related to the use of or inability to use the Service, third-party software and/or third-party hardware used with the Service, or otherwise in connection with any provision of this Terms, even if the Company or any supplier has been advised of the possibility of such damages and even if the remedy fails of its essential purpose.
|
||||
|
||||
In particular, the Company and its suppliers are not liable for any damages or losses that may arise from:
|
||||
- Your reliance on any content provided through the Service;
|
||||
- Errors, mistakes, or inaccuracies of content;
|
||||
- Any unauthorized access to or use of our servers and/or any personal information stored therein;
|
||||
- Any interruption or cessation of transmission to or from the Service;
|
||||
- Any bugs, viruses, trojan horses, or the like which may be transmitted to or through the Service by any third party;
|
||||
- Any errors or omissions in any content or for any loss or damage of any kind incurred as a result of Your use of any content posted, emailed, transmitted, or otherwise made available via the Service.
|
||||
|
||||
The Company shall not be liable for any loss or damage resulting from failure to meet any of Your expectations related to the use or performance of the Service, including but not limited to inaccuracies in GPS location services, suggested itineraries, or other location-based services.
|
||||
|
||||
Some jurisdictions do not allow the exclusion or limitation of certain types of liability, such as incidental or consequential damages or implied warranties. Therefore, the above limitations or exclusions may not apply to You. In such jurisdictions, each party's liability will be limited to the greatest extent permitted by law.
|
||||
|
||||
To the extent permitted by applicable law, the Company and its suppliers’ aggregate liability to You for any claims arising from or related to the use of the Service shall in no event exceed the greater of (a) the amount You paid, if any, for accessing the Service during the twelve (12) month period preceding the claim or (b) one hundred (100) USD.
|
||||
|
||||
You agree that the limitations of liability set forth in this section will survive any termination or expiration of these Terms and apply even if any limited remedy specified in these Terms is found to have failed its essential purpose.
|
||||
"AS IS" and "AS AVAILABLE" Disclaimer
|
||||
|
||||
The Service is provided to You "AS IS" and "AS AVAILABLE" and with all faults and defects without warranty of any kind. To the maximum extent permitted under applicable law, the Company, on its own behalf and on behalf of its Affiliates and its and their respective licensors and service providers, expressly disclaims all warranties, whether express, implied, statutory or otherwise, with respect to the Service, including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement, and warranties that may arise out of course of dealing, course of performance, usage or trade practice. Without limitation to the foregoing, the Company provides no warranty or undertaking, and makes no representation of any kind that the Service will meet Your requirements, achieve any intended results, be compatible or work with any other software, applications, systems or services, operate without interruption, meet any performance or reliability standards or be error free or that any errors or defects can or will be corrected.
|
||||
|
||||
Without limiting the foregoing, neither the Company nor any of the company's provider makes any representation or warranty of any kind, express or implied: (i) as to the operation or availability of the Service, or the information, content, and materials or products included thereon; (ii) that the Service will be uninterrupted or error-free; (iii) as to the accuracy, reliability, or currency of any information or content provided through the Service; or (iv) that the Service, its servers, the content, or e-mails sent from or on behalf of the Company are free of viruses, scripts, trojan horses, worms, malware, timebombs or other harmful components.
|
||||
|
||||
Some jurisdictions do not allow the exclusion of certain types of warranties or limitations on applicable statutory rights of a consumer, so some or all of the above exclusions and limitations may not apply to You. But in such a case the exclusions and limitations set forth in this section shall be applied to the greatest extent enforceable under applicable law.
|
||||
|
||||
|
||||
## Governing Law
|
||||
|
||||
The laws of the Country, excluding its conflicts of law rules, shall govern this Terms and Your use of the Service. Your use of the Application may also be subject to other local, state, national, or international laws.
|
||||
|
||||
|
||||
## Disputes Resolution
|
||||
|
||||
If You have any concern or dispute about the Service, You agree to first try to resolve the dispute informally by contacting the Company.
|
||||
For European Union (EU) Users
|
||||
|
||||
If You are a European Union consumer, you will benefit from any mandatory provisions of the law of the country in which You are resident.
|
||||
|
||||
|
||||
## United States Legal Compliance
|
||||
|
||||
You represent and warrant that (i) You are not located in a country that is subject to the United States government embargo, or that has been designated by the United States government as a "terrorist supporting" country, and (ii) You are not listed on any United States government list of prohibited or restricted parties.
|
||||
|
||||
|
||||
## Severability and Waiver
|
||||
### Severability
|
||||
|
||||
If any provision of these Terms is held to be unenforceable or invalid, such provision will be changed and interpreted to accomplish the objectives of such provision to the greatest extent possible under applicable law and the remaining provisions will continue in full force and effect.
|
||||
|
||||
### Waiver
|
||||
|
||||
Except as provided herein, the failure to exercise a right or to require performance of an obligation under these Terms shall not affect a party's ability to exercise such right or require such performance at any time thereafter nor shall the waiver of a breach constitute a waiver of any subsequent breach.
|
||||
Translation Interpretation
|
||||
|
||||
These Terms and Conditions may have been translated if We have made them available to You on our Service. You agree that the original English text shall prevail in the case of a dispute.
|
||||
Changes to These Terms and Conditions
|
||||
|
||||
We reserve the right, at Our sole discretion, to modify or replace these Terms at any time. If a revision is material We will make reasonable efforts to provide at least 30 days' notice prior to any new terms taking effect. What constitutes a material change will be determined at Our sole discretion.
|
||||
|
||||
By continuing to access or use Our Service after those revisions become effective, You agree to be bound by the revised terms. If You do not agree to the new terms, in whole or in part, please stop using the website and the Service.
|
||||
|
||||
|
||||
## Contact Us
|
||||
|
||||
If you have any questions about these Terms and Conditions, You can contact us:
|
||||
- By visiting this page on our website: https://anydev.info
|
6
frontend/ios/.gitignore
vendored
@ -1,3 +1,9 @@
|
||||
# fastlane secret
|
||||
.env
|
||||
secret.env
|
||||
*.mobileprovision
|
||||
report.xml
|
||||
|
||||
**/dgph
|
||||
*.mode1v3
|
||||
*.mode2v3
|
||||
|
@ -1 +1,2 @@
|
||||
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"
|
||||
#include "Generated.xcconfig"
|
||||
|
@ -1 +1,2 @@
|
||||
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"
|
||||
#include "Generated.xcconfig"
|
||||
|
5
frontend/ios/Gemfile
Normal file
@ -0,0 +1,5 @@
|
||||
source "https://rubygems.org"
|
||||
|
||||
gem "fastlane"
|
||||
gem "cocoapods"
|
||||
|
59
frontend/ios/Podfile
Normal file
@ -0,0 +1,59 @@
|
||||
# Uncomment this line to define a global platform for your project
|
||||
# platform :ios, '12.0'
|
||||
|
||||
# CocoaPods analytics sends network stats synchronously affecting flutter build latency.
|
||||
ENV['COCOAPODS_DISABLE_STATS'] = 'true'
|
||||
|
||||
project 'Runner', {
|
||||
'Debug' => :debug,
|
||||
'Profile' => :release,
|
||||
'Release' => :release,
|
||||
}
|
||||
|
||||
def flutter_root
|
||||
generated_xcode_build_settings_path = File.expand_path(File.join('..', 'Flutter', 'Generated.xcconfig'), __FILE__)
|
||||
unless File.exist?(generated_xcode_build_settings_path)
|
||||
raise "#{generated_xcode_build_settings_path} must exist. If you're running pod install manually, make sure flutter pub get is executed first"
|
||||
end
|
||||
|
||||
File.foreach(generated_xcode_build_settings_path) do |line|
|
||||
matches = line.match(/FLUTTER_ROOT\=(.*)/)
|
||||
return matches[1].strip if matches
|
||||
end
|
||||
raise "FLUTTER_ROOT not found in #{generated_xcode_build_settings_path}. Try deleting Generated.xcconfig, then run flutter pub get"
|
||||
end
|
||||
|
||||
require File.expand_path(File.join('packages', 'flutter_tools', 'bin', 'podhelper'), flutter_root)
|
||||
|
||||
flutter_ios_podfile_setup
|
||||
|
||||
target 'Runner' do
|
||||
use_frameworks!
|
||||
use_modular_headers!
|
||||
|
||||
flutter_install_all_ios_pods File.dirname(File.realpath(__FILE__))
|
||||
target 'RunnerTests' do
|
||||
inherit! :search_paths
|
||||
end
|
||||
end
|
||||
|
||||
post_install do |installer|
|
||||
installer.pods_project.targets.each do |target|
|
||||
flutter_additional_ios_build_settings(target)
|
||||
|
||||
target.build_configurations.each do |config|
|
||||
# You can remove unused permissions here
|
||||
# for more information: https://github.com/BaseflowIT/flutter-permission-handler/blob/master/permission_handler/ios/Classes/PermissionHandlerEnums.h
|
||||
config.build_settings['GCC_PREPROCESSOR_DEFINITIONS'] ||= [
|
||||
'$(inherited)',
|
||||
## The 'PERMISSION_LOCATION' macro enables the `locationWhenInUse` and `locationAlways` permission. If
|
||||
## the application only requires `locationWhenInUse`, only specify the `PERMISSION_LOCATION_WHENINUSE`
|
||||
## macro.
|
||||
##
|
||||
## dart: [PermissionGroup.location, PermissionGroup.locationAlways, PermissionGroup.locationWhenInUse]
|
||||
'PERMISSION_LOCATION=1',
|
||||
'PERMISSION_LOCATION_WHENINUSE=0',
|
||||
]
|
||||
end
|
||||
end
|
||||
end
|
87
frontend/ios/Podfile.lock
Normal file
@ -0,0 +1,87 @@
|
||||
PODS:
|
||||
- Flutter (1.0.0)
|
||||
- geocoding_ios (1.0.5):
|
||||
- Flutter
|
||||
- geolocator_apple (1.2.0):
|
||||
- Flutter
|
||||
- Google-Maps-iOS-Utils (6.1.0):
|
||||
- GoogleMaps (~> 9.0)
|
||||
- google_maps_flutter_ios (0.0.1):
|
||||
- Flutter
|
||||
- Google-Maps-iOS-Utils (< 7.0, >= 5.0)
|
||||
- GoogleMaps (< 10.0, >= 8.4)
|
||||
- GoogleMaps (9.2.0):
|
||||
- GoogleMaps/Maps (= 9.2.0)
|
||||
- GoogleMaps/Maps (9.2.0)
|
||||
- map_launcher (0.0.1):
|
||||
- Flutter
|
||||
- path_provider_foundation (0.0.1):
|
||||
- Flutter
|
||||
- FlutterMacOS
|
||||
- permission_handler_apple (9.3.0):
|
||||
- Flutter
|
||||
- shared_preferences_foundation (0.0.1):
|
||||
- Flutter
|
||||
- FlutterMacOS
|
||||
- sqflite (0.0.3):
|
||||
- Flutter
|
||||
- FlutterMacOS
|
||||
- url_launcher_ios (0.0.1):
|
||||
- Flutter
|
||||
|
||||
DEPENDENCIES:
|
||||
- Flutter (from `Flutter`)
|
||||
- geocoding_ios (from `.symlinks/plugins/geocoding_ios/ios`)
|
||||
- geolocator_apple (from `.symlinks/plugins/geolocator_apple/ios`)
|
||||
- google_maps_flutter_ios (from `.symlinks/plugins/google_maps_flutter_ios/ios`)
|
||||
- map_launcher (from `.symlinks/plugins/map_launcher/ios`)
|
||||
- path_provider_foundation (from `.symlinks/plugins/path_provider_foundation/darwin`)
|
||||
- permission_handler_apple (from `.symlinks/plugins/permission_handler_apple/ios`)
|
||||
- shared_preferences_foundation (from `.symlinks/plugins/shared_preferences_foundation/darwin`)
|
||||
- sqflite (from `.symlinks/plugins/sqflite/darwin`)
|
||||
- url_launcher_ios (from `.symlinks/plugins/url_launcher_ios/ios`)
|
||||
|
||||
SPEC REPOS:
|
||||
trunk:
|
||||
- Google-Maps-iOS-Utils
|
||||
- GoogleMaps
|
||||
|
||||
EXTERNAL SOURCES:
|
||||
Flutter:
|
||||
:path: Flutter
|
||||
geocoding_ios:
|
||||
:path: ".symlinks/plugins/geocoding_ios/ios"
|
||||
geolocator_apple:
|
||||
:path: ".symlinks/plugins/geolocator_apple/ios"
|
||||
google_maps_flutter_ios:
|
||||
:path: ".symlinks/plugins/google_maps_flutter_ios/ios"
|
||||
map_launcher:
|
||||
:path: ".symlinks/plugins/map_launcher/ios"
|
||||
path_provider_foundation:
|
||||
:path: ".symlinks/plugins/path_provider_foundation/darwin"
|
||||
permission_handler_apple:
|
||||
:path: ".symlinks/plugins/permission_handler_apple/ios"
|
||||
shared_preferences_foundation:
|
||||
:path: ".symlinks/plugins/shared_preferences_foundation/darwin"
|
||||
sqflite:
|
||||
:path: ".symlinks/plugins/sqflite/darwin"
|
||||
url_launcher_ios:
|
||||
:path: ".symlinks/plugins/url_launcher_ios/ios"
|
||||
|
||||
SPEC CHECKSUMS:
|
||||
Flutter: e0871f40cf51350855a761d2e70bf5af5b9b5de7
|
||||
geocoding_ios: bcbdaa6bddd7d3129c9bcb8acddc5d8778689768
|
||||
geolocator_apple: d981750b9f47dbdb02427e1476d9a04397beb8d9
|
||||
Google-Maps-iOS-Utils: 0a484b05ed21d88c9f9ebbacb007956edd508a96
|
||||
google_maps_flutter_ios: 0291eb2aa252298a769b04d075e4a9d747ff7264
|
||||
GoogleMaps: 634ec3ca99698b31ca2253d64f017217d70cfb38
|
||||
map_launcher: fe43bda6720bb73c12fcc1bdd86123ff49a4d4d6
|
||||
path_provider_foundation: 080d55be775b7414fd5a5ef3ac137b97b097e564
|
||||
permission_handler_apple: 4ed2196e43d0651e8ff7ca3483a069d469701f2d
|
||||
shared_preferences_foundation: 9e1978ff2562383bd5676f64ec4e9aa8fa06a6f7
|
||||
sqflite: c35dad70033b8862124f8337cc994a809fcd9fa3
|
||||
url_launcher_ios: 694010445543906933d732453a59da0a173ae33d
|
||||
|
||||
PODFILE CHECKSUM: bd1a78910c05ac1e3a220e80f392c61ab2cc8789
|
||||
|
||||
COCOAPODS: 1.10.2
|
@ -11,9 +11,11 @@
|
||||
331C808B294A63AB00263BE5 /* RunnerTests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 331C807B294A618700263BE5 /* RunnerTests.swift */; };
|
||||
3B3967161E833CAA004F5970 /* AppFrameworkInfo.plist in Resources */ = {isa = PBXBuildFile; fileRef = 3B3967151E833CAA004F5970 /* AppFrameworkInfo.plist */; };
|
||||
74858FAF1ED2DC5600515810 /* AppDelegate.swift in Sources */ = {isa = PBXBuildFile; fileRef = 74858FAE1ED2DC5600515810 /* AppDelegate.swift */; };
|
||||
8F724AF5AC92A8A68D89C67E /* Pods_Runner.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */; };
|
||||
97C146FC1CF9000F007C117D /* Main.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FA1CF9000F007C117D /* Main.storyboard */; };
|
||||
97C146FE1CF9000F007C117D /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FD1CF9000F007C117D /* Assets.xcassets */; };
|
||||
97C147011CF9000F007C117D /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FF1CF9000F007C117D /* LaunchScreen.storyboard */; };
|
||||
CDD1C9EB82AEC89C2181F722 /* Pods_RunnerTests.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXContainerItemProxy section */
|
||||
@ -40,14 +42,20 @@
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_Runner.framework; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
1498D2321E8E86230040F4C2 /* GeneratedPluginRegistrant.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = GeneratedPluginRegistrant.h; sourceTree = "<group>"; };
|
||||
1498D2331E8E89220040F4C2 /* GeneratedPluginRegistrant.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = GeneratedPluginRegistrant.m; sourceTree = "<group>"; };
|
||||
282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.profile.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.profile.xcconfig"; sourceTree = "<group>"; };
|
||||
3023467726A2A8275ED51C3E /* Pods-Runner.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.debug.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"; sourceTree = "<group>"; };
|
||||
331C807B294A618700263BE5 /* RunnerTests.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = RunnerTests.swift; sourceTree = "<group>"; };
|
||||
331C8081294A63A400263BE5 /* RunnerTests.xctest */ = {isa = PBXFileReference; explicitFileType = wrapper.cfbundle; includeInIndex = 0; path = RunnerTests.xctest; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
3B3967151E833CAA004F5970 /* AppFrameworkInfo.plist */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.plist.xml; name = AppFrameworkInfo.plist; path = Flutter/AppFrameworkInfo.plist; sourceTree = "<group>"; };
|
||||
4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_RunnerTests.framework; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
5F8BB7E700693DEAB89BBE69 /* Pods-Runner.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.release.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"; sourceTree = "<group>"; };
|
||||
74858FAD1ED2DC5600515810 /* Runner-Bridging-Header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "Runner-Bridging-Header.h"; sourceTree = "<group>"; };
|
||||
74858FAE1ED2DC5600515810 /* AppDelegate.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = AppDelegate.swift; sourceTree = "<group>"; };
|
||||
7AFA3C8E1D35360C0083082E /* Release.xcconfig */ = {isa = PBXFileReference; lastKnownFileType = text.xcconfig; name = Release.xcconfig; path = Flutter/Release.xcconfig; sourceTree = "<group>"; };
|
||||
7B8A81C772249160491754F9 /* Pods-Runner.profile.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.profile.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.profile.xcconfig"; sourceTree = "<group>"; };
|
||||
9740EEB21CF90195004384FC /* Debug.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = Debug.xcconfig; path = Flutter/Debug.xcconfig; sourceTree = "<group>"; };
|
||||
9740EEB31CF90195004384FC /* Generated.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = Generated.xcconfig; path = Flutter/Generated.xcconfig; sourceTree = "<group>"; };
|
||||
97C146EE1CF9000F007C117D /* Runner.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = Runner.app; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
@ -55,19 +63,43 @@
|
||||
97C146FD1CF9000F007C117D /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
|
||||
97C147001CF9000F007C117D /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/LaunchScreen.storyboard; sourceTree = "<group>"; };
|
||||
97C147021CF9000F007C117D /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
|
||||
A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.release.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.release.xcconfig"; sourceTree = "<group>"; };
|
||||
DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.debug.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.debug.xcconfig"; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
|
||||
/* Begin PBXFrameworksBuildPhase section */
|
||||
03EC59CC2AABC9D86B4ABFD7 /* Frameworks */ = {
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
CDD1C9EB82AEC89C2181F722 /* Pods_RunnerTests.framework in Frameworks */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
97C146EB1CF9000F007C117D /* Frameworks */ = {
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
8F724AF5AC92A8A68D89C67E /* Pods_Runner.framework in Frameworks */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXFrameworksBuildPhase section */
|
||||
|
||||
/* Begin PBXGroup section */
|
||||
1C946B8D83A95663C2489C91 /* Pods */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
3023467726A2A8275ED51C3E /* Pods-Runner.debug.xcconfig */,
|
||||
5F8BB7E700693DEAB89BBE69 /* Pods-Runner.release.xcconfig */,
|
||||
7B8A81C772249160491754F9 /* Pods-Runner.profile.xcconfig */,
|
||||
DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */,
|
||||
A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */,
|
||||
282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */,
|
||||
);
|
||||
path = Pods;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
331C8082294A63A400263BE5 /* RunnerTests */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
@ -76,6 +108,15 @@
|
||||
path = RunnerTests;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
3ECCC9BD7D0792871219624C /* Frameworks */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */,
|
||||
4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */,
|
||||
);
|
||||
name = Frameworks;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
9740EEB11CF90186004384FC /* Flutter */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
@ -94,6 +135,8 @@
|
||||
97C146F01CF9000F007C117D /* Runner */,
|
||||
97C146EF1CF9000F007C117D /* Products */,
|
||||
331C8082294A63A400263BE5 /* RunnerTests */,
|
||||
1C946B8D83A95663C2489C91 /* Pods */,
|
||||
3ECCC9BD7D0792871219624C /* Frameworks */,
|
||||
);
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
@ -128,8 +171,10 @@
|
||||
isa = PBXNativeTarget;
|
||||
buildConfigurationList = 331C8087294A63A400263BE5 /* Build configuration list for PBXNativeTarget "RunnerTests" */;
|
||||
buildPhases = (
|
||||
F27C1B361CA1B045C8D36B3B /* [CP] Check Pods Manifest.lock */,
|
||||
331C807D294A63A400263BE5 /* Sources */,
|
||||
331C807F294A63A400263BE5 /* Resources */,
|
||||
03EC59CC2AABC9D86B4ABFD7 /* Frameworks */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@ -145,12 +190,15 @@
|
||||
isa = PBXNativeTarget;
|
||||
buildConfigurationList = 97C147051CF9000F007C117D /* Build configuration list for PBXNativeTarget "Runner" */;
|
||||
buildPhases = (
|
||||
2116AEE9DABFBBDED304ABEB /* [CP] Check Pods Manifest.lock */,
|
||||
9740EEB61CF901F6004384FC /* Run Script */,
|
||||
97C146EA1CF9000F007C117D /* Sources */,
|
||||
97C146EB1CF9000F007C117D /* Frameworks */,
|
||||
97C146EC1CF9000F007C117D /* Resources */,
|
||||
9705A1C41CF9048500538489 /* Embed Frameworks */,
|
||||
3B06AD1E1E4923F5004D2608 /* Thin Binary */,
|
||||
FE4BAF74959AF0624BA808EE /* [CP] Embed Pods Frameworks */,
|
||||
EE58653D94051600FD646EBE /* [CP] Copy Pods Resources */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@ -222,6 +270,28 @@
|
||||
/* End PBXResourcesBuildPhase section */
|
||||
|
||||
/* Begin PBXShellScriptBuildPhase section */
|
||||
2116AEE9DABFBBDED304ABEB /* [CP] Check Pods Manifest.lock */ = {
|
||||
isa = PBXShellScriptBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
);
|
||||
inputFileListPaths = (
|
||||
);
|
||||
inputPaths = (
|
||||
"${PODS_PODFILE_DIR_PATH}/Podfile.lock",
|
||||
"${PODS_ROOT}/Manifest.lock",
|
||||
);
|
||||
name = "[CP] Check Pods Manifest.lock";
|
||||
outputFileListPaths = (
|
||||
);
|
||||
outputPaths = (
|
||||
"$(DERIVED_FILE_DIR)/Pods-Runner-checkManifestLockResult.txt",
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
shellPath = /bin/sh;
|
||||
shellScript = "diff \"${PODS_PODFILE_DIR_PATH}/Podfile.lock\" \"${PODS_ROOT}/Manifest.lock\" > /dev/null\nif [ $? != 0 ] ; then\n # print error to STDERR\n echo \"error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or update your CocoaPods installation.\" >&2\n exit 1\nfi\n# This output is used by Xcode 'outputs' to avoid re-running this script phase.\necho \"SUCCESS\" > \"${SCRIPT_OUTPUT_FILE_0}\"\n";
|
||||
showEnvVarsInLog = 0;
|
||||
};
|
||||
3B06AD1E1E4923F5004D2608 /* Thin Binary */ = {
|
||||
isa = PBXShellScriptBuildPhase;
|
||||
alwaysOutOfDate = 1;
|
||||
@ -253,6 +323,62 @@
|
||||
shellPath = /bin/sh;
|
||||
shellScript = "/bin/sh \"$FLUTTER_ROOT/packages/flutter_tools/bin/xcode_backend.sh\" build";
|
||||
};
|
||||
EE58653D94051600FD646EBE /* [CP] Copy Pods Resources */ = {
|
||||
isa = PBXShellScriptBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
);
|
||||
inputFileListPaths = (
|
||||
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources-${CONFIGURATION}-input-files.xcfilelist",
|
||||
);
|
||||
name = "[CP] Copy Pods Resources";
|
||||
outputFileListPaths = (
|
||||
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources-${CONFIGURATION}-output-files.xcfilelist",
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
shellPath = /bin/sh;
|
||||
shellScript = "\"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources.sh\"\n";
|
||||
showEnvVarsInLog = 0;
|
||||
};
|
||||
F27C1B361CA1B045C8D36B3B /* [CP] Check Pods Manifest.lock */ = {
|
||||
isa = PBXShellScriptBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
);
|
||||
inputFileListPaths = (
|
||||
);
|
||||
inputPaths = (
|
||||
"${PODS_PODFILE_DIR_PATH}/Podfile.lock",
|
||||
"${PODS_ROOT}/Manifest.lock",
|
||||
);
|
||||
name = "[CP] Check Pods Manifest.lock";
|
||||
outputFileListPaths = (
|
||||
);
|
||||
outputPaths = (
|
||||
"$(DERIVED_FILE_DIR)/Pods-RunnerTests-checkManifestLockResult.txt",
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
shellPath = /bin/sh;
|
||||
shellScript = "diff \"${PODS_PODFILE_DIR_PATH}/Podfile.lock\" \"${PODS_ROOT}/Manifest.lock\" > /dev/null\nif [ $? != 0 ] ; then\n # print error to STDERR\n echo \"error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or update your CocoaPods installation.\" >&2\n exit 1\nfi\n# This output is used by Xcode 'outputs' to avoid re-running this script phase.\necho \"SUCCESS\" > \"${SCRIPT_OUTPUT_FILE_0}\"\n";
|
||||
showEnvVarsInLog = 0;
|
||||
};
|
||||
FE4BAF74959AF0624BA808EE /* [CP] Embed Pods Frameworks */ = {
|
||||
isa = PBXShellScriptBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
);
|
||||
inputFileListPaths = (
|
||||
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks-${CONFIGURATION}-input-files.xcfilelist",
|
||||
);
|
||||
name = "[CP] Embed Pods Frameworks";
|
||||
outputFileListPaths = (
|
||||
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks-${CONFIGURATION}-output-files.xcfilelist",
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
shellPath = /bin/sh;
|
||||
shellScript = "\"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks.sh\"\n";
|
||||
showEnvVarsInLog = 0;
|
||||
};
|
||||
/* End PBXShellScriptBuildPhase section */
|
||||
|
||||
/* Begin PBXSourcesBuildPhase section */
|
||||
@ -327,6 +453,7 @@
|
||||
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
|
||||
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
|
||||
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
|
||||
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
|
||||
CLANG_WARN_STRICT_PROTOTYPES = YES;
|
||||
CLANG_WARN_SUSPICIOUS_MOVE = YES;
|
||||
@ -361,27 +488,45 @@
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
|
||||
CODE_SIGN_STYLE = Manual;
|
||||
CURRENT_PROJECT_VERSION = 3;
|
||||
DEVELOPMENT_TEAM = "";
|
||||
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
|
||||
ENABLE_BITCODE = NO;
|
||||
INFOPLIST_FILE = Runner/Info.plist;
|
||||
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
|
||||
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
|
||||
MARKETING_VERSION = 1.0.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
|
||||
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
|
||||
SUPPORTS_MACCATALYST = NO;
|
||||
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
|
||||
SWIFT_VERSION = 5.0;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
VERSIONING_SYSTEM = "apple-generic";
|
||||
};
|
||||
name = Profile;
|
||||
};
|
||||
331C8088294A63A400263BE5 /* Debug */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
baseConfigurationReference = DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */;
|
||||
buildSettings = {
|
||||
BUNDLE_LOADER = "$(TEST_HOST)";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
CURRENT_PROJECT_VERSION = 3;
|
||||
DEVELOPMENT_TEAM = L32Y3D8V83;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
|
||||
@ -395,10 +540,12 @@
|
||||
};
|
||||
331C8089294A63A400263BE5 /* Release */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
baseConfigurationReference = A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */;
|
||||
buildSettings = {
|
||||
BUNDLE_LOADER = "$(TEST_HOST)";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
CURRENT_PROJECT_VERSION = 3;
|
||||
DEVELOPMENT_TEAM = L32Y3D8V83;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
|
||||
@ -410,10 +557,12 @@
|
||||
};
|
||||
331C808A294A63A400263BE5 /* Profile */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
baseConfigurationReference = 282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */;
|
||||
buildSettings = {
|
||||
BUNDLE_LOADER = "$(TEST_HOST)";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
CURRENT_PROJECT_VERSION = 3;
|
||||
DEVELOPMENT_TEAM = L32Y3D8V83;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
|
||||
@ -447,6 +596,7 @@
|
||||
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
|
||||
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
|
||||
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
|
||||
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
|
||||
CLANG_WARN_STRICT_PROTOTYPES = YES;
|
||||
CLANG_WARN_SUSPICIOUS_MOVE = YES;
|
||||
@ -504,6 +654,7 @@
|
||||
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
|
||||
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
|
||||
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
|
||||
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
|
||||
CLANG_WARN_STRICT_PROTOTYPES = YES;
|
||||
CLANG_WARN_SUSPICIOUS_MOVE = YES;
|
||||
@ -540,18 +691,34 @@
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
|
||||
CODE_SIGN_STYLE = Manual;
|
||||
CURRENT_PROJECT_VERSION = 3;
|
||||
DEVELOPMENT_TEAM = "";
|
||||
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
|
||||
ENABLE_BITCODE = NO;
|
||||
INFOPLIST_FILE = Runner/Info.plist;
|
||||
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
|
||||
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
|
||||
MARKETING_VERSION = 1.0.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
|
||||
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
|
||||
SUPPORTS_MACCATALYST = NO;
|
||||
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
|
||||
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
|
||||
SWIFT_VERSION = 5.0;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
VERSIONING_SYSTEM = "apple-generic";
|
||||
};
|
||||
name = Debug;
|
||||
@ -562,17 +729,33 @@
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
|
||||
CODE_SIGN_STYLE = Manual;
|
||||
CURRENT_PROJECT_VERSION = 3;
|
||||
DEVELOPMENT_TEAM = "";
|
||||
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
|
||||
ENABLE_BITCODE = NO;
|
||||
INFOPLIST_FILE = Runner/Info.plist;
|
||||
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
|
||||
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
|
||||
MARKETING_VERSION = 1.0.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
|
||||
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
|
||||
SUPPORTS_MACCATALYST = NO;
|
||||
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
|
||||
SWIFT_VERSION = 5.0;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
VERSIONING_SYSTEM = "apple-generic";
|
||||
};
|
||||
name = Release;
|
||||
|
@ -4,4 +4,7 @@
|
||||
<FileRef
|
||||
location = "group:Runner.xcodeproj">
|
||||
</FileRef>
|
||||
<FileRef
|
||||
location = "group:Pods/Pods.xcodeproj">
|
||||
</FileRef>
|
||||
</Workspace>
|
||||
|
@ -1,12 +1,14 @@
|
||||
import UIKit
|
||||
import Flutter
|
||||
import GoogleMaps
|
||||
|
||||
@UIApplicationMain
|
||||
@main
|
||||
@objc class AppDelegate: FlutterAppDelegate {
|
||||
override func application(
|
||||
_ application: UIApplication,
|
||||
didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey: Any]?
|
||||
) -> Bool {
|
||||
GMSServices.provideAPIKey("IOS_GOOGLE_MAPS_API_KEY")
|
||||
GeneratedPluginRegistrant.register(with: self)
|
||||
return super.application(application, didFinishLaunchingWithOptions: launchOptions)
|
||||
}
|
||||
|
@ -2,10 +2,12 @@
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>CADisableMinimumFrameDurationOnPhone</key>
|
||||
<true/>
|
||||
<key>CFBundleDevelopmentRegion</key>
|
||||
<string>$(DEVELOPMENT_LANGUAGE)</string>
|
||||
<key>CFBundleDisplayName</key>
|
||||
<string>Fast Network Navigation</string>
|
||||
<string>anyway</string>
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>$(EXECUTABLE_NAME)</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
@ -24,6 +26,8 @@
|
||||
<string>$(FLUTTER_BUILD_NUMBER)</string>
|
||||
<key>LSRequiresIPhoneOS</key>
|
||||
<true/>
|
||||
<key>UIApplicationSupportsIndirectInputEvents</key>
|
||||
<true/>
|
||||
<key>UILaunchStoryboardName</key>
|
||||
<string>LaunchScreen</string>
|
||||
<key>UIMainStoryboardFile</key>
|
||||
@ -41,9 +45,38 @@
|
||||
<string>UIInterfaceOrientationLandscapeLeft</string>
|
||||
<string>UIInterfaceOrientationLandscapeRight</string>
|
||||
</array>
|
||||
<key>CADisableMinimumFrameDurationOnPhone</key>
|
||||
<true/>
|
||||
<key>UIApplicationSupportsIndirectInputEvents</key>
|
||||
<true/>
|
||||
<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
|
||||
<string>$(PRODUCT_NAME) optionally uses your location to plan trips directly from your current location.</string>
|
||||
<key>NSLocationWhenInUseUsageDescription</key>
|
||||
<string>$(PRODUCT_NAME) optionally uses your location to plan trips directly from your current location.</string>
|
||||
<key>LSApplicationQueriesSchemes</key>
|
||||
<array>
|
||||
<!-- set by maps launcher -->
|
||||
<string>comgooglemaps</string>
|
||||
<string>baidumap</string>
|
||||
<string>iosamap</string>
|
||||
<string>waze</string>
|
||||
<string>yandexmaps</string>
|
||||
<string>yandexnavi</string>
|
||||
<string>citymapper</string>
|
||||
<string>mapswithme</string>
|
||||
<string>osmandmaps</string>
|
||||
<string>dgis</string>
|
||||
<string>qqmap</string>
|
||||
<string>here-location</string>
|
||||
<string>tomtomgo</string>
|
||||
<string>copilot</string>
|
||||
<string>com.sygic.aura</string>
|
||||
<string>nmap</string>
|
||||
<string>kakaomap</string>
|
||||
<string>tmap</string>
|
||||
<string>szn-mapy</string>
|
||||
<string>mappls</string>
|
||||
<!-- used by url launcher to open web browser -->
|
||||
<string>http</string>
|
||||
<string>https</string>
|
||||
</array>
|
||||
<key>ITSAppUsesNonExemptEncryption</key>
|
||||
<false/>
|
||||
</dict>
|
||||
</plist>
|
||||
|
13
frontend/ios/fastlane/.env.sample
Normal file
@ -0,0 +1,13 @@
|
||||
# SAMPLE env file that replicates the env in the CI/CD pipeline
|
||||
# DO NOT EDIT THIS FILE
|
||||
# Copy this file to local.env and edit the values to match your local environment
|
||||
BUILD_NAME="sample"
|
||||
BUILD_NUMBER="sample"
|
||||
|
||||
IOS_ASC_KEY_ID="sample"
|
||||
IOS_ASC_KEY="sample"
|
||||
IOS_ASC_ISSUER_ID="sample"
|
||||
SIGNING_KEY_FILE_PATH="sample"
|
||||
SIGNING_KEY_PASSWORD="sample"
|
||||
|
||||
IOS_GOOGLE_MAPS_API_KEY="sample"
|
8
frontend/ios/fastlane/Appfile
Normal file
@ -0,0 +1,8 @@
|
||||
app_identifier("info.anydev.testing") # The bundle identifier of your app
|
||||
apple_id("me@moll.re") # Your Apple Developer Portal username
|
||||
|
||||
itc_team_id("127439860") # App Store Connect Team ID
|
||||
team_id("L32Y3D8V83") # Developer Portal Team ID
|
||||
|
||||
# For more information about the Appfile, see:
|
||||
# https://docs.fastlane.tools/advanced/#appfile
|
111
frontend/ios/fastlane/Fastfile
Normal file
@ -0,0 +1,111 @@
|
||||
default_platform(:ios)
|
||||
|
||||
platform :ios do
|
||||
|
||||
desc "Load the App Store Connect API token"
|
||||
lane :load_asc_api_token do
|
||||
app_store_connect_api_key(
|
||||
key_id: ENV["IOS_ASC_KEY_ID"],
|
||||
issuer_id: ENV["IOS_ASC_ISSUER_ID"],
|
||||
key_content: ENV["IOS_ASC_KEY"],
|
||||
is_key_content_base64: true,
|
||||
in_house: false
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
desc "Deploy a new version to closed testing (testflight)"
|
||||
lane :deploy_beta do
|
||||
build_name = ENV["BUILD_NAME"]
|
||||
build_number = ENV["BUILD_NUMBER"]
|
||||
|
||||
load_asc_api_token
|
||||
api_key = lane_context[SharedValues::APP_STORE_CONNECT_API_KEY]
|
||||
|
||||
sync_code_signing(
|
||||
api_key: api_key,
|
||||
type: "appstore",
|
||||
readonly: true,
|
||||
)
|
||||
|
||||
# replace secrets by real values, the stupid way
|
||||
sh(
|
||||
"sed",
|
||||
"-i",
|
||||
"",
|
||||
"s/IOS_GOOGLE_MAPS_API_KEY/#{ENV["IOS_GOOGLE_MAPS_API_KEY"]}/g",
|
||||
"../Runner/AppDelegate.swift"
|
||||
)
|
||||
|
||||
|
||||
|
||||
sh(
|
||||
"flutter",
|
||||
"build",
|
||||
"ipa",
|
||||
"--release",
|
||||
"--build-name=#{build_name}",
|
||||
"--build-number=#{build_number}",
|
||||
)
|
||||
|
||||
# sign the app (whithout rebuilding it)
|
||||
build_app(
|
||||
skip_build_archive: true,
|
||||
archive_path: "../build/ios/archive/Runner.xcarchive"
|
||||
)
|
||||
|
||||
upload_to_testflight(
|
||||
skip_waiting_for_build_processing: true,
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
desc "Deploy a new version as a full release"
|
||||
lane :deploy_release do
|
||||
build_name = ENV["BUILD_NAME"]
|
||||
build_number = ENV["BUILD_NUMBER"]
|
||||
|
||||
load_asc_api_token
|
||||
api_key = lane_context[SharedValues::APP_STORE_CONNECT_API_KEY]
|
||||
|
||||
sync_code_signing(
|
||||
api_key: api_key,
|
||||
type: "appstore",
|
||||
readonly: true,
|
||||
)
|
||||
|
||||
# replace secrets by real values, the stupid way
|
||||
sh(
|
||||
"sed",
|
||||
"-i",
|
||||
"",
|
||||
"s/IOS_GOOGLE_MAPS_API_KEY/#{ENV["IOS_GOOGLE_MAPS_API_KEY"]}/g",
|
||||
"../Runner/AppDelegate.swift"
|
||||
)
|
||||
|
||||
sh(
|
||||
"flutter",
|
||||
"build",
|
||||
"ipa",
|
||||
"--release",
|
||||
"--build-name=#{build_name}",
|
||||
"--build-number=#{build_number}",
|
||||
)
|
||||
|
||||
# sign the app (whithout rebuilding it)
|
||||
build_app(
|
||||
skip_build_archive: true,
|
||||
archive_path: "../build/ios/archive/Runner.xcarchive"
|
||||
)
|
||||
|
||||
upload_to_app_store(
|
||||
skip_screenshots: true,
|
||||
skip_metadata: true,
|
||||
precheck_include_in_app_purchases: false,
|
||||
|
||||
submit_for_review: true,
|
||||
automatic_release: true,
|
||||
# automatically release the app after review
|
||||
)
|
||||
end
|
||||
end
|
8
frontend/ios/fastlane/Matchfile
Normal file
@ -0,0 +1,8 @@
|
||||
git_url("ssh://git@git.kluster.moll.re:2222/anydev/anyway-app-secrets.git")
|
||||
|
||||
storage_mode("git")
|
||||
|
||||
type("appstore") # The default type, can be: appstore, adhoc, enterprise or development
|
||||
|
||||
app_identifier(["info.anydev.anyway"])
|
||||
username("me@moll.re") # Your Apple Developer Portal username
|