Compare commits

...

150 Commits

Author SHA1 Message Date
7967b96d4e Merge pull request 'Revert to main-branch for deployment of the backend' (#67) from fix/backend/revert-to-main-deployment-version into main
Reviewed-on: #67
2025-04-06 17:58:41 +00:00
b05950d595 Merge pull request 'Fixes the overlap of the button and the sliders on small screens' (#65) from fix/frontend/trip-sliders-overlap into main
Reviewed-on: #65
2025-04-06 17:56:59 +00:00
df51a6473b Merge pull request 'Handles errors in a more user-friendly way' (#66) from fix/frontend/better-error-handling into main
Reviewed-on: #66
2025-04-06 17:54:14 +00:00
0b8f2bc94f revert the submodule version to main
Some checks failed
Build and release debug APK / build (pull_request) Has been cancelled
Build and release debugging app to ios testflight / build (pull_request) Has been cancelled
2025-04-06 19:41:24 +02:00
3c5485cda8 add some padding to the sliders
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m57s
Run linting on the backend code / Build (pull_request) Successful in 28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and release debug APK / build (pull_request) Has been cancelled
Build and release debugging app to ios testflight / build (pull_request) Has been cancelled
2025-04-06 19:38:32 +02:00
720e4d1c17 handles errors in a more use friendly way
Some checks failed
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
2025-04-06 19:27:26 +02:00
8ef60104f0 Merge pull request 'Try CI on a selfhosted macos runner' (#64) from fix/frontend/new-ci-attempt into main
Reviewed-on: #64
2025-04-01 17:02:51 +00:00
efd332f8c5 readd run conditions
Some checks failed
Build and release debug APK / build (pull_request) Has been cancelled
Build and release debugging app to ios testflight / build (pull_request) Has been cancelled
2025-04-01 19:01:58 +02:00
bda87859ee app build fixes for ios and android
All checks were successful
Build and release debugging app to ios testflight / build (pull_request) Successful in 26m46s
Build and release debug APK / build (pull_request) Successful in 37m2s
2025-03-24 12:55:00 +01:00
a7e3553246 rename lanes
Some checks failed
Build and release debug APK / build (pull_request) Failing after 13m49s
Build and release debugging app to ios testflight / build (pull_request) Failing after 17m7s
2025-03-24 12:14:12 +01:00
21f57f6929 try once more
Some checks failed
Build and release debugging app to ios testflight / build (pull_request) Has been cancelled
Build and release debug APK / Build APK (pull_request) Failing after 9m52s
2025-03-24 11:47:19 +01:00
86fd50e21d manually specify flutter version in actions
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 59s
Build and release debugging app to ios testflight / build (pull_request) Failing after 26s
2025-03-24 11:39:09 +01:00
2df8a22239 fix missing entry in pubspec
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 38s
Build and release debugging app to ios testflight / build (pull_request) Failing after 24s
2025-03-24 11:32:37 +01:00
6af74804ec more pipeline fixes
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 45s
Build and release debugging app to ios testflight / build (pull_request) Failing after 25s
2025-03-24 11:09:26 +01:00
e3d2c51c6d remove workflow run restrictions for now
Some checks failed
Build and release debugging app to ios testflight / build (pull_request) Failing after 46s
Build and release debug APK / Build APK (pull_request) Failing after 1m21s
2025-03-24 09:21:04 +01:00
0819b8b201 some initial changes 2025-03-23 22:11:24 +01:00
5bc2918a39 Merge pull request 'remove unneeded build targets' (#47) from cleanup/frontend-remove-buildtargets into main
Reviewed-on: #47
2025-03-23 21:03:08 +00:00
114acaf93d some cleanup and updates
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 3m51s
2025-03-23 22:02:41 +01:00
615f028f94 remove unneeded build targets 2025-03-23 22:00:22 +01:00
45c860329f Merge pull request 'Big overhaul of the UI and usability of the app' (#61) from fix/frontend/trip-ui-overhaul into main
Reviewed-on: #61
2025-03-23 20:54:48 +00:00
a676af3a67 automatically save a trip when it is first created
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 3m52s
2025-03-23 21:49:48 +01:00
e148c851e1 quite a few UX improvements 2025-03-23 21:49:48 +01:00
4ad867e609 revamped onboarding 2025-03-23 21:49:48 +01:00
6f2f86f936 account for changed itineraries once landmarks are marked as done or deleted 2025-03-23 21:49:48 +01:00
56c55883ea reworked page layout inheritence 2025-03-23 21:49:46 +01:00
8f6dfd404d more pleasant progress handling, although somewhat flawed 2025-03-23 21:47:33 +01:00
aed407e2d0 logger and launch cleanup 2025-03-23 21:47:33 +01:00
f6d0cd5360 Merge pull request 'backend/feature/add-description' (#63) from backend/feature/add-description into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 1m36s
/ push-to-remote (push) Failing after 33s
Build and deploy the backend to production / Deploy to production (push) Successful in 25s
Reviewed-on: #63
2025-02-21 07:38:15 +00:00
7a18830e99 removed debug from prod
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m51s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-02-20 20:07:20 +01:00
ba14a0279e better logs again
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m41s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-02-20 19:49:18 +01:00
5a2c61d343 better logs
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m40s
Run linting on the backend code / Build (pull_request) Successful in 55s
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-02-20 19:11:23 +01:00
5e27dd9d79 corrected import
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m11s
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Failing after 35m5s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 26s
2025-02-19 16:09:52 +01:00
d92001faaf forgot to add main
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m39s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Failing after 47s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 26s
2025-02-19 16:04:31 +01:00
73f0dc8361 linting
Some checks failed
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2025-02-19 16:04:18 +01:00
05092e55f1 better structure
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m45s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 45s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-02-19 15:53:41 +01:00
83be4b7616 linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Successful in 28s
2025-02-19 14:51:38 +01:00
8a9ec6b4d8 fixed double description
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m39s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 26m40s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 26s
2025-02-19 11:16:01 +01:00
8c3145dfc9 increased max_iter and park support 2025-02-19 11:11:23 +01:00
2bf38119d6 added descriptions 2025-02-19 11:04:18 +01:00
ca711c614f test 2025-02-18 18:50:09 +01:00
357edf3000 added branch 2025-02-18 18:24:04 +01:00
444c47e3a4 Merge pull request 'backend/feature/recompute-trip-time' (#62) from backend/feature/recompute-trip-time into main
Some checks failed
/ push-to-remote (push) Has been cancelled
Build and deploy the backend to production / Build and push image (push) Successful in 1m40s
Build and deploy the backend to production / Deploy to production (push) Successful in 25s
Reviewed-on: #62
2025-02-17 05:40:22 +00:00
da6ab207d9 Update backend/src/logging_config.py
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2025-02-17 05:39:20 +00:00
c15e257dea add trip time update
Some checks failed
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Successful in 27s
2025-02-11 15:42:14 +01:00
5a698dd02c Merge pull request 'Adding licenses' (#58) from licenses into main
Reviewed-on: #58
2025-02-11 08:36:16 +00:00
7e4a4b3dc7 added general license 2025-02-11 08:25:02 +00:00
84e5902436 Merge pull request 'fixed cluster names' (#57) from backend/fix/missing-cluster-names into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 2m9s
/ push-to-remote (push) Failing after 41s
Build and deploy the backend to production / Deploy to production (push) Successful in 23s
Reviewed-on: #57
2025-02-11 06:50:11 +00:00
81330e5eb3 fixed cluster names
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m54s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m19s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-02-11 07:34:50 +01:00
9002483036 Merge pull request 'Removes the rounding from the trip details' (#56) from frontend/no-more-rounding into main
Reviewed-on: #56
2025-02-07 18:09:31 +00:00
0271c3d7a7 removed rounding but app won't compile
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 3m37s
2025-02-07 15:14:21 +01:00
4fd1272ea4 test
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 3m7s
2025-02-07 15:08:00 +01:00
6bedd04a57 removed rounding
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 4m10s
2025-02-07 14:44:18 +01:00
d31ca9f81f Merge pull request 'Frontend UX improvements' (#37) from feature/frontend/image-loading into main
Reviewed-on: #37
2025-02-05 12:55:24 +00:00
f6e396e54b undo add test.py
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and release debug APK / Build APK (pull_request) Has been cancelled
2025-02-05 13:53:10 +01:00
d4de945df8 cleaner trip loading indicator
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m57s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 26s
Build and release debug APK / Build APK (pull_request) Has been cancelled
2025-02-05 13:50:38 +01:00
6f54522b8c Merge pull request 'amazing cache' (#55) from backend/grid-based-cache into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 1m43s
/ push-to-remote (push) Failing after 50s
Build and deploy the backend to production / Deploy to production (push) Successful in 25s
Reviewed-on: #55
2025-01-30 12:40:34 +00:00
080ecd28ae all tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Failing after 4m5s
2025-01-29 09:37:03 +01:00
21706ea7e6 hybrid cache now
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Run linting on the backend code / Build (pull_request) Successful in 28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-29 09:35:26 +01:00
83c1533e78 all tests again
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 58s
2025-01-28 16:31:59 +01:00
1f4815c991 better logs
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2025-01-28 16:31:15 +01:00
699737bc40 more docs
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m39s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 16:24:51 +01:00
1240f86d6e damn xml
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m31s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-01-28 15:59:01 +01:00
2a5023df4b damn xml
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m41s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 15:51:51 +01:00
581644a108 come onnnnn
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 15:26:52 +01:00
f48dcf80c2 better exception
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m7s
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 15:19:03 +01:00
757773f433 correct task adding
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m34s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 1m23s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 14:07:54 +01:00
25c2b6b0d1 better error handling
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m2s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 58s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-28 13:04:42 +01:00
b527318eec fixed background tasks ?
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m40s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 7m26s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 12:38:02 +01:00
f2943eb3ad moved cache back up
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m10s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 6m19s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 12:17:25 +01:00
2ac8499dfb now working
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m38s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 2m50s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 11:52:07 +01:00
4a904c3d3c background task later
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 53s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m15s
2025-01-28 08:25:43 +01:00
978cae290b corrected overpass return and switched to json
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m32s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 7m11s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-28 08:04:54 +01:00
bab6cfe74e all tests passed after cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m42s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 2m18s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-27 20:48:50 +01:00
71abeabbd2 moved tasks
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m39s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 2m48s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-27 19:13:12 +01:00
f64e60ddf6 better error handling
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m39s
Run linting on the backend code / Build (pull_request) Successful in 34s
Run testing on the backend code / Build (pull_request) Failing after 3m3s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-27 18:39:10 +01:00
d6f723bee1 cache later
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m29s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-27 18:29:50 +01:00
a3243431e0 better cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m49s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 10m55s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-27 17:02:41 +01:00
3605408ebb ready for testing
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m58s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 13m25s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 26s
2025-01-27 14:24:19 +01:00
431ae7c670 Merge pull request 'fix loki' (#54) from backend/fix-loki-dependencies into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 1m37s
/ push-to-remote (push) Failing after 46s
Build and deploy the backend to production / Deploy to production (push) Successful in 21s
Reviewed-on: #54
2025-01-24 15:45:33 +00:00
e612a82921 fixed loki + some opti changes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m36s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m46s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 16:03:05 +01:00
163e10032c removed click
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m20s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m31s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 15:01:16 +01:00
06c01837cf ???
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m3s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 09:12:45 +01:00
cd24ee4a67 nothing changed
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m31s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 2m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-24 08:54:42 +01:00
85c69d5e01 installed requests pkg
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 2m59s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-24 06:42:08 +01:00
d02ba85c31 Merge pull request 'backend/better-README' (#53) from backend/better-README into main
Some checks failed
Build and deploy the backend to production / Build and push image (push) Successful in 2m19s
/ push-to-remote (push) Failing after 42s
Build and deploy the backend to production / Deploy to production (push) Successful in 23s
Reviewed-on: #53
2025-01-23 17:11:14 +00:00
0c9b829c3f more stuff
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m2s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Failing after 4m29s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
2025-01-23 18:08:20 +01:00
b9d45ac9f1 better src readme 2025-01-23 18:02:57 +01:00
2f86536893 more readme 2025-01-23 17:57:17 +01:00
8d9e2d9207 Merge pull request 'backend/new-overpass' (#52) from backend/new-overpass into main
Reviewed-on: #52
2025-01-23 15:34:21 +00:00
259b0d36fd corrcected msitakes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m48s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-23 16:22:41 +01:00
577ee232fc overpass as class
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m4s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Failing after 4m39s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 16:02:33 +01:00
1cc935fb34 revert json cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m51s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 5m41s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 22s
2025-01-23 15:33:21 +01:00
4818bde820 cleanup before prod
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m57s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 53s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 12:53:01 +01:00
b30fa1f02e ready for prod
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m25s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m5s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 12:37:47 +01:00
150055c1b2 better tests, ready for prod actually
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m31s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 3m58s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-23 12:28:10 +01:00
f863c41653 excellent results
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 49s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
Run testing on the backend code / Build (pull_request) Failing after 5m48s
2025-01-23 12:17:34 +01:00
f67e2b5dd6 better dosctrings
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m26s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 1m27s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 52s
2025-01-23 12:13:51 +01:00
28ff0460ab cleanup
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m16s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 1m14s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 12:01:49 +01:00
b9356dc4ee linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m51s
Run linting on the backend code / Build (pull_request) Successful in 37s
Run testing on the backend code / Build (pull_request) Failing after 3m8s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 11:28:41 +01:00
78f1dcaab4 fixed up clusters
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m28s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m51s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 10:33:32 +01:00
ca40de82dd working cache
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m19s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 7m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-23 08:04:26 +01:00
c668158341 first homemade OSM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m50s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m44s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-22 20:21:00 +01:00
98576cff0a forgot tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m9s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 10m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 13s
2025-01-16 14:56:32 +01:00
7027444602 linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 43s
Run testing on the backend code / Build (pull_request) Failing after 2m23s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-16 12:22:36 +01:00
e5a4645f7a faster pulp and more tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m14s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 7m45s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
2025-01-16 10:15:24 +01:00
e2e54f5205 finally pulp is working !
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m31s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 5m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-16 07:34:55 +01:00
2be7cd1e61 some rpoblem 2025-01-15 21:12:47 +01:00
3ebe0b7191 good starting point, working pulp 2025-01-15 19:55:48 +01:00
814da4b5f6 working pulp 2025-01-15 17:11:29 +01:00
3fe6056f3c first steps toward pulp 2025-01-15 16:48:32 +01:00
d62dddd424 forgot assertion
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m3s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m11s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 28s
2025-01-15 10:05:42 +01:00
133f81ce3b more print
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m23s
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Successful in 1m18s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-15 10:05:12 +01:00
14385342cc better sym breaking
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m7s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 1m11s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-15 09:35:25 +01:00
dba988629d formatting for tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m23s
Run linting on the backend code / Build (pull_request) Successful in 26s
Run testing on the backend code / Build (pull_request) Failing after 1m13s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 23s
2025-01-15 08:58:17 +01:00
ecd505a9ce massive numpy optimization and more tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 6m58s
2025-01-14 18:23:58 +01:00
4fae658dbb better array handling in the optimizer
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m39s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 1m37s
2025-01-14 11:59:23 +01:00
41976e3e85 corrected timing
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m18s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 2m55s
2025-01-10 16:07:10 +01:00
73373e0fc3 linting
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m9s
Run linting on the backend code / Build (pull_request) Successful in 34s
Run testing on the backend code / Build (pull_request) Failing after 1m56s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2025-01-10 15:59:44 +01:00
c6cebd0fdf speeding up optimizer
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m30s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Failing after 25s
Run testing on the backend code / Build (pull_request) Failing after 2m0s
2025-01-10 15:46:10 +01:00
11bbf34375 better logs
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m20s
Run linting on the backend code / Build (pull_request) Failing after 26s
Run testing on the backend code / Build (pull_request) Failing after 2m40s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2025-01-09 16:58:38 +01:00
a0a3d76b78 cleaning up
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Failing after 25s
Run testing on the backend code / Build (pull_request) Failing after 1m54s
2025-01-09 09:42:11 +01:00
160059d94b Merge pull request 'some more fixes' (#49) from fix/frontend/more-pipeline-fixes into main
Reviewed-on: #49
2025-01-08 09:44:54 +00:00
18d59012cb Merge pull request 'use additional loki logger' (#48) from feature/backend/centralized-logging into main
Reviewed-on: #48
2025-01-08 09:43:36 +00:00
f297094c1a Merge pull request 'better naming and MM' (#45) from backend/fix/better-match-making into main
Reviewed-on: #45
2025-01-08 09:42:35 +00:00
86187d9069 launch adjustments
Some checks failed
Run linting on the backend code / Build (pull_request) Failing after 28s
Run testing on the backend code / Build (pull_request) Failing after 1m28s
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m35s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2024-12-29 15:06:23 +01:00
4e07c10969 actually use fastapi lifetime manager to setup logging
Some checks failed
Run testing on the backend code / Build (pull_request) Has been cancelled
Run linting on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2024-12-29 14:45:41 +01:00
bc63b57154 dumb type conversion
Some checks failed
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m14s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 38s
2024-12-28 22:34:14 +01:00
fa083a1080 logging cleanup
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m9s
Run linting on the backend code / Build (pull_request) Failing after 30s
Run testing on the backend code / Build (pull_request) Failing after 1m41s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 18s
2024-12-28 22:25:42 +01:00
c448e2dfb7 more verbose logger setup
Some checks failed
Run linting on the backend code / Build (pull_request) Has been cancelled
Run testing on the backend code / Build (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
2024-12-28 15:52:29 +01:00
d9061388dd use additional loki logger
Some checks failed
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 1m27s
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 20s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
2024-12-28 14:01:21 +01:00
a9851f9627 some more fixes
Some checks failed
Build and release debug APK / Build APK (pull_request) Has been cancelled
2024-12-28 12:39:14 +01:00
e764393706 Some more pipeline-fixes (#46)
Some checks failed
/ push-to-remote (push) Successful in 13s
Build and deploy the backend to production / Deploy to production (push) Has been cancelled
Build and deploy the backend to production / Build and push image (push) Has been cancelled
Reviewed-on: #46
2024-12-21 15:54:04 +00:00
d992b62533 tentatively shrink trip overview, nicer onboarding 2024-12-17 11:17:59 +01:00
e78bee4597 some more images 2024-12-17 10:28:33 +01:00
a0467e1e19 higher importance for historic clusters and first time no failed test
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m52s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Successful in 2m7s
Build and release debug APK / Build APK (pull_request) Successful in 7m28s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2024-12-16 18:09:33 +01:00
9b61471c94 better naming and MM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 32s
Run testing on the backend code / Build (pull_request) Failing after 2m15s
Build and release debug APK / Build APK (pull_request) Successful in 7m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
2024-12-16 17:56:53 +01:00
d186a51a87 WIP: ladnmark card adjustments 2024-12-15 16:30:17 +01:00
a59029c809 Merge pull request 'don't use vault anymore' (#43) from frontend/ci-cd-fixes into main
All checks were successful
/ push-to-remote (push) Successful in 13s
Build and deploy the backend to production / Build and push image (push) Successful in 2m33s
Build and deploy the backend to production / Deploy to production (push) Successful in 16s
Reviewed-on: #43
2024-12-15 11:24:23 +00:00
9e0864d300 don't use vault anymore
Some checks failed
Build and release debug APK / Build APK (pull_request) Failing after 3m55s
2024-12-15 12:24:00 +01:00
3dc27b2382 Merge pull request 'Build pipeline for both platforms' (#42) from feature/frontend/ios-builds into main
Reviewed-on: #42
2024-12-14 20:49:04 +00:00
9326cf8a74 final fixes for an inital test
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m37s
Build and release debug APK / Build APK (pull_request) Failing after 3m34s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 56s
2024-12-14 21:47:41 +01:00
97cb5b16aa some more fastlane fixes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m52s
Build and release debug APK / Build APK (pull_request) Failing after 3m50s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
2024-12-14 19:54:28 +01:00
a4a70d56c6 fastlane fixes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m23s
Build and release debug APK / Build APK (pull_request) Failing after 3m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
2024-12-14 19:48:08 +01:00
7acfb84122 keep using match
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m42s
Build and release debug APK / Build APK (pull_request) Failing after 3m26s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
2024-12-14 19:16:37 +01:00
cbada7e4a4 move secrets to hashicorp, don't use match (wip)
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m41s
Build and release debug APK / Build APK (pull_request) Failing after 4m46s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
2024-12-14 16:39:27 +01:00
4a542a4a1f switch secrets to loading from env - towards a more unified way of handling secrets
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m42s
Build and release debug APK / Build APK (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
2024-12-13 15:05:18 +01:00
f25355ee3e gearing up towards a working build pipeline
Some checks failed
Build and release debug APK / Build APK (pull_request) Has been cancelled
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been cancelled
Build and deploy the backend to staging / Build and push image (pull_request) Has been cancelled
2024-12-12 19:33:30 +01:00
4baf045c8c better onboarding
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m1s
Build and release debug APK / Build APK (pull_request) Successful in 10m54s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 14s
2024-12-02 10:43:42 +01:00
3f1fe463bf better help and onboarding
All checks were successful
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m40s
Build and release debug APK / Build APK (pull_request) Successful in 7m23s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 14s
2024-11-18 17:42:52 +01:00
d58ef2562d image querying from within the frontend
All checks were successful
Build and release debug APK / Build APK (pull_request) Successful in 7m40s
2024-11-06 14:45:43 +01:00
189 changed files with 6899 additions and 203373 deletions

View File

@ -25,10 +25,8 @@ jobs:
ls -la
# only install dev-packages
pipenv install --categories=dev-packages
pipenv run pip freeze
working-directory: backend
- name: Run linter
run: pipenv run pylint src --fail-under=9
run: pipenv run pylint src --fail-under=9
working-directory: backend

View File

@ -25,11 +25,10 @@ jobs:
ls -la
# install all packages, including dev-packages
pipenv install --dev
pipenv run pip freeze
working-directory: backend
- name: Run Tests
run: pipenv run pytest src --html=report.html --self-contained-html
run: pipenv run pytest src --html=report.html --self-contained-html --log-cli-level=DEBUG
working-directory: backend
- name: Upload HTML report

View File

@ -1,67 +0,0 @@
on:
pull_request:
branches:
- main
paths:
- frontend/**
name: Build and release debug APK
jobs:
build:
name: Build APK
runs-on: ubuntu-latest
steps:
- name: Install prerequisites
run: |
apt-get update
apt-get install -y jq
- uses: https://gitea.com/actions/checkout@v4
- uses: https://github.com/actions/setup-java@v4
with:
java-version: '17'
distribution: 'zulu'
- name: Fix flutter SDK folder permission
run: git config --global --add safe.directory "*"
- uses: https://github.com/subosito/flutter-action@v2
with:
channel: stable
flutter-version: 3.22.0
cache: true
- name: Setup Android SDK
uses: https://github.com/android-actions/setup-android@v3
- run: flutter pub get
working-directory: ./frontend
- name: Add required secrets
env:
ANDROID_SECRETS_PROPERTIES: ${{ secrets.ANDROID_SECRETS_PROPERTIES }}
run: |
echo "$ANDROID_SECRETS_PROPERTIES" >> ./android/secrets.properties
working-directory: ./frontend
- name: Sanity check
run: |
ls
ls -lah android
working-directory: ./frontend
- run: flutter build apk --debug --split-per-abi --build-number=${{ gitea.run_number }}
working-directory: ./frontend
- name: Upload APKs to artifacts
uses: https://gitea.com/actions/upload-artifact@v3
with:
name: app-release
path: frontend/build/app/outputs/flutter-apk/
if-no-files-found: error
retention-days: 15

View File

@ -0,0 +1,74 @@
on:
pull_request:
branches:
- main
paths:
- frontend/**
name: Build and release debug APK
defaults:
run:
working-directory: frontend/android
jobs:
build:
runs-on: macos
env:
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
BUNDLE_GEMFILE: ${{ gitea.workspace }}/frontend/android/Gemfile
steps:
- uses: https://gitea.com/actions/checkout@v4
- uses: https://github.com/actions/setup-java@v4
with:
java-version: '17'
distribution: 'zulu'
- name: Setup Android SDK
uses: https://github.com/android-actions/setup-android@v3
- name: Fix flutter SDK folder permission
run: git config --global --add safe.directory "*"
- uses: https://github.com/subosito/flutter-action@v2
with:
channel: stable
flutter-version-file: ${{ gitea.workspace }}/frontend/pubspec.yaml
architecture: x64
cache: true
- name: Install dependencies and clean up
run: |
flutter pub get
flutter clean
- name: Set up ruby env and install fastlane
uses: https://github.com/ruby/setup-ruby@v1
with:
ruby-version: 3.3
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
- name: Infer version number from git tag
id: version
env:
REF_NAME: ${{ gitea.ref_name }}
run:
# remove the 'v' prefix from the tag name
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Add required secret files
run: |
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
echo "${{ secrets.ANDROID_KEYSTORE_BASE64 }}" | base64 -d > release.keystore
- name: Run fastlane lane
run: bundle exec fastlane deploy_beta
env:
BUILD_NUMBER: ${{ gitea.run_number }}
# BUILD_NAME is implicitly available
ANDROID_GOOGLE_MAPS_API_KEY: ${{ secrets.ANDROID_GOOGLE_MAPS_API_KEY }}

View File

@ -0,0 +1,72 @@
on:
pull_request:
branches:
- main
paths:
- frontend/**
name: Build and release debugging app to ios testflight
defaults:
run:
working-directory: frontend/ios
jobs:
build:
runs-on: macos
env:
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
BUNDLE_GEMFILE: ${{ gitea.workspace }}/frontend/ios/Gemfile
steps:
- uses: https://gitea.com/actions/checkout@v4
- name: Install Flutter
uses: https://github.com/subosito/flutter-action@v2
with:
channel: stable
flutter-version-file: ${{ gitea.workspace }}/frontend/pubspec.yaml
architecture: x64
cache: true
- name: Install dependencies and clean up
run: |
flutter pub get
bundle exec pod install
flutter clean
bundle exec pod cache clean --all
- name: Set up ruby env
uses: https://github.com/ruby/setup-ruby@v1
with:
ruby-version: 3.3
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
- name: Infer version number from git tag
id: version
env:
REF_NAME: ${{ gitea.ref_name }}
run:
# remove the 'v' prefix from the tag name
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Setup SSH key for match git repo
# and mark the host as known
run: |
echo $MATCH_REPO_SSH_KEY | base64 --decode > ~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
ssh-keyscan -p 2222 git.kluster.moll.re > ~/.ssh/known_hosts
env:
MATCH_REPO_SSH_KEY: ${{ secrets.IOS_MATCH_REPO_SSH_KEY_BASE64 }}
- name: Run fastlane lane
run: bundle exec fastlane deploy_beta
env:
BUILD_NUMBER: ${{ gitea.run_number }}
# BUILD_NAME is implicitly available
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}
IOS_ASC_KEY_ID: ${{ secrets.IOS_ASC_KEY_ID }}
IOS_ASC_ISSUER_ID: ${{ secrets.IOS_ASC_ISSUER_ID }}
IOS_ASC_KEY: ${{ secrets.IOS_ASC_KEY }}
MATCH_PASSWORD: ${{ secrets.IOS_MATCH_PASSWORD }}
IOS_GOOGLE_MAPS_API_KEY: ${{ secrets.IOS_GOOGLE_MAPS_API_KEY }}

View File

@ -1,34 +0,0 @@
# on:
# pull_request:
# branches:
# - main
# paths:
# - frontend/**
# name: Build web
# jobs:
# build:
# name: Build Web
# runs-on: ubuntu-latest
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update
# sudo apt-get install -y xz-utils
# - uses: actions/checkout@v4
# - uses: https://github.com/subosito/flutter-action@v2
# with:
# channel: stable
# flutter-version: 3.19.6
# cache: true
# - run: flutter pub get
# working-directory: ./frontend
# - run: flutter build web
# working-directory: ./frontend

View File

@ -1,39 +0,0 @@
on:
push:
tags:
- v*
jobs:
push-to-remote:
# We want to use the macos runner provided by github actions. This requires to push to a remote first.
# After the push we can use the action under frontend/.github/actions/ to deploy properly using fastlane on macos.
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
path: 'src'
- name: Checkout remote repository
uses: actions/checkout@v3
with:
path: 'dest'
ref: 'main'
github-server-url: 'https://github.com'
repository: 'moll-re/anyway-frontend-builder'
token: ${{ secrets.PUSH_GITHUB_API_TOKEN }}
fetch-depth: 0
persist-credentials: true
- name: Copy files to remote repository
run: cp -r src/frontend/. dest/
- name: Commit and push changes
run: |
cd dest
git config --global user.email "me@moll.re"
git config --global user.name "[bot]"
git add .
git commit -m "Automatic code update for tag"
git tag -a ${{ github.ref_name }} -m "mirrored tag"
git push origin main --tags

21
.vscode/launch.json vendored
View File

@ -9,18 +9,16 @@
"name": "Backend - debug",
"type": "debugpy",
"request": "launch",
"module": "uvicorn",
"env": {
"DEBUG": "true"
},
"args": [
// "--app-dir",
// "src",
"src.main:app",
"--reload",
],
"jinja": true,
"cwd": "${workspaceFolder}/backend"
"cwd": "${workspaceFolder}/backend",
"module": "fastapi",
"args": [
"dev",
"src/main.py"
]
},
{
"name": "Backend - tester",
@ -38,7 +36,10 @@
"type": "dart",
"request": "launch",
"program": "lib/main.dart",
"cwd": "${workspaceFolder}/frontend"
"cwd": "${workspaceFolder}/frontend",
"env": {
"GOOGLE_MAPS_API_KEY": "testing"
}
},
{
"name": "Frontend - profile",
@ -49,4 +50,4 @@
"cwd": "${workspaceFolder}/frontend"
}
]
}
}

View File

@ -1,3 +0,0 @@
{
"cmake.ignoreCMakeListsMissing": true
}

30
LICENSE.md Normal file
View File

@ -0,0 +1,30 @@
# License
## Proprietary License
All code and resources in this repository are the property of AnyDev. The software and related documentation are provided solely for use with services provided by AnyDev. Redistribution, modification, or use of this software outside of its intended service is strictly prohibited without explicit permission.
### Copyright © 2024 AnyDev
All rights reserved.
### Restrictions
- You may not modify, distribute, copy, or reverse engineer any part of this codebase.
- This software is licensed for use solely in conjunction with services provided by AnyDev.
- Any commercial use of this software is strictly prohibited without explicit written consent from AnyDev.
## Third-Party Dependencies
This project uses third-party dependencies, which are subject to their respective licenses.
- Python backend dependencies: fastapi, pydantic, numpy, shapely, etc. Licensed under their respective licenses.
- Flutter frontend dependencies: Cupertino Icons, sliding_up_panel, http, etc. Licensed under their respective licenses.
Please refer to each project's documentation for the specific terms and conditions.
## OpenStreetMap Data Usage
This project uses data derived from **OpenStreetMap**. OpenStreetMap data is available under the [Open Database License (ODbL)](https://www.openstreetmap.org/copyright). We comply with the ODbL license, and some of the data displayed in the service may be derived from OpenStreetMap sources. We do not redistribute raw OpenStreetMap data; instead, it is processed and transformed before being used in our services.
More information about OpenStreetMap data usage can be found [here](https://www.openstreetmap.org/copyright).

View File

@ -15,7 +15,7 @@ This project is divided into two main components: a frontend and a backend. The
See the [frontend README](frontend/README.md) for more information. The application is centered around its map view, which displays the user's itinerary. This is based on the Google Maps API.
### Backend
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap API, which is much more flexible.
See the [backend README](backend/README.md) for more information. The backend is responsible for generating the itinerary based on the user's preferences and constraints. Rather than using google maps, we use the OpenStreetMap database through the Overpass API, which is much more flexible.
## Getting Started
@ -24,8 +24,8 @@ Refer to the READMEs in the `frontend` and `backend` directories for instruction
- `google_maps_flutter` plugin
- Python 3
- `fastapi`
- `OSMPythonTools`
- `numpy, scipy`
- `numpy`
- `pydantic`
- Docker

9
backend/.gitignore vendored
View File

@ -1,9 +1,8 @@
# osm-cache and wikidata cache
cache/
apicache/
# osm-cache
cache_XML/
# wikidata throttle
*.ctrl
# secrets
*secrets.yaml
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@ -293,7 +293,7 @@ ignored-parents=
max-args=5
# Maximum number of attributes for a class (see R0902).
max-attributes=7
max-attributes=20
# Maximum number of boolean expressions in an if statement (see R0916).
max-bool-expr=5
@ -302,7 +302,7 @@ max-bool-expr=5
max-branches=12
# Maximum number of locals for function / method body.
max-locals=15
max-locals=30
# Maximum number of parents for a class (see R0901).
max-parents=7
@ -402,7 +402,7 @@ preferred-modules=
# The type of string formatting that logging methods do. `old` means using %
# formatting, `new` is for `{}` formatting.
logging-format-style=old
logging-format-style=new
# Logging modules to check that the string format arguments are in logging
# function parameter format.
@ -440,7 +440,14 @@ disable=raw-checker-failed,
use-implicit-booleaness-not-comparison-to-string,
use-implicit-booleaness-not-comparison-to-zero,
import-error,
line-too-long
multiple-statements,
line-too-long,
logging-fstring-interpolation,
duplicate-code,
relative-beyond-top-level,
invalid-name,
too-many-arguments,
too-many-positional-arguments
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option

View File

@ -14,5 +14,7 @@ EXPOSE 8000
ENV NUM_WORKERS=1
ENV OSM_CACHE_DIR=/cache
ENV MEMCACHED_HOST_PATH=none
ENV LOKI_URL=none
# explicitly use a string instead of an argument list to force a shell and variable expansion
CMD fastapi run src/main.py --port 8000 --workers $NUM_WORKERS

View File

@ -18,10 +18,10 @@ numpy = "*"
fastapi = "*"
pydantic = "*"
shapely = "*"
scipy = "*"
osmpythontools = "*"
pywikibot = "*"
pymemcache = "*"
fastapi-cli = "*"
scikit-learn = "*"
pyqt6 = "*"
loki-logger-handler = "*"
pulp = "*"
scipy = "*"
requests = "*"

1881
backend/Pipfile.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -38,7 +38,19 @@ To deploy the backend docker container, we use kubernetes. Modifications to the
The deployment configuration is included as a submodule in the `deployment` directory. The standalone repository is under [https://git.kluster.moll.re/anydev/anyway-backend-deployment/](https://git.kluster.moll.re/anydev/anyway-backend-deployment/).
## Development
TBD
The backend application is structured around the `src` directory, which contains the core components for handling route optimization and API logic. Development generally involves working with key modules such as the optimization engine, Overpass API integration, and utilities for managing landmarks and trip data.
### Key Areas:
- **API Endpoints**: The main interaction with the backend is through the endpoints defined in `src/main.py`. FastAPI simplifies the creation of RESTful services that manage trip and landmark data.
- **Optimization Logic**: The trip optimization and refinement are handled in the `src/optimization` module. This is where the core algorithms are implemented.
- **Landmark Management**: Fetching and prioritizing points of interest (POIs) based on user preferences happens in `src/utils/LandmarkManager`.
- **Testing**: The `src/tests` directory includes tests in various scenarii, ensuring that the logic works as expected.
For detailed information, refer to the [src README](backend/src/README.md).
### Running the Application:
To run the backend locally, ensure that the virtual environment is activated and all dependencies are installed as outlined in the "Getting Started" section. You can start the FastAPI server with:
```bash
uvicorn src.main:app --reload

@ -1 +1 @@
Subproject commit 718df09e88b63c9524c882ccbb8247ca1448d3ff
Subproject commit 904f16bfc0624b6ab8569e0a70050aaa3bd64b3f

363
backend/landmarks.json Normal file
View File

@ -0,0 +1,363 @@
[
{
"name": "Chinatown",
"type": "shopping",
"location": [
45.7554934,
4.8444852
],
"osm_type": "way",
"osm_id": 996515596,
"attractiveness": 129,
"n_tags": 0,
"image_url": null,
"website_url": null,
"wiki_url": null,
"keywords": {},
"description": null,
"duration": 30,
"name_en": null,
"uuid": "285d159c-68ee-4b37-8d71-f27ee3d38b02",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Galeries Lafayette",
"type": "shopping",
"location": [
45.7627107,
4.8556833
],
"osm_type": "way",
"osm_id": 1069872743,
"attractiveness": 197,
"n_tags": 11,
"image_url": null,
"website_url": "http://www.galerieslafayette.com/",
"wiki_url": null,
"keywords": null,
"description": null,
"duration": 30,
"name_en": null,
"uuid": "28f1bc30-10d3-4944-8861-0ed9abca012d",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Muji",
"type": "shopping",
"location": [
45.7615971,
4.8543781
],
"osm_type": "way",
"osm_id": 1044165817,
"attractiveness": 259,
"n_tags": 14,
"image_url": null,
"website_url": "https://www.muji.com/fr/",
"wiki_url": null,
"keywords": null,
"description": null,
"duration": 30,
"name_en": "Muji",
"uuid": "957f86a5-6c00-41a2-815d-d6f739052be4",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "HEMA",
"type": "shopping",
"location": [
45.7619133,
4.8565239
],
"osm_type": "way",
"osm_id": 1069872750,
"attractiveness": 156,
"n_tags": 9,
"image_url": null,
"website_url": "https://fr.westfield.com/lapartdieu/store/HEMA/www.hema.fr",
"wiki_url": null,
"keywords": null,
"description": null,
"duration": 30,
"name_en": null,
"uuid": "8dae9d3e-e4c4-4e80-941d-0b106e22c85b",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Cordeliers",
"type": "shopping",
"location": [
45.7622752,
4.8337998
],
"osm_type": "node",
"osm_id": 5545183519,
"attractiveness": 813,
"n_tags": 0,
"image_url": null,
"website_url": null,
"wiki_url": null,
"keywords": {},
"description": null,
"duration": 30,
"name_en": null,
"uuid": "ba02adb5-e28f-4645-8c2d-25ead6232379",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Halles de Lyon Paul Bocuse",
"type": "shopping",
"location": [
45.7628282,
4.8505601
],
"osm_type": "relation",
"osm_id": 971529,
"attractiveness": 272,
"n_tags": 12,
"image_url": null,
"website_url": "https://www.halles-de-lyon-paulbocuse.com/",
"wiki_url": "fr:Halles de Lyon-Paul Bocuse",
"keywords": {
"importance": "national",
"height": null,
"place_type": "marketplace",
"date": null
},
"description": "Halles de Lyon Paul Bocuse is a marketplace of national importance.",
"duration": 30,
"name_en": null,
"uuid": "bbd50de3-aa91-425d-90c2-d4abfd1b4abe",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Grand Bazar",
"type": "shopping",
"location": [
45.7632141,
4.8361975
],
"osm_type": "way",
"osm_id": 82399951,
"attractiveness": 93,
"n_tags": 7,
"image_url": null,
"website_url": null,
"wiki_url": null,
"keywords": null,
"description": null,
"duration": 30,
"name_en": null,
"uuid": "3de9131c-87c5-4efb-9fa8-064896fb8b29",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Shopping Area",
"type": "shopping",
"location": [
45.7673452,
4.8438683
],
"osm_type": "node",
"osm_id": 0,
"attractiveness": 156,
"n_tags": 0,
"image_url": null,
"website_url": null,
"wiki_url": null,
"keywords": {},
"description": null,
"duration": 30,
"name_en": null,
"uuid": "df2482a8-7e2e-4536-aad3-564899b2fa65",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Cour Oxyg\u00e8ne",
"type": "shopping",
"location": [
45.7620905,
4.8568873
],
"osm_type": "way",
"osm_id": 132673030,
"attractiveness": 63,
"n_tags": 5,
"image_url": null,
"website_url": null,
"wiki_url": null,
"keywords": null,
"description": null,
"duration": 30,
"name_en": null,
"uuid": "ed134f76-9a02-4bee-9c10-78454f7bc4ce",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "P\u00f4le de Commerces et de Loisirs Confluence",
"type": "shopping",
"location": [
45.7410414,
4.8171031
],
"osm_type": "way",
"osm_id": 440270633,
"attractiveness": 259,
"n_tags": 14,
"image_url": null,
"website_url": "https://www.confluence.fr/",
"wiki_url": null,
"keywords": null,
"description": null,
"duration": 30,
"name_en": null,
"uuid": "dd7e2f5f-0e60-4560-b903-e5ded4b6e36a",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Grand H\u00f4tel-Dieu",
"type": "shopping",
"location": [
45.7586955,
4.8364597
],
"osm_type": "relation",
"osm_id": 300128,
"attractiveness": 546,
"n_tags": 22,
"image_url": null,
"website_url": "https://grand-hotel-dieu.com",
"wiki_url": "fr:H\u00f4tel-Dieu de Lyon",
"keywords": {
"importance": "international",
"height": null,
"place_type": "building",
"date": "C17"
},
"description": "Grand H\u00f4tel-Dieu is an internationally famous building. It was constructed in C17.",
"duration": 30,
"name_en": null,
"uuid": "a91265a8-ffbd-44f7-a7ab-3ff75f08fbab",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Westfield La Part-Dieu",
"type": "shopping",
"location": [
45.761331,
4.855676
],
"osm_type": "way",
"osm_id": 62338376,
"attractiveness": 546,
"n_tags": 22,
"image_url": null,
"website_url": "https://fr.westfield.com/lapartdieu",
"wiki_url": "fr:La Part-Dieu (centre commercial)",
"keywords": null,
"description": null,
"duration": 30,
"name_en": null,
"uuid": "7d60316f-d689-4fcf-be68-ffc09353b826",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
},
{
"name": "Ainay",
"type": "shopping",
"location": [
45.7553105,
4.8312084
],
"osm_type": "node",
"osm_id": 5545126047,
"attractiveness": 132,
"n_tags": 0,
"image_url": null,
"website_url": null,
"wiki_url": null,
"keywords": {},
"description": null,
"duration": 30,
"name_en": null,
"uuid": "ad214f3d-a4b9-4078-876a-446caa7ab01c",
"must_do": false,
"must_avoid": false,
"is_secondary": false,
"time_to_reach_next": 0,
"next_uuid": null,
"is_viewpoint": false,
"is_place_of_worship": false
}
]

File diff suppressed because one or more lines are too long

65
backend/src/README.md Normal file
View File

@ -0,0 +1,65 @@
# Overview of backend/src
This project is structured into several components that handle different aspects of the application's functionality. Below is a high-level overview of each folder and the key Python files in the |src| directory.
## Folders
### src/optimization
This folder contains modules related to the optimization algorithm used to compute the optimal trip. It comprises the optimizer for the first rough trip and a refiner to include less famous landmarks as well.
### src/overpass
This folder handles interactions with the Overpass API, including constructing and sending queries, caching responses, and parsing results from the Overpass database.
### src/parameters
The modules in this folder define and manage parameters for various parts of the application. This includes configuration values for the optimizer or the list of selectors for Overpass queries.
### src/structs
This folder defines the commonly used data structures used within the project. The models leverage Pydantic's `BaseModel` to ensure data validation, serialization, and easy interaction between different components of the application. The main classes are:
- **Landmark**:
- Represents a point of interest in the context of a trip. It stores various attributes like the landmark's name, type, location (latitude and longitude), and its OSM details.
- It also includes other optional fields like image URLs, website links, and descriptions. Additionally, the class has properties to track its attractiveness score or elative importance.
- **Preferences**:
- This class captures user-defined preferences needed to personalize a trip. Preferences are provided for sightseeing (history and culture), nature (parks and gardens), and shopping. These preferences guide the trip optimization process.
- **Trip**:
- The `Trip` class represents the complete travel plan generated by the system. It holds key information like the trip's total time and the first landmark's UUID.
### src/tests
This folder contains unit tests and test cases for the application's various modules. It is used to ensure the correctness and stability of the code.
### src/utils
The `utils` folder contains utility classes and functions that provide core functionality for the application. The main component in this folder is the `LandmarkManager`, which is central to the process of fetching and organizing landmarks.
- **LandmarkManager**:
- The `LandmarkManager` is responsible for fetching landmarks from OpenStreetMap (via the Overpass API) and managing their classification based on user preferences. It processes raw geographical data, filters landmarks into relevant categories (such as sightseeing, nature, shopping), and prioritizes them for trip planning.
## Files
### src/cache.py
This file manages the caching mechanisms used throughout the application. It defines the caching strategy for storing and retrieving data, improving the performance of repeated operations by avoiding redundant API calls or computations.
### src/constants.py
This module defines global constants used throughout the project. These constants may include API endpoints, fixed configuration values, or reusable strings and integers that need to remain consistent.
### src/logging_config.py
This file configures the logging system for the application. It defines how logs are formatted, where they are output (e.g., console or file), and the logging levels (e.g., debug, info, error).
### src/main.py
This file contains the main application logic and API endpoints for interacting with the system. The application is built using the FastAPI framework, which provides several endpoints for creating trips, fetching trips, and retrieving landmarks or nearby facilities. The key endpoints include:
- **POST /trip/new**:
- This endpoint allows users to create a new trip by specifying preferences, start coordinates, and optionally end coordinates. The preferences guide the optimization process for selecting landmarks.
- Returns: A `Trip` object containing the optimized route, landmarks, and trip details.
- **GET /trip/{trip_uuid}**:
- This endpoint fetches an already generated trip by its unique identifier (`trip_uuid`). It retrieves the trip data from the cache.
- Returns: A `Trip` object corresponding to the given `trip_uuid`.
- **GET /landmark/{landmark_uuid}**:
- This endpoint retrieves a specific landmark by its unique identifier (`landmark_uuid`) from the cache.
- Returns: A `Landmark` object containing the details of the requested landmark.
- **POST /toilets/new**:
- This endpoint searches for public toilets near a specified location within a given radius. The location and radius are passed as query parameters.
- Returns: A list of `Toilets` objects located within the specified radius of the provided coordinates.

View File

@ -70,6 +70,6 @@ else:
MEMCACHED_HOST_PATH,
timeout=1,
allow_unicode_keys=True,
encoding='utf-8',
encoding='utf-8',
serde=serde.pickle_serde
)

View File

@ -1,8 +1,8 @@
"""Module allowing to access the parameters of route generation"""
"""Module setting global parameters for the application such as cache, route generation, etc."""
import logging
import os
from pathlib import Path
from typing import List, Literal, Tuple
LOCATION_PREFIX = Path('src')
@ -15,21 +15,8 @@ OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
OSM_CACHE_DIR = Path(cache_dir_string)
# if we are in a debug session, set verbose and rich logging
if os.getenv('DEBUG', "false") == "true":
from rich.logging import RichHandler
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[RichHandler()]
)
else:
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
OSM_TYPES = List[Literal['way', 'node', 'relation']]
BBOX = Tuple[float, float, float, float]
MEMCACHED_HOST_PATH = os.getenv('MEMCACHED_HOST_PATH', None)
if MEMCACHED_HOST_PATH == "none":

View File

View File

@ -0,0 +1,300 @@
"""Find clusters of interest to add more general areas of visit to the tour."""
import logging
from typing import Literal, Tuple
import numpy as np
from sklearn.cluster import DBSCAN
from pydantic import BaseModel
from ..overpass.overpass import Overpass, get_base_info
from ..structs.landmark import Landmark
from ..utils.get_time_distance import get_distance
from ..utils.bbox import create_bbox
# silence the overpass logger
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
class Cluster(BaseModel):
""""
A class representing an interesting area for shopping or sightseeing.
It can represent either a general area or a specifc route with start and end point.
The importance represents the number of shops found in this cluster.
Attributes:
type : either a 'street' or 'area' (representing a denser field of shops).
importance : size of the cluster (number of points).
centroid : center of the cluster.
start : if the type is a street it goes from here...
end : ...to here
"""
type: Literal['street', 'area']
importance: int
centroid: Tuple[float, float]
# start: Optional[list] = None # for later use if we want to have streets as well
# end: Optional[list] = None
class ClusterManager:
"""
A manager responsible for clustering points of interest, such as shops or historic sites,
to identify areas worth visiting. It uses the DBSCAN algorithm to detect clusters
based on a set of points retrieved from OpenStreetMap (OSM).
Attributes:
logger (logging.Logger): Logger for capturing relevant events and errors.
valid (bool): Indicates whether clusters were successfully identified.
all_points (list): All points retrieved from OSM, representing locations of interest.
cluster_points (list): Points identified as part of a cluster.
cluster_labels (list): Labels corresponding to the clusters each point belongs to.
cluster_type (Literal['sightseeing', 'shopping']): Type of clustering, either for sightseeing
landmarks or shopping areas.
"""
logger = logging.getLogger(__name__)
# NOTE: all points are in (lat, lon) format
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
all_points: list
cluster_points: list
cluster_labels: list
cluster_type: Literal['sightseeing', 'shopping']
def __init__(self, bbox: tuple, cluster_type: Literal['sightseeing', 'shopping']) -> None:
"""
Upon intialization, generate the point cloud used for cluster detection.
The points represent bag/clothes shops and general boutiques.
If the first step is successful, it applies the DBSCAN clustering algorithm with different
parameters depending on the size of the city (number of points).
It filters out noise points and keeps only the largest clusters.
A successful initialization updates:
- `self.cluster_points`: The points belonging to clusters.
- `self.cluster_labels`: The labels for the points in clusters.
The method also calls `filter_clusters()` to retain only the largest clusters.
Args:
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
"""
# Setup the caching in the Overpass class.
self.overpass = Overpass()
self.cluster_type = cluster_type
if cluster_type == 'shopping' :
osm_types = ['node']
sel = '"shop"~"^(bag|boutique|clothes)$"'
out = 'ids center'
elif cluster_type == 'sightseeing' :
osm_types = ['way']
sel = '"historic"~"^(monument|building|yes)$"'
out = 'ids center'
else :
raise NotImplementedError("Please choose only an available option for cluster detection")
# Initialize the points for cluster detection
try:
result = self.overpass.send_query(
bbox = bbox,
osm_types = osm_types,
selector = sel,
out = out
)
except Exception as e:
self.logger.warning(f"Error fetching clusters: {e}")
if result is None :
self.logger.debug(f"Found no {cluster_type} clusters, overpass query returned no datapoints.")
self.valid = False
else :
points = []
for elem in result:
osm_type = elem.get('type')
# Get coordinates and append them to the points list
_, coords = get_base_info(elem, osm_type)
if coords is not None :
points.append(coords)
if points :
self.all_points = np.array(points)
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
elif self.cluster_type == 'sightseeing' :
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(self.all_points)
# Check that there are is least 1 cluster
if len(set(labels)) > 1 :
self.logger.info(f"Found {len(set(labels))} different {cluster_type} clusters.")
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
self.valid = True
else :
self.logger.info(f"Found 0 {cluster_type} clusters.")
self.valid = False
else :
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
self.valid = False
def generate_clusters(self) -> list[Landmark]:
"""
Generate a list of landmarks based on identified clusters.
This method iterates over the different clusters, calculates the centroid
(as the mean of the points within each cluster), and assigns an importance
based on the size of the cluster.
The generated shopping locations are stored in `self.clusters`
as a list of `Cluster` objects, each with:
- `type`: Set to 'area'.
- `centroid`: The calculated centroid of the cluster.
- `importance`: The number of points in the cluster.
"""
if not self.valid :
return [] # Return empty list if no clusters were found
locations = []
# loop through the different clusters
for label in set(self.cluster_labels):
# Extract points belonging to the current cluster
current_cluster = self.cluster_points[self.cluster_labels == label]
# Calculate the centroid as the mean of the points
centroid = np.mean(current_cluster, axis=0)
centroid = tuple((round(centroid[0], 7), round(centroid[1], 7)))
if self.cluster_type == 'shopping' :
score = len(current_cluster)*3
else :
score = len(current_cluster)*15
locations.append(Cluster(
type='area',
centroid=centroid,
importance = score
))
# Transform the locations in landmarks and return the list
cluster_landmarks = []
for cluster in locations :
cluster_landmarks.append(self.create_landmark(cluster))
return cluster_landmarks
def create_landmark(self, cluster: Cluster) -> Landmark:
"""
Create a Landmark object based on the given shopping location.
This method queries the Overpass API for nearby neighborhoods and shopping malls
within a 1000m radius around the shopping location centroid. It selects the closest
result and creates a landmark with the associated details such as name, type, and OSM ID.
Parameters:
shopping_location (Cluster): A Cluster object containing
the centroid and importance of the area.
Returns:
Landmark: A Landmark object containing details such as the name, type,
location, attractiveness, and OSM details.
"""
# Define the bounding box for a given radius around the coordinates
bbox = create_bbox(cluster.centroid, 300)
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
if self.cluster_type == 'shopping' :
selectors.append('"shop"="mall"')
new_name = 'Shopping Area'
t = 30
else :
new_name = 'Neighborhood'
t = 20
min_dist = float('inf')
osm_id = 0
osm_type = 'node'
osm_types = ['node', 'way', 'relation']
for sel in selectors :
try:
result = self.overpass.send_query(bbox = bbox,
osm_types = osm_types,
selector = sel,
out = 'ids center tags'
)
except Exception as e:
self.logger.warning(f"Error fetching clusters: {e}")
continue
if result is None :
self.logger.warning(f"Error fetching clusters: query result is None")
continue
for elem in result:
# Get basic info
id, coords, name = get_base_info(elem, elem.get('type'), with_name=True)
if name is None or coords is None :
continue
d = get_distance(cluster.centroid, coords)
if d < min_dist :
min_dist = d
new_name = name # add name
osm_type = elem.get('type') # add type: 'way' or 'relation'
osm_id = id # add OSM id
return Landmark(
name=new_name,
type=self.cluster_type,
location=cluster.centroid, # later: use the fact the we can also recognize streets.
attractiveness=cluster.importance,
n_tags=0,
osm_id=osm_id,
osm_type=osm_type,
duration=t
)
def filter_clusters(self):
"""
Filter clusters to retain only the 5 largest clusters by point count.
This method calculates the size of each cluster and filters out all but the
5 largest clusters. It then updates the cluster points and labels to reflect
only those from the top 5 clusters.
"""
label_counts = np.bincount(self.cluster_labels)
# Step 3: Get the indices (labels) of the 5 largest clusters
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
# Step 4: Filter points to keep only the points in the top 5 clusters
filtered_cluster_points = []
filtered_cluster_labels = []
for label in top_5_labels:
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
# update the cluster points and labels with the filtered data
self.cluster_points = np.vstack(filtered_cluster_points) # ValueError here
self.cluster_labels = np.concatenate(filtered_cluster_labels)

View File

@ -0,0 +1,440 @@
"""Module used to import data from OSM and arrange them in categories."""
import logging
import yaml
from ..structs.preferences import Preferences
from ..structs.landmark import Landmark
from ..utils.take_most_important import take_most_important
from .cluster_manager import ClusterManager
from ..overpass.overpass import Overpass, get_base_info
from ..utils.bbox import create_bbox
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH
class LandmarkManager:
"""
Use this to manage landmarks.
Uses the overpass api to fetch landmarks and classify them.
"""
logger = logging.getLogger(__name__)
radius_close_to: int # radius in meters
church_coeff: float # coeff to adjsut score of churches
nature_coeff: float # coeff to adjust score of parks
overall_coeff: float # coeff to adjust weight of tags
n_important: int # number of important landmarks to consider
def __init__(self) -> None:
with AMENITY_SELECTORS_PATH.open('r') as f:
self.amenity_selectors = yaml.safe_load(f)
with LANDMARK_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.max_bbox_side = parameters['max_bbox_side']
self.church_coeff = parameters['church_coeff']
self.nature_coeff = parameters['nature_coeff']
self.overall_coeff = parameters['overall_coeff']
self.tag_exponent = parameters['tag_exponent']
self.image_bonus = parameters['image_bonus']
self.wikipedia_bonus = parameters['wikipedia_bonus']
self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus']
self.n_important = parameters['N_important']
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.walking_speed = parameters['average_walking_speed']
self.detour_factor = parameters['detour_factor']
# Setup the caching in the Overpass class.
self.overpass = Overpass()
self.logger.info('LandmakManager successfully initialized.')
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
"""
Generate and prioritize a list of landmarks based on user preferences.
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
landmarks based on a predefined criterion.
Args:
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
preferences (Preferences): The user's preference settings that influence the landmark selection.
Returns:
tuple[list[Landmark], list[Landmark]]:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
"""
self.logger.debug('Starting to fetch landmarks...')
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
radius = min(max_walk_dist, int(self.max_bbox_side/2))
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
all_landmarks = set()
# Create a bbox using the around technique, tuple of strings
bbox = create_bbox(center_coordinates, radius)
# list for sightseeing
if preferences.sightseeing.score != 0:
self.logger.debug('Fetching sightseeing landmarks...')
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
all_landmarks.update(current_landmarks)
self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks')
# special pipeline for historic neighborhoods
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
historic_clusters = neighborhood_manager.generate_clusters()
all_landmarks.update(historic_clusters)
# list for nature
if preferences.nature.score != 0:
self.logger.debug('Fetching nature landmarks...')
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
all_landmarks.update(current_landmarks)
self.logger.info(f'Found {len(current_landmarks)} nature landmarks')
# list for shopping
if preferences.shopping.score != 0:
self.logger.debug('Fetching shopping landmarks...')
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
self.logger.info(f'Found {len(current_landmarks)} shopping landmarks')
# set time for all shopping activites :
for landmark in current_landmarks :
landmark.duration = 30
all_landmarks.update(current_landmarks)
# special pipeline for shopping malls
shopping_manager = ClusterManager(bbox, 'shopping')
shopping_clusters = shopping_manager.generate_clusters()
all_landmarks.update(shopping_clusters)
landmarks_constrained = take_most_important(all_landmarks, self.n_important)
# self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
return all_landmarks, landmarks_constrained
def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
"""
Calculate and set the attractiveness score for a given landmark.
This method evaluates the landmark's attractiveness based on its properties
(number of tags, presence of Wikipedia URL, image, website, and whether it's
a place of worship) and adjusts the score using the user's preference level.
Args:
landmark (Landmark): The landmark object to score.
landmarktype (str): The type of the landmark (currently unused).
preference_level (int): The user's preference level for this landmark type.
"""
score = landmark.n_tags**self.tag_exponent
if landmark.wiki_url :
score *= self.wikipedia_bonus
if landmark.image_url :
score *= self.image_bonus
if landmark.website_url :
score *= self.wikipedia_bonus
if landmark.is_place_of_worship :
score *= self.church_coeff
if landmark.is_viewpoint :
score *= self.viewpoint_bonus
if landmarktype == 'nature' :
score *= self.nature_coeff
landmark.attractiveness = int(score * preference_level * 2)
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]:
"""
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
Args:
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
Returns:
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
Notes:
- Landmarks are fetched using Overpass API queries.
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
- Landmarks are filtered based on various conditions including tags and type.
"""
return_list = []
if landmarktype == 'nature' : query_conditions = None
else : query_conditions = ['count_tags()>5']
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
# we need to split the selectors into separate queries and merge the results
for sel in dict_to_selector_list(amenity_selector):
# self.logger.debug(f"Current selector: {sel}")
osm_types = ['way', 'relation']
if 'viewpoint' in sel :
query_conditions = None
osm_types.append('node')
# Send the overpass query
try:
result = self.overpass.send_query(
bbox = bbox,
osm_types = osm_types,
selector = sel,
conditions = query_conditions, # except for nature....
out = 'ids center tags'
)
except Exception as e:
self.logger.debug(f"Failed to fetch landmarks, proceeding without: {str(e)}")
continue
return_list += self._to_landmarks(result, landmarktype, preference_level)
# self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
return return_list
def _to_landmarks(self, elements: list, landmarktype, preference_level) -> list[Landmark]:
"""
Parse the Overpass API result and extract landmarks.
This method processes the JSON elements returned by the Overpass API and
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
relevant information such as name, coordinates, and tags, and converts them
into Landmark objects.
Args:
elements (list): The elements of json response from Overpass API.
elem_type (str): The type of landmark (e.g., node, way, relation).
Returns:
list[Landmark]: A list of Landmark objects extracted from the JSON data.
"""
if elements is None :
return []
landmarks = []
for elem in elements:
osm_type = elem.get('type')
id, coords, name = get_base_info(elem, osm_type, with_name=True)
if name is None or coords is None :
continue
tags = elem.get('tags')
# Convert this to Landmark object
landmark = Landmark(name=name,
type=landmarktype,
location=coords,
osm_id=id,
osm_type=osm_type,
attractiveness=0,
n_tags=len(tags))
# Browse through tags to add information to landmark.
for key, value in tags.items():
# Skip this landmark if not suitable.
if key == 'building:part' and value == 'yes' :
break
if 'disused:' in key :
break
if 'boundary:' in key :
break
if 'shop' in key and landmarktype != 'shopping' :
break
# if value == 'apartments' :
# break
# Fill in the other attributes.
if key == 'image' :
landmark.image_url = value
if key == 'website' :
landmark.website_url = value
if value == 'place_of_worship' :
landmark.is_place_of_worship = True
if key == 'wikipedia' :
landmark.wiki_url = value
if key == 'name:en' :
landmark.name_en = value
if 'building:' in key or 'pay' in key :
landmark.n_tags -= 1
# Set the duration.
if value in ['museum', 'aquarium', 'planetarium'] :
landmark.duration = 60
elif value == 'viewpoint' :
landmark.is_viewpoint = True
landmark.duration = 10
elif value == 'cathedral' :
landmark.is_place_of_worship = False
landmark.duration = 10
landmark.description, landmark.keywords = self.description_and_keywords(tags)
self.set_landmark_score(landmark, landmarktype, preference_level)
landmarks.append(landmark)
continue
return landmarks
def description_and_keywords(self, tags: dict):
"""
Generates a description and a set of keywords for a given landmark based on its tags.
Params:
tags (dict): A dictionary containing metadata about the landmark, including its name,
importance, height, date of construction, and visitor information.
Returns:
description (str): A string description of the landmark.
keywords (dict): A dictionary of keywords with fields such as 'importance', 'height',
'place_type', and 'date'.
"""
# Extract relevant fields
name = tags.get('name')
importance = tags.get('importance', None)
n_visitors = tags.get('tourism:visitors', None)
height = tags.get('height')
place_type = self.get_place_type(tags)
date = self.get_date(tags)
if place_type is None :
return None, None
# Start the description.
if importance is None :
if len(tags.keys()) < 5 :
return None, None
if len(tags.keys()) < 10 :
description = f"{name} is a well known {place_type}."
elif len(tags.keys()) < 17 :
importance = 'national'
description = f"{name} is a {place_type} of national importance."
else :
importance = 'international'
description = f"{name} is an internationally famous {place_type}."
else :
description = f"{name} is a {place_type} of {importance} importance."
if height is not None and date is not None :
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
elif height is not None :
description += f" This {place_type} stands ca. {height} meters tall."
elif date is not None:
description += f" It was constructed in {date}."
# Format the visitor number
if n_visitors is not None :
n_visitors = int(n_visitors)
if n_visitors < 1000000 :
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
else :
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
# Set the keywords.
keywords = {"importance": importance,
"height": height,
"place_type": place_type,
"date": date}
return description, keywords
def get_place_type(self, data):
"""
Determines the type of the place based on available tags such as 'amenity', 'building',
'historic', and 'leisure'. The priority order is: 'historic' > 'building' (if not generic) >
'amenity' > 'leisure'.
Params:
data (dict): A dictionary containing metadata about the place.
Returns:
place_type (str): The determined type of the place, or None if no relevant type is found.
"""
amenity = data.get('amenity', None)
building = data.get('building', None)
historic = data.get('historic', None)
leisure = data.get('leisure')
if historic and historic != "yes":
return historic
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
return building
if amenity:
return amenity
if leisure:
return leisure
return None
def get_date(self, data):
"""
Extracts the most relevant date from the available tags, prioritizing 'construction_date',
'start_date', 'year_of_construction', and 'opening_date' in that order.
Params:
data (dict): A dictionary containing metadata about the place.
Returns:
date (str): The most relevant date found, or None if no date is available.
"""
construction_date = data.get('construction_date', None)
opening_date = data.get('opening_date', None)
start_date = data.get('start_date', None)
year_of_construction = data.get('year_of_construction', None)
# Prioritize based on availability
if construction_date:
return construction_date
if start_date:
return start_date
if year_of_construction:
return year_of_construction
if opening_date:
return opening_date
return None
def dict_to_selector_list(d: dict) -> list:
"""
Convert a dictionary of key-value pairs to a list of Overpass query strings.
Args:
d (dict): A dictionary of key-value pairs representing the selector.
Returns:
list: A list of strings representing the Overpass query selectors.
"""
return_list = []
for key, value in d.items():
if isinstance(value, list):
val = '|'.join(value)
return_list.append(f'{key}~"^({val})$"')
elif isinstance(value, str) and len(value) == 0:
return_list.append(f'{key}')
else:
return_list.append(f'{key}={value}')
return return_list

View File

@ -0,0 +1,56 @@
"""Sets up global logging configuration for the application."""
import logging
import os
logger = logging.getLogger(__name__)
def configure_logging():
"""
Called at startup of a FastAPI application instance to setup logging. Depending on the environment, it will log to stdout or to Loki.
"""
is_debug = os.getenv('DEBUG', "false") == "true"
is_kubernetes = os.getenv('KUBERNETES_SERVICE_HOST') is not None
if is_kubernetes:
# in that case we want to log to stdout and also to loki
from loki_logger_handler.loki_logger_handler import LokiLoggerHandler
loki_url = os.getenv('LOKI_URL')
if loki_url is None:
raise ValueError("LOKI_URL environment variable is not set")
loki_handler = LokiLoggerHandler(
url = loki_url,
labels = {'app': 'anyway', 'environment': 'staging' if is_debug else 'production'}
)
logger.info(f"Logging to Loki at {loki_url} with {loki_handler.labels} and {is_debug=}")
logging_handlers = [loki_handler, logging.StreamHandler()]
logging_level = logging.DEBUG if is_debug else logging.INFO
# silence the chatty logs loki generates itself
logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING)
# no need for time since it's added by loki or can be shown in kube logs
logging_format = '%(name)s - %(levelname)s - %(message)s'
else:
# if we are in a debug (local) session, set verbose and rich logging
from rich.logging import RichHandler
logging_handlers = [RichHandler()]
logging_level = logging.DEBUG if is_debug else logging.INFO
logging_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(
level = logging_level,
format = logging_format,
handlers = logging_handlers
)
# also overwrite the uvicorn loggers
logging.getLogger('uvicorn').handlers = logging_handlers
logging.getLogger('uvicorn.access').handlers = logging_handlers
logging.getLogger('uvicorn.error').handlers = logging_handlers

View File

@ -1,31 +1,50 @@
"""Main app for backend api"""
import logging
from fastapi import FastAPI, HTTPException, Query
import time
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, BackgroundTasks
from .structs.landmark import Landmark, Toilets
from .logging_config import configure_logging
from .structs.landmark import Landmark
from .structs.preferences import Preferences
from .structs.linked_landmarks import LinkedLandmarks
from .structs.trip import Trip
from .utils.landmarks_manager import LandmarkManager
from .utils.toilets_manager import ToiletsManager
from .utils.optimizer import Optimizer
from .utils.refiner import Refiner
from .persistence import client as cache_client
from .landmarks.landmarks_manager import LandmarkManager
from .toilets.toilet_routes import router as toilets_router
from .optimization.optimizer import Optimizer
from .optimization.refiner import Refiner
from .overpass.overpass import fill_cache
from .cache import client as cache_client
logger = logging.getLogger(__name__)
app = FastAPI()
manager = LandmarkManager()
optimizer = Optimizer()
refiner = Refiner(optimizer=optimizer)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Function to run at the start of the app"""
logger.info("Setting up logging")
configure_logging()
yield
logger.info("Shutting down logging")
app = FastAPI(lifespan=lifespan)
app.include_router(toilets_router)
@app.post("/trip/new")
def new_trip(preferences: Preferences,
start: tuple[float, float],
end: tuple[float, float] | None = None) -> Trip:
end: tuple[float, float] | None = None,
background_tasks: BackgroundTasks = None) -> Trip:
"""
Main function to call the optimizer.
@ -50,12 +69,15 @@ def new_trip(preferences: Preferences,
end = start
logger.info("No end coordinates provided. Using start=end.")
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
start_landmark = Landmark(name='start',
type='start',
location=(start[0], start[1]),
osm_type='start',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags = 0)
@ -65,35 +87,63 @@ def new_trip(preferences: Preferences,
osm_type='end',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags=0)
start_time = time.time()
# Generate the landmarks from the start location
landmarks, landmarks_short = manager.generate_landmarks_list(
center_coordinates = start,
preferences = preferences
)
if len(landmarks) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
# insert start and finish to the landmarks list
landmarks_short.insert(0, start_landmark)
landmarks_short.append(end_landmark)
t_generate_landmarks = time.time() - start_time
logger.info(f'Fetched {len(landmarks)} landmarks in \t: {round(t_generate_landmarks,3)} seconds')
start_time = time.time()
# First stage optimization
try:
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
except ArithmeticError as exc:
raise HTTPException(status_code=500, detail="No solution found") from exc
except TimeoutError as exc:
raise HTTPException(status_code=500, detail="Optimzation took too long") from exc
except Exception as exc:
logger.error(f"Trip generation failed: {str(exc)}")
raise HTTPException(status_code=500, detail=f"Optimization failed: {str(exc)}") from exc
t_first_stage = time.time() - start_time
start_time = time.time()
# Second stage optimization
refined_tour = refiner.refine_optimization(landmarks, base_tour,
# TODO : only if necessary (not enough landmarks for ex.)
try :
refined_tour = refiner.refine_optimization(landmarks, base_tour,
preferences.max_time_minute,
preferences.detour_tolerance_minute)
except Exception as exc :
logger.warning(f"Refiner failed. Proceeding with base trip {str(exc)}")
refined_tour = base_tour
t_second_stage = time.time() - start_time
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
logger.debug('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
background_tasks.add_task(fill_cache)
return trip
@ -113,6 +163,7 @@ def get_trip(trip_uuid: str) -> Trip:
trip = cache_client.get(f"trip_{trip_uuid}")
return trip
except KeyError as exc:
logger.error(f"Failed to fetch trip with UUID {trip_uuid}: {str(exc)}")
raise HTTPException(status_code=404, detail="Trip not found") from exc
@ -131,32 +182,45 @@ def get_landmark(landmark_uuid: str) -> Landmark:
landmark = cache_client.get(f"landmark_{landmark_uuid}")
return landmark
except KeyError as exc:
logger.error(f"Failed to fetch landmark with UUID {landmark_uuid}: {str(exc)}")
raise HTTPException(status_code=404, detail="Landmark not found") from exc
@app.post("/toilets/new")
def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -> list[Toilets] :
@app.post("/trip/recompute-time/{trip_uuid}/{removed_landmark_uuid}")
def update_trip_time(trip_uuid: str, removed_landmark_uuid: str) -> Trip:
"""
Endpoint to find toilets within a specified radius from a given location.
This endpoint expects the `location` and `radius` as **query parameters**, not in the request body.
Updates the reaching times of a given trip when removing a landmark.
Args:
location (tuple[float, float]): The latitude and longitude of the location to search from.
radius (int, optional): The radius (in meters) within which to search for toilets. Defaults to 500 meters.
landmark_uuid (str) : unique identifier for a Landmark.
Returns:
list[Toilets]: A list of Toilets objects that meet the criteria.
(Landmark) : the corresponding Landmark.
"""
if location is None:
raise HTTPException(status_code=406, detail="Coordinates not provided or invalid")
if not (-90 <= location[0] <= 90 or -180 <= location[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
toilets_manager = ToiletsManager(location, radius)
try :
toilets_list = toilets_manager.generate_toilet_list()
return toilets_list
# First, fetch the trip in the cache.
try:
trip = cache_client.get(f'trip_{trip_uuid}')
except KeyError as exc:
raise HTTPException(status_code=404, detail="No toilets found") from exc
logger.error(f"Failed to update trip with UUID {trip_uuid} (trip not found): {str(exc)}")
raise HTTPException(status_code=404, detail='Trip not found') from exc
landmarks = []
next_uuid = trip.first_landmark_uuid
# Extract landmarks
try :
while next_uuid is not None:
landmark = cache_client.get(f'landmark_{next_uuid}')
# Filter out the removed landmark.
if next_uuid != removed_landmark_uuid :
landmarks.append(landmark)
next_uuid = landmark.next_uuid # Prepare for the next iteration
except KeyError as exc:
logger.error(f"Failed to update trip with UUID {trip_uuid} : {str(exc)}")
raise HTTPException(status_code=404, detail=f'landmark {next_uuid} not found') from exc
# Re-link every thing and compute times again
linked_tour = LinkedLandmarks(landmarks)
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
return trip

View File

View File

@ -0,0 +1,638 @@
"""Module responsible for sloving an MILP to find best tour around the given landmarks."""
import logging
from collections import defaultdict, deque
import yaml
import numpy as np
import pulp as pl
from ..structs.landmark import Landmark
from ..utils.get_time_distance import get_time
from ..constants import OPTIMIZER_PARAMETERS_PATH
# Silence the pupl logger
logging.getLogger('pulp').setLevel(level=logging.CRITICAL)
class Optimizer:
"""
Optimizes the balance between the efficiency of a tour and the inclusion of landmarks.
The `Optimizer` class is responsible for calculating the best possible detour adjustments
to a tour based on specific parameters such as detour time, walking speed, and the maximum
number of landmarks to visit. It helps refine a tour by determining whether adding additional
landmarks would significantly reduce the overall efficiency.
Responsibilities:
- Calculates the maximum detour time allowed for a given tour.
- Considers the detour factor, which accounts for real-world walking paths versus straight-line distance.
- Takes into account the average walking speed to estimate walking times.
- Limits the number of landmarks that can be added to the tour to prevent excessive detouring.
- Allows some overflow (overshoot) in the maximum detour time to accommodate for slight inefficiencies.
Attributes:
logger (logging.Logger): Logger for capturing relevant events and errors.
detour (int): The accepted maximum detour time in minutes.
detour_factor (float): The ratio between straight-line distance and actual walking distance in cities.
average_walking_speed (float): The average walking speed of an adult (in meters per second or kilometers per hour).
max_landmarks (int): The maximum number of landmarks to include in the tour.
overshoot (float): The overshoot allowance for exceeding the maximum detour time in a restrictive manner.
"""
logger = logging.getLogger(__name__)
detour: int = None # accepted max detour time (in minutes)
detour_factor: float # detour factor of straight line vs real distance in cities
average_walking_speed: float # average walking speed of adult
max_landmarks: int # max number of landmarks to visit
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
def __init__(self) :
# load parameters from file
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.detour_factor = parameters['detour_factor']
self.average_walking_speed = parameters['average_walking_speed']
self.max_landmarks = parameters['max_landmarks']
self.overshoot = parameters['overshoot']
self.time_limit = parameters['time_limit']
self.gap_rel = parameters['gap_rel']
self.max_iter = parameters['max_iter']
def init_ub_time(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark], max_time: int):
"""
Initialize the objective function and inequality constraints for the linear program.
This function sets up the objective to maximize the attractiveness of visiting landmarks,
while ensuring that the total time (including travel and visit duration) does not exceed
the maximum allowed time. It calculates the pairwise travel times between landmarks and
incorporates visit duration to form the inequality constraints.
The objective is to maximize sightseeing by selecting the most attractive landmarks within
the time limit.
Args:
prob (pl.LpProblem): The linear programming problem where constraints and the objective will be added.
x (pl.LpVariable): A decision variable representing whether a landmark is visited.
L (int): The number of landmarks.
landmarks (list[Landmark]): List of landmarks to visit.
max_time (int): Maximum allowable time for sightseeing, including travel and visit duration.
Returns:
None: Adds the objective function and constraints to the LP problem directly.
constraint coefficients, and the right-hand side of the inequality constraint.
"""
L = len(landmarks)
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = np.zeros(L, dtype=np.int16)
# inequality matrix and vector
A_ub = np.zeros(L*L, dtype=np.int16)
b_ub = round(max_time*(1.1+max_time*self.overshoot))
for i, spot1 in enumerate(landmarks) :
c[i] = spot1.attractiveness
for j in range(i+1, L) :
if i !=j :
t = get_time(spot1.location, landmarks[j].location)
A_ub[i*L + j] = t + spot1.duration
A_ub[j*L + i] = t + landmarks[j].duration
# Expand 'c' to L*L for every decision variable and ad
c = np.tile(c, L)
# Now sort and modify A_ub for each row
if L > 22 :
for i in range(L):
# Get indices of the 4 smallest values in row i
row_values = A_ub[i*L:i*L+L]
closest_indices = np.argpartition(row_values, 22)[:22]
# Create a mask for non-closest landmarks
mask = np.ones(L, dtype=bool)
mask[closest_indices] = False
# Set non-closest landmarks to 32765
row_values[mask] = 32765
A_ub[i*L:i*L+L] = row_values
# Add the objective and the 1 distance constraint
prob += pl.lpSum([c[j] * x[j] for j in range(L*L)])
prob += (pl.lpSum([A_ub[j] * x[j] for j in range(L*L)]) <= b_ub)
def respect_number(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, max_landmarks: int):
"""
Generate constraints to ensure each landmark is visited at most once and cap the total number of visited landmarks.
This function adds the following constraints to the linear program:
1. Each landmark is visited at most once by creating L-2 constraints (one for each landmark).
2. The total number of visited landmarks is capped by the specified maximum number (`max_landmarks`) plus 2.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable indicating whether a landmark is visited.
L (int): The total number of landmarks.
max_landmarks (int): The maximum number of landmarks that can be visited.
Returns:
None: This function directly modifies the `prob` object by adding constraints.
"""
# L-2 constraints: each landmark is visited exactly once
for i in range(1, L-1):
prob += (pl.lpSum([x[L*i + j] for j in range(L)]) <= 1)
# 1 constraint: cap the total number of visits
prob += (pl.lpSum([1 * x[j] for j in range(L*L)]) <= max_landmarks+2)
def break_sym(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to prevent simultaneous travel between two landmarks
in both directions. This constraint ensures that, for any pair of landmarks,
travel from landmark i to landmark j (dij) and travel from landmark j to landmark i (dji)
cannot happen simultaneously.
This method adds constraints to break symmetry, specifically to prevent
cyclic paths with only two elements. It does not prevent cyclic paths involving more than two elements.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding constraints in-place.
"""
upper_ind = np.triu_indices(L, 0, L) # Get the upper triangular indices
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
# Loop over the upper triangular indices, excluding diagonal elements
for i, up_ind in enumerate(up_ind_x):
if up_ind != up_ind_y[i]:
# Add (L*L-L)/2 constraints to break symmetry
prob += (x[up_ind*L + up_ind_y[i]] + x[up_ind_y[i]*L + up_ind] <= 1)
def init_eq_not_stay(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to prevent staying at the same position during travel.
Specifically, it removes travel from a landmark to itself (e.g., d11, d22, d33, etc.).
This function adds one equality constraint to the optimization problem that ensures
no decision variable corresponding to staying at the same landmark is included
in the solution. This helps in ensuring that the path does not include self-loops.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding an equality constraint in-place.
"""
A_eq = np.zeros((L, L), dtype=np.int8)
# Set diagonal elements to 1 (to prevent staying in the same position)
np.fill_diagonal(A_eq, 1)
A_eq = A_eq.flatten()
# First equality constraint
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 0)
def respect_start_finish(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated
start landmark and finishes at the goal landmark.
Specifically, this function adds three equality constraints:
1. Ensures that the path starts at the designated start landmark (row 0).
2. Ensures that the path finishes at the designated goal landmark (row 1).
3. Prevents any arrivals at the start landmark or departures from the goal landmark (row 2).
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding three equality constraints in-place.
"""
# Fill-in row 0.
A_eq = np.zeros((3,L*L), dtype=np.int8)
A_eq[0, :L] = np.ones(L, dtype=np.int8) # sets departures only for start (horizontal ones)
for k in range(L-1) :
if k != 0 :
# Fill-in row 1
A_eq[1, k*L+L-1] = 1 # sets arrivals only for finish (vertical ones)
# Fill-in row 1
A_eq[2, k*L] = 1
A_eq[2, L*(L-1):] = np.ones(L, dtype=np.int8) # prevents arrivals at start and departures from goal
b_eq= [1, 1, 0]
# Add the constraints to pulp
for i in range(3) :
prob += (pl.lpSum([A_eq[i][j] * x[j] for j in range(L*L)]) == b_eq[i])
def respect_order(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):
"""
Generate constraints to tie the optimization problem together and prevent
stacked ones, although this does not fully prevent circles.
This function adds constraints to the optimization problem that prevent
simultaneous travel between landmarks in a way that would result in stacked ones.
However, it does not fully prevent circular paths.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding L-2 equality constraints in-place.
"""
# Loop through rows 1 to L-2 to prevent stacked ones
for i in range(1, L-1):
# Add the constraint that sums across each "row" or "block" in the decision variables
row_sum = -pl.lpSum(x[i + j*L] for j in range(L)) + pl.lpSum(x[i*L:(i+1)*L])
prob += (row_sum == 0)
def respect_user_must(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
This function adds constraints to the optimization problem to ensure that landmarks marked as
'must_do' are included in the solution. It precomputes the constraints and adds them to the
problem accordingly.
Args:
prob (pl.LpProblem): The linear programming problem where constraints will be added.
x (pl.LpVariable): Decision variable representing travel between landmarks.
L (int): The total number of landmarks.
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
Returns:
None: This function modifies the `prob` object by adding equality constraints in-place.
"""
ones = np.ones(L, dtype=np.int8)
A_eq = np.zeros(L*L, dtype=np.int8)
for i, elem in enumerate(landmarks) :
if elem.must_do is True and i not in [0, L-1]:
A_eq[i*L:i*L+L] = ones
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 1)
if elem.must_avoid is True and i not in [0, L-1]:
A_eq[i*L:i*L+L] = ones
prob += (pl.lpSum([A_eq[j] * x[j] for j in range(L*L)]) == 2)
def prevent_circle(self, prob: pl.LpProblem, x: pl.LpVariable, circle_vertices: list, L: int) :
"""
Prevent circular paths by adding constraints to the optimization.
This function ensures that circular paths in both directions (i.e., forward and reverse)
between landmarks are avoided in the optimization problem by adding the corresponding constraints.
Args:
prob (pl.LpProblem): The linear programming problem instance to which the constraints will be added.
x (pl.LpVariable): Decision variable representing the travel between landmarks in the problem.
circle_vertices (list): List of indices representing the landmarks that form a circular path.
L (int): The total number of landmarks.
Returns:
None: This function modifies the `prob` object by adding two equality constraints that
prevent circular paths in both directions for the specified circle vertices.
"""
l = np.zeros((2, L*L), dtype=np.int8)
for i, node in enumerate(circle_vertices[:-1]) :
next = circle_vertices[i+1]
l[0, node*L + next] = 1
l[1, next*L + node] = 1
s = circle_vertices[0]
g = circle_vertices[-1]
l[0, g*L + s] = 1
l[1, s*L + g] = 1
# Add the constraints
prob += (pl.lpSum([l[0][j] * x[j] for j in range(L*L)]) == 0)
prob += (pl.lpSum([l[1][j] * x[j] for j in range(L*L)]) == 0)
def is_connected(self, resx) :
"""
Determine the order of visits and detect any circular paths in the given configuration.
Args:
resx (list): List of edge weights.
Returns:
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
resx = np.round(resx).astype(np.int8) # round all elements and cast them to int
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0]
ind_b = nonzero_tup[1]
# Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = self.get_journey(node, ind_a, ind_b)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
all_journeys_nodes.remove(l)
break
if not all_journeys_nodes :
return None
return all_journeys_nodes
def get_journey(self, start, ind_a, ind_b):
"""
Trace the journey starting from a given node and follow the connections between landmarks.
This method constructs a graph from two lists of landmark connections, `ind_a` and `ind_b`,
where each element in `ind_a` is connected to the corresponding element in `ind_b`.
It then performs a depth-first search (DFS) starting from the `start` node to determine
the path (journey) by following the connections.
Args:
start (int): The starting node of the journey.
ind_a (list[int]): List of "from" nodes, representing the starting points of each connection.
ind_b (list[int]): List of "to" nodes, representing the endpoints of each connection.
Returns:
list[int]: A list of nodes representing the order of the journey, starting from the `start` node.
Example:
If `ind_a = [0, 1, 2]` and `ind_b = [1, 2, 3]`, starting from node 0, the journey would be `[0, 1, 2, 3]`.
"""
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
journey_nodes = []
visited = set()
stack = deque([start])
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
return journey_nodes
def get_order(self, resx):
"""
Determine the order of visits given the result of the optimization.
Args:
resx (list): List of edge weights.
Returns:
list[int]: A list containing the visit order.
"""
resx = np.round(resx).astype(np.uint8) # must contain only 0 and 1
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
order = [0]
current = 0
used_indices = set() # Track visited index pairs
while True:
# Find index of the current node in ind_a
try:
i = ind_a.index(current)
except ValueError:
break # No more links, stop the search
if i in used_indices:
break # Prevent infinite loops
used_indices.add(i) # Mark this index as visited
next_node = ind_b[i] # Get the corresponding node in ind_b
order.append(next_node) # Add it to the path
# Switch roles, now look for next_node in ind_a
try:
current = next_node
except ValueError:
break # No further connections, end the path
return order
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
"""
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
Args:
order (list[int]): List of indices representing the order of landmarks to visit.
landmarks (list[Landmark]): List of all landmarks.
Returns:
list[Landmark]]: The updated linked list of landmarks with travel times
"""
L = []
j = 0
while j < len(order)-1 :
# get landmarks involved
elem = landmarks[order[j]]
next = landmarks[order[j+1]]
# get attributes
elem.time_to_reach_next = get_time(elem.location, next.location)
elem.must_do = True
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
elem.next_uuid = next.uuid
L.append(elem)
j += 1
next.location = (round(next.location[0], 5), round(next.location[1], 5))
next.must_do = True
L.append(next)
return L
def warm_start(self, x: list[pl.LpVariable], L: int) :
"""
This function sets the initial values of the decision variables to a feasible solution.
This can help the solver start with a feasible or heuristic solution,
potentially speeding up convergence.
Args:
x (list[pl.LpVariable]): A list of PuLP decision variables (binary variables).
L (int): The size parameter, representing a dimension (likely related to a grid or matrix).
Returns:
list[pl.LpVariable]: The modified list of PuLP decision variables with initial values set.
"""
for i in range(L*L) :
x[i].setInitialValue(0)
x[1].setInitialValue(1)
x[2*L-1].setInitialValue(1)
return x
def pre_processing(self, L: int, landmarks: list[Landmark], max_time: int, max_landmarks: int | None) :
"""
Preprocesses the optimization problem by setting up constraints and variables for the tour optimization.
This method initializes and prepares the linear programming problem to optimize a tour that includes landmarks,
while respecting various constraints such as time limits, the number of landmarks to visit, and user preferences.
The pre-processing step sets up the problem before solving it using a linear programming solver.
Responsibilities:
- Defines the optimization problem using linear programming (LP) with the objective to maximize the tour value.
- Creates binary decision variables for each potential transition between landmarks.
- Sets up inequality constraints to respect the maximum time available for the tour and the maximum number of landmarks.
- Implements equality constraints to ensure the tour respects the start and finish positions, avoids staying in the same place,
and adheres to a visit order.
- Forces inclusion or exclusion of specific landmarks based on user preferences.
Attributes:
prob (pl.LpProblem): The linear programming problem to be solved.
x (list): A list of binary variables representing transitions between landmarks.
L (int): The total number of landmarks considered in the optimization.
landmarks (list[Landmark]): The list of landmarks to be visited in the tour.
max_time (int): The maximum allowable time for the entire tour.
max_landmarks (int | None): The maximum number of landmarks to visit in the tour, or None if no limit is set.
Returns:
prob (pl.LpProblem): The linear programming problem setup for optimization.
x (list): The list of binary variables for transitions between landmarks in the tour.
"""
if max_landmarks is None :
max_landmarks = self.max_landmarks
# Initalize the optimization problem
prob = pl.LpProblem("OptimizationProblem", pl.LpMaximize)
# Define the problem
x_bounds = [(0, 1)]*L*L
x = [pl.LpVariable(f"x_{i}", lowBound=x_bounds[i][0], upBound=x_bounds[i][1], cat='Binary') for i in range(L*L)]
# Setup the inequality constraints
self.init_ub_time(prob, x, L, landmarks, max_time) # Adds the distances from each landmark to the other.
self.respect_number(prob, x, L, max_landmarks) # Respects max number of visits (no more possible stops than landmarks).
self.break_sym(prob, x, L) # Breaks the 'zig-zag' symmetry. Avoids d12 and d21 but not larger cirlces.
# Setup the equality constraints
self.init_eq_not_stay(prob, x, L) # Force solution not to stay in same place
self.respect_start_finish(prob, x, L) # Force start and finish positions
self.respect_order(prob, x, L) # Respect order of visit (only works when max_time is limiting factor)
self.respect_user_must(prob, x, L, landmarks) # Force to do/avoid landmarks set by user.
# return prob, self.warm_start(x, L)
return prob, x
def solve_optimization(self, max_time: int, landmarks: list[Landmark], max_landmarks: int = None) -> list[Landmark]:
"""
Main optimization pipeline to solve the landmark visiting problem.
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
Args:
max_time (int): Maximum time allowed for the tour in minutes.
landmarks (list[Landmark]): List of landmarks to visit.
max_landmarks (int): Maximum number of landmarks visited
Returns:
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
"""
# Setup the optimization proplem.
L = len(landmarks)
prob, x = self.pre_processing(L, landmarks, max_time, max_landmarks)
# Solve the problem and extract results.
try :
prob.solve(pl.PULP_CBC_CMD(msg=False, timeLimit=self.time_limit+1, gapRel=self.gap_rel))
except Exception as exc :
raise Exception(f"No solution found: {str(exc)}") from exc
status = pl.LpStatus[prob.status]
solution = [pl.value(var) for var in x] # The values of the decision variables (will be 0 or 1)
self.logger.debug("First results are out. Looking out for circles and correcting...")
# Raise error if no solution is found. FIXME: for now this throws the internal server error
if status != 'Optimal' :
self.logger.warning("The problem is overconstrained, no solution on first try.")
raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.")
# If there is a solution, we're good to go, just check for connectiveness
circles = self.is_connected(solution)
i = 0
while circles is not None :
i += 1
if i == self.max_iter :
self.logger.warning(f'Timeout: No solution found after {self.max_iter} iterations.')
raise TimeoutError(f"Optimization took too long. No solution found after {self.max_iter} iterations.")
for circle in circles :
self.prevent_circle(prob, x, circle, L)
# Solve the problem again
try :
prob.solve(pl.PULP_CBC_CMD(msg=False, timeLimit=self.time_limit, gapRel=self.gap_rel))
except Exception as exc :
self.logger.warning("No solution found: {str(exc)")
raise Exception(f"No solution found: {str(exc)}") from exc
solution = [pl.value(var) for var in x]
if pl.LpStatus[prob.status] != 'Optimal' :
self.logger.warning("The problem is overconstrained, no solution after {i} cycles.")
raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.")
circles = self.is_connected(solution)
if circles is None :
break
# Sort the landmarks in the order of the solution
order = self.get_order(solution)
tour = [landmarks[i] for i in order]
self.logger.info(f"Re-optimized {i} times, objective value : {int(pl.value(prob.objective))}")
return tour

View File

@ -1,23 +1,32 @@
import yaml, logging
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
"""Allows to refine the tour by adding more landmarks and making the path easier to follow."""
import logging
from math import pi
import yaml
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
from ..structs.landmark import Landmark
from . import take_most_important, get_time_separation
from ..utils.get_time_distance import get_time
from ..utils.take_most_important import take_most_important
from .optimizer import Optimizer
from ..constants import OPTIMIZER_PARAMETERS_PATH
class Refiner :
"""
Refines a tour by incorporating smaller landmarks along the path to enhance the experience.
This class is designed to adjust an existing tour by considering additional,
smaller points of interest (landmarks) that may require minor detours but
improve the overall quality of the tour. It balances the efficiency of travel
with the added value of visiting these landmarks.
"""
logger = logging.getLogger(__name__)
detour_factor: float # detour factor of straight line vs real distance in cities
detour_corridor_width: float # width of the corridor around the path
average_walking_speed: float # average walking speed of adult
max_landmarks_refiner: int # max number of landmarks to visit
max_landmarks_refiner: int # max number of landmarks to visit
optimizer: Optimizer # optimizer object
def __init__(self, optimizer: Optimizer) :
@ -45,7 +54,7 @@ class Refiner :
"""
corrected_width = (180*width)/(6371000*pi)
path = self.create_linestring(landmarks)
obj = buffer(path, corrected_width, join_style="mitre", cap_style="square", mitre_limit=2)
@ -70,7 +79,7 @@ class Refiner :
return LineString(points)
# Check if some coordinates are in area. Used for the corridor
# Check if some coordinates are in area. Used for the corridor
def is_in_area(self, area: Polygon, coordinates) -> bool :
"""
Check if a given point is within a specified area.
@ -86,7 +95,7 @@ class Refiner :
return point.within(area)
# Function to determine if two landmarks are close to each other
# Function to determine if two landmarks are close to each other
def is_close_to(self, location1: tuple[float], location2: tuple[float]):
"""
Determine if two locations are close to each other by rounding their coordinates to 3 decimal places.
@ -119,7 +128,7 @@ class Refiner :
Returns:
list[Landmark]: The rearranged list of landmarks with grouped nearby visits.
"""
i = 1
while i < len(tour):
j = i+1
@ -131,9 +140,9 @@ class Refiner :
break # Move to the next i-th element after rearrangement
j += 1
i += 1
return tour
def integrate_landmarks(self, sub_list: list[Landmark], main_list: list[Landmark]) :
"""
Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched.
@ -166,27 +175,27 @@ class Refiner :
should be visited, and the second element is a `Polygon` representing
the path connecting all landmarks.
"""
# Step 1: Find 'start' and 'finish' landmarks
start_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'start')
finish_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'finish')
start_landmark = landmarks[start_idx]
finish_landmark = landmarks[finish_idx]
# Step 2: Create a list of unvisited landmarks excluding 'start' and 'finish'
unvisited_landmarks = [lm for i, lm in enumerate(landmarks) if i not in [start_idx, finish_idx]]
# Step 3: Initialize the path with the 'start' landmark
path = [start_landmark]
coordinates = [landmarks[start_idx].location]
current_landmark = start_landmark
# Step 4: Use nearest neighbor heuristic to visit all landmarks
while unvisited_landmarks:
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_separation.get_time(current_landmark.location, lm.location))
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time(current_landmark.location, lm.location))
path.append(nearest_landmark)
coordinates.append(nearest_landmark.location)
current_landmark = nearest_landmark
@ -224,12 +233,12 @@ class Refiner :
for visited in visited_landmarks :
visited_names.append(visited.name)
for landmark in all_landmarks :
if self.is_in_area(area, landmark.location) and landmark.name not in visited_names:
second_order_landmarks.append(landmark)
return take_most_important.take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
return take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
# Try fix the shortest path using shapely
@ -256,7 +265,7 @@ class Refiner :
coords_dict[landmark.location] = landmark
tour_poly = Polygon(coords)
better_tour_poly = tour_poly.buffer(0)
try :
xs, ys = better_tour_poly.exterior.xy
@ -265,11 +274,11 @@ class Refiner :
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
xs, ys = better_tour_poly.exterior.xy
except :
except Exception:
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
xs, ys = better_tour_poly.exterior.xy
"""
ERROR HERE :
FIXED : ERROR HERE :
Exception has occurred: AttributeError
'LineString' object has no attribute 'exterior'
"""
@ -299,7 +308,7 @@ class Refiner :
# Rearrange only if polygon still not simple
if not better_tour_poly.is_simple :
better_tour = self.rearrange(better_tour)
return better_tour
@ -330,10 +339,10 @@ class Refiner :
# No need to refine if no detour is taken
# if detour == 0:
# return base_tour
minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width)
self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
self.logger.debug(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
# Full set of visitable landmarks.
full_set = self.integrate_landmarks(minor_landmarks, base_tour) # could probably be optimized with less overhead
@ -341,13 +350,13 @@ class Refiner :
# Generate a new tour with the optimizer.
new_tour = self.optimizer.solve_optimization(
max_time = max_time + detour,
landmarks = full_set,
landmarks = full_set,
max_landmarks = self.max_landmarks_refiner
)
# If unsuccessful optimization, use the base_tour.
if new_tour is None:
self.logger.warning("No solution found for the refined tour. Returning the initial tour.")
self.logger.warning("Refiner failed: No solution found during second stage optimization.")
new_tour = base_tour
# If only one landmark, return it.
@ -357,9 +366,10 @@ class Refiner :
# Find shortest path using the nearest neighbor heuristic.
better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour)
# Fix the tour using Polygons if the path looks weird.
# Fix the tour using Polygons if the path looks weird.
# Conditions : circular trip and invalid polygon.
if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid :
self.logger.debug("Tours might be funky, attempting to correct with polygons")
better_tour = self.fix_using_polygon(better_tour)
return better_tour

View File

View File

@ -0,0 +1,136 @@
"""Module defining the handling of cache data from Overpass requests."""
import os
import json
import hashlib
from ..constants import OSM_CACHE_DIR, OSM_TYPES
def get_cache_key(query: str) -> str:
"""
Generate a unique cache key for the query using a hash function.
This ensures that queries with different parameters are cached separately.
"""
return hashlib.md5(query.encode('utf-8')).hexdigest()
class CachingStrategyBase:
"""
Base class for implementing caching strategies.
"""
def get(self, key):
"""Retrieve the cached data associated with the provided key."""
raise NotImplementedError('Subclass should implement get')
def set(self, key, value):
"""Store data in the cache with the specified key."""
raise NotImplementedError('Subclass should implement set')
def set_hollow(self, key, **kwargs):
"""Create a hollow (empty) cache entry with a specific key."""
raise NotImplementedError('Subclass should implement set_hollow')
def close(self):
"""Clean up or close any resources used by the caching strategy."""
class JSONCache(CachingStrategyBase):
"""
A caching strategy that stores and retrieves data in JSON format.
"""
def __init__(self, cache_dir=OSM_CACHE_DIR):
# Add the class name as a suffix to the directory
self._cache_dir = f'{cache_dir}'
if not os.path.exists(self._cache_dir):
os.makedirs(self._cache_dir)
def _filename(self, key):
return os.path.join(self._cache_dir, f'{key}.json')
def get(self, key):
"""Retrieve JSON data from the cache and parse it as an ElementTree."""
filename = self._filename(key)
if os.path.exists(filename):
try:
# Open and parse the cached JSON data
with open(filename, 'r', encoding='utf-8') as file:
data = json.load(file)
# Return the data as a list of dicts.
return data
except json.JSONDecodeError:
return None # Return None if parsing fails
return None
def set(self, key, value):
"""Save the JSON data in the cache."""
filename = self._filename(key)
try:
# Write the JSON data to the cache file
with open(filename, 'w', encoding='utf-8') as file:
json.dump(value, file, ensure_ascii=False, indent=4)
except IOError as e:
raise IOError(f"Error writing to cache file: {filename} - {e}") from e
def set_hollow(self, key, cell: tuple, osm_types: list,
selector: str, conditions: list=None, out='center'):
"""Create an empty placeholder cache entry for a future fill."""
hollow_key = f'hollow_{key}'
filename = self._filename(hollow_key)
# Create the hollow JSON structure
hollow_data = {
"key": key,
"cell": list(cell),
"osm_types": list(osm_types),
"selector": selector,
"conditions": conditions,
"out": out
}
# Write the hollow data to the cache file
try:
with open(filename, 'w', encoding='utf-8') as file:
json.dump(hollow_data, file, ensure_ascii=False, indent=4)
except IOError as e:
raise IOError(f"Error writing hollow cache to file: {filename} - {e}") from e
def close(self):
"""Cleanup method, if needed."""
class CachingStrategy:
"""
A class to manage different caching strategies.
"""
__strategy = JSONCache() # Default caching strategy
__strategies = {
'JSON': JSONCache,
}
@classmethod
def use(cls, strategy_name='JSON', **kwargs):
"""Define the caching strategy to use."""
if cls.__strategy:
cls.__strategy.close()
strategy_class = cls.__strategies.get(strategy_name)
if not strategy_class:
raise ValueError(f"Unknown caching strategy: {strategy_name}")
cls.__strategy = strategy_class(**kwargs)
return cls.__strategy
@classmethod
def get(cls, key):
"""Get the data from the cache."""
return cls.__strategy.get(key)
@classmethod
def set(cls, key, value):
"""Save the data in the cache."""
cls.__strategy.set(key, value)
@classmethod
def set_hollow(cls, key, cell: tuple, osm_types: OSM_TYPES,
selector: str, conditions: list=None, out='center'):
"""Create a hollow cache entry."""
cls.__strategy.set_hollow(key, cell, osm_types, selector, conditions, out)

View File

@ -0,0 +1,423 @@
"""Module allowing connexion to overpass api and fectch data from OSM."""
import os
import time
import urllib
import math
import logging
import json
from typing import List, Tuple
from .caching_strategy import get_cache_key, CachingStrategy
from ..constants import OSM_CACHE_DIR, OSM_TYPES, BBOX
RESOLUTION = 0.05
CELL = Tuple[int, int]
class Overpass :
"""
Overpass class to manage the query building and sending to overpass api.
The caching strategy is a part of this class and initialized upon creation of the Overpass object.
"""
logger = logging.getLogger(__name__)
def __init__(self, caching_strategy: str = 'JSON', cache_dir: str = OSM_CACHE_DIR) :
"""
Initialize the Overpass instance with the url, headers and caching strategy.
"""
self.overpass_url = "https://overpass-api.de/api/interpreter"
self.headers = {'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',}
self.caching_strategy = CachingStrategy.use(caching_strategy, cache_dir=cache_dir)
def send_query(self, bbox: BBOX, osm_types: OSM_TYPES,
selector: str, conditions: list=None, out='center') -> List[dict]:
"""
Sends the Overpass QL query to the Overpass API and returns the parsed json response.
Args:
bbox (tuple): Bounding box for the query.
osm_types (list[str]): List of OSM element types (e.g., 'node', 'way').
selector (str): Key or tag to filter OSM elements (e.g., 'highway').
conditions (list): Optional list of additional filter conditions in Overpass QL format.
out (str): Output format ('center', 'body', etc.). Defaults to 'center'.
Returns:
list: Parsed json response from the Overpass API, or cached data if available.
"""
# Determine which grid cells overlap with this bounding box.
overlapping_cells = Overpass._get_overlapping_cells(bbox)
# Retrieve cached data and identify missing cache entries
cached_responses, non_cached_cells = self._retrieve_cached_data(overlapping_cells, osm_types, selector, conditions, out)
self.logger.debug(f'Cache hit for {len(overlapping_cells)-len(non_cached_cells)}/{len(overlapping_cells)} quadrants.')
# If there is no missing data, return the cached responses after filtering.
if not non_cached_cells :
return Overpass._filter_landmarks(cached_responses, bbox)
# If there is no cached data, fetch all from Overpass.
if not cached_responses :
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
self.logger.debug(f'Query string: {query_str}')
return self.fetch_data_from_api(query_str)
# Resize the bbox for smaller search area and build new query string.
non_cached_bbox = Overpass._get_non_cached_bbox(non_cached_cells, bbox)
query_str = Overpass.build_query(non_cached_bbox, osm_types, selector, conditions, out)
self.logger.debug(f'Query string: {query_str}')
non_cached_responses = self.fetch_data_from_api(query_str)
return Overpass._filter_landmarks(cached_responses, bbox) + non_cached_responses
def fetch_data_from_api(self, query_str: str) -> List[dict]:
"""
Fetch data from the Overpass API and return the json data.
Args:
query_str (str): The Overpass query string.
Returns:
dict: Combined cached and fetched data.
"""
try:
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
with urllib.request.urlopen(request) as response:
response_data = response.read().decode('utf-8') # Convert the HTTPResponse to a string
data = json.loads(response_data) # Load the JSON from the string
elements = data.get('elements', [])
# self.logger.debug(f'Query = {query_str}')
return elements
except urllib.error.URLError as e:
self.logger.error(f"Error connecting to Overpass API: {str(e)}")
raise ConnectionError(f"Error connecting to Overpass API: {str(e)}") from e
except Exception as exc :
self.logger.error(f"unexpected error while fetching data from Overpass: {str(exc)}")
raise Exception(f'An unexpected error occured: {str(exc)}') from exc
def fill_cache(self, json_data: dict) :
"""
Fill cache with data by using a hollow cache entry's information.
"""
query_str, cache_key = Overpass._build_query_from_hollow(json_data)
try:
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
with urllib.request.urlopen(request) as response:
# Convert the HTTPResponse to a string and load data
response_data = response.read().decode('utf-8')
data = json.loads(response_data)
# Get elements and set cache
elements = data.get('elements', [])
self.caching_strategy.set(cache_key, elements)
self.logger.debug(f'Cache set for {cache_key}')
except urllib.error.URLError as e:
raise ConnectionError(f"Error connecting to Overpass API: {str(e)}") from e
except Exception as exc :
raise Exception(f'An unexpected error occured: {str(exc)}') from exc
@staticmethod
def build_query(bbox: BBOX, osm_types: OSM_TYPES,
selector: str, conditions: list=None, out='center') -> str:
"""
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
Args:
bbox (tuple): A tuple representing the geographical search area, typically in the format
(lat_min, lon_min, lat_max, lon_max).
osm_types (list[str]): A list of OSM element types to search for. Must be one or more of
'Way', 'Node', or 'Relation'.
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
conditions (list, optional): A list of conditions to apply as additional filters for the
selected OSM elements. The conditions should be written in
the Overpass QL format, and they are combined with '&&' if
multiple are provided. Defaults to an empty list.
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
Defaults to 'center'.
Returns:
str: The constructed Overpass QL query string.
Notes:
- If no conditions are provided, the query will just use the `selector` to filter the OSM
elements without additional constraints.
"""
query = '[out:json][timeout:20];('
# convert the bbox to string.
bbox_str = f"({','.join(map(str, bbox))})"
if conditions is not None and len(conditions) > 0:
conditions = '(if: ' + ' && '.join(conditions) + ')'
else :
conditions = ''
for elem in osm_types :
query += elem + '[' + selector + ']' + conditions + bbox_str + ';'
query += ');' + f'out {out};'
return query
def _retrieve_cached_data(self, overlapping_cells: CELL, osm_types: OSM_TYPES,
selector: str, conditions: list, out: str) -> Tuple[List[dict], list[CELL]]:
"""
Retrieve cached data and identify missing cache quadrants.
Args:
overlapping_cells (list): Cells to check for cached data.
osm_types (list): OSM types (e.g., 'node', 'way').
selector (str): Key or tag to filter OSM elements.
conditions (list): Additional conditions to apply.
out (str): Output format.
Returns:
tuple: A tuple containing:
- cached_responses (list): List of cached data found.
- non_cached_cells (list(tuple)): List of cells with missing data.
"""
cell_key_dict = {}
for cell in overlapping_cells :
for elem in osm_types :
key_str = f"{elem}[{selector}]{conditions}({','.join(map(str, cell))})"
cell_key_dict[cell] = get_cache_key(key_str)
cached_responses = []
non_cached_cells = []
# Retrieve the cached data and mark the missing entries as hollow
for cell, key in cell_key_dict.items():
cached_data = self.caching_strategy.get(key)
if cached_data is not None :
cached_responses += cached_data
else:
self.caching_strategy.set_hollow(key, cell, osm_types, selector, conditions, out)
non_cached_cells.append(cell)
return cached_responses, non_cached_cells
@staticmethod
def _build_query_from_hollow(json_data: dict) -> Tuple[str, str]:
"""
Build query string using information from a hollow cache entry.
"""
# Extract values from the JSON object
key = json_data.get('key')
cell = tuple(json_data.get('cell'))
bbox = Overpass._get_bbox_from_grid_cell(cell)
osm_types = json_data.get('osm_types')
selector = json_data.get('selector')
conditions = json_data.get('conditions')
out = json_data.get('out')
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
return query_str, key
@staticmethod
def _get_overlapping_cells(query_bbox: tuple) -> List[CELL]:
"""
Returns a set of all grid cells that overlap with the given bounding box.
"""
# Extract location from the query bbox
lat_min, lon_min, lat_max, lon_max = query_bbox
min_lat_cell, min_lon_cell = Overpass._get_grid_cell(lat_min, lon_min)
max_lat_cell, max_lon_cell = Overpass._get_grid_cell(lat_max, lon_max)
overlapping_cells = set()
for lat_idx in range(min_lat_cell, max_lat_cell + 1):
for lon_idx in range(min_lon_cell, max_lon_cell + 1):
overlapping_cells.add((lat_idx, lon_idx))
return overlapping_cells
@staticmethod
def _get_grid_cell(lat: float, lon: float) -> CELL:
"""
Returns the grid cell coordinates for a given latitude and longitude.
Each grid cell is 0.05°lat x 0.05°lon resolution in size.
"""
lat_index = math.floor(lat / RESOLUTION)
lon_index = math.floor(lon / RESOLUTION)
return (lat_index, lon_index)
@staticmethod
def _get_bbox_from_grid_cell(cell: CELL) -> BBOX:
"""
Returns the bounding box for a given grid cell index.
Each grid cell is resolution x resolution in size.
The bounding box is returned as (min_lat, min_lon, max_lat, max_lon).
"""
# Calculate the southwest (min_lat, min_lon) corner of the bounding box
min_lat = round(cell[0] * RESOLUTION, 2)
min_lon = round(cell[1] * RESOLUTION, 2)
# Calculate the northeast (max_lat, max_lon) corner of the bounding box
max_lat = round((cell[0] + 1) * RESOLUTION, 2)
max_lon = round((cell[1] + 1) * RESOLUTION, 2)
return (min_lat, min_lon, max_lat, max_lon)
@staticmethod
def _get_non_cached_bbox(non_cached_cells: List[CELL], original_bbox: BBOX):
"""
Calculate the non-cached bounding box by excluding cached cells.
Args:
non_cached_cells (list): The list of cells that were not found in the cache.
original_bbox (tuple): The original bounding box (min_lat, min_lon, max_lat, max_lon).
Returns:
tuple: The new bounding box that excludes cached cells, or None if all cells are cached.
"""
if not non_cached_cells:
return None # All cells were cached
# Initialize the non-cached bounding box with extreme values
min_lat, min_lon, max_lat, max_lon = float('inf'), float('inf'), float('-inf'), float('-inf')
# Iterate over non-cached cells to find the new bounding box
for cell in non_cached_cells:
cell_min_lat, cell_min_lon, cell_max_lat, cell_max_lon = Overpass._get_bbox_from_grid_cell(cell)
min_lat = min(min_lat, cell_min_lat)
min_lon = min(min_lon, cell_min_lon)
max_lat = max(max_lat, cell_max_lat)
max_lon = max(max_lon, cell_max_lon)
# If no update to bounding box, return the original
if min_lat == float('inf') or min_lon == float('inf'):
return None
return (max(min_lat, original_bbox[0]),
max(min_lon, original_bbox[1]),
min(max_lat, original_bbox[2]),
min(max_lon, original_bbox[3]))
@staticmethod
def _filter_landmarks(elements: List[dict], bbox: BBOX) -> List[dict]:
"""
Filters elements based on whether their coordinates are inside the given bbox.
Args:
- elements (list of dict): List of elements containing coordinates.
- bbox (tuple): A bounding box defined as (min_lat, min_lon, max_lat, max_lon).
Returns:
- list: A list of elements whose coordinates are inside the bounding box.
"""
filtered_elements = []
min_lat, min_lon, max_lat, max_lon = bbox
for elem in elements:
# Extract coordinates based on the 'type' of element
if elem.get('type') != 'node':
center = elem.get('center', {})
lat = float(center.get('lat', 0))
lon = float(center.get('lon', 0))
else:
lat = float(elem.get('lat', 0))
lon = float(elem.get('lon', 0))
# Check if the coordinates fall within the given bounding box
if min_lat <= lat <= max_lat and min_lon <= lon <= max_lon:
filtered_elements.append(elem)
return filtered_elements
def get_base_info(elem: dict, osm_type: OSM_TYPES, with_name=False) :
"""
Extracts base information (coordinates, OSM ID, and optionally a name) from an OSM element.
This function retrieves the latitude and longitude coordinates, OSM ID, and optionally the name
of a given OpenStreetMap (OSM) element. It handles different OSM types (e.g., 'node', 'way') by
extracting coordinates either directly or from a center tag, depending on the element type.
Args:
elem (dict): The JSON element representing the OSM entity.
osm_type (str): The type of the OSM entity (e.g., 'node', 'way'). If 'node', the coordinates
are extracted directly from the element; otherwise, from the 'center' tag.
with_name (bool): Whether to extract and return the name of the element. If True, it attempts
to find the 'name' tag within the element and return its value. Defaults to False.
Returns:
tuple: A tuple containing:
- osm_id (str): The OSM ID of the element.
- coords (tuple): A tuple of (latitude, longitude) coordinates.
- name (str, optional): The name of the element if `with_name` is True; otherwise, not included.
"""
# 1. extract coordinates
if osm_type != 'node' :
center = elem.get('center')
lat = float(center.get('lat'))
lon = float(center.get('lon'))
else :
lat = float(elem.get('lat'))
lon = float(elem.get('lon'))
coords = tuple((lat, lon))
# 2. Extract OSM id
osm_id = elem.get('id')
# 3. Extract name if specified and return
if with_name :
name = elem.get('tags', {}).get('name')
return osm_id, coords, name
return osm_id, coords
def fill_cache():
"""
Scans the specified cache directory for files starting with 'hollow_' and attempts to load
their contents as JSON to fill the cache of the Overpass system.
"""
overpass = Overpass()
n_files = 0
total = 0
with os.scandir(OSM_CACHE_DIR) as it:
for entry in it:
if entry.is_file() and entry.name.startswith('hollow_'):
total += 1
try :
# Read the whole file content as a string
with open(entry.path, 'r', encoding='utf-8') as f:
# load data and fill the cache with the query and key
json_data = json.load(f)
overpass.fill_cache(json_data)
n_files += 1
time.sleep(1)
# Now delete the file as the cache is filled
os.remove(entry.path)
except Exception as exc :
overpass.logger.error(f'An error occured while parsing file {entry.path} as .json file: {str(exc)}')
overpass.logger.info(f"Successfully filled {n_files}/{total} cache files.")

View File

@ -51,25 +51,27 @@ sightseeing:
- place_of_worship
- fountain
- townhall
water:
- reflecting_pool
water: reflecting_pool
bridge:
- aqueduct
- viaduct
- boardwalk
- cantilever
- abandoned
building:
- church
- chapel
- mosque
- synagogue
- ruins
- temple
- government
- cathedral
- castle
- museum
building: cathedral
# unused sightseeing/buildings:
# - church
# - chapel
# - mosque
# - synagogue
# - ruins
# - temple
# - government
# - cathedral
# - castle
# - museum
museums:
tourism:

View File

@ -1,12 +1,11 @@
city_bbox_side: 7500 #m
max_bbox_side: 4000 #m
radius_close_to: 50
church_coeff: 0.9
nature_coeff: 1.25
church_coeff: 0.75
nature_coeff: 1.6
overall_coeff: 10
tag_exponent: 1.15
image_bonus: 10
viewpoint_bonus: 15
wikipedia_bonus: 4
name_bonus: 3
N_important: 40
image_bonus: 1.1
viewpoint_bonus: 10
wikipedia_bonus: 1.25
N_important: 60
pay_bonus: -1

View File

@ -2,5 +2,8 @@ detour_factor: 1.4
detour_corridor_width: 300
average_walking_speed: 4.8
max_landmarks: 10
max_landmarks_refiner: 30
overshoot: 1.1
max_landmarks_refiner: 20
overshoot: 0.0016
time_limit: 1
gap_rel: 0.025
max_iter: 80

File diff suppressed because it is too large Load Diff

View File

@ -1,698 +0,0 @@
{
"type": "FeatureCollection",
"generator": "overpass-turbo",
"copyright": "The data included in this document is from www.openstreetmap.org. The data is made available under ODbL.",
"timestamp": "2024-12-02T21:14:59Z",
"features": [
{
"type": "Feature",
"properties": {
"@id": "node/1345741798",
"name": "Cordonnerie Saint-Joseph",
"shop": "shoes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3481705,
48.0816462
]
},
"id": "node/1345741798"
},
{
"type": "Feature",
"properties": {
"@id": "node/2659184738",
"brand": "Armand Thiery",
"brand:wikidata": "Q2861975",
"brand:wikipedia": "fr:Armand Thiery",
"name": "Armand Thiery",
"opening_hours": "Mo-Sa 09:30-19:00",
"shop": "clothes",
"wheelchair": "limited"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3594454,
48.0785574
]
},
"id": "node/2659184738"
},
{
"type": "Feature",
"properties": {
"@id": "node/3618136290",
"name": "Chez Dominique",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3362362,
48.0712174
]
},
"id": "node/3618136290"
},
{
"type": "Feature",
"properties": {
"@id": "node/3618136605",
"name": "Divamod",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3304253,
48.0782989
]
},
"id": "node/3618136605"
},
{
"type": "Feature",
"properties": {
"@id": "node/3618284507",
"name": "Star tendances et voyages",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3474029,
48.0830993
]
},
"id": "node/3618284507"
},
{
"type": "Feature",
"properties": {
"@id": "node/3619696125",
"brand": "Zeeman",
"brand:wikidata": "Q184399",
"name": "Zeeman",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3413834,
48.0638444
]
},
"id": "node/3619696125"
},
{
"type": "Feature",
"properties": {
"@id": "node/4594398129",
"name": "Miss et Mister",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3308309,
48.0779118
]
},
"id": "node/4594398129"
},
{
"type": "Feature",
"properties": {
"@id": "node/4907320441",
"brand": "Sergent Major",
"brand:wikidata": "Q62521738",
"clothes": "babies;children",
"name": "Sergent Major",
"opening_hours": "Mo-Sa 09:30-19:00",
"shop": "clothes",
"wheelchair": "no"
},
"geometry": {
"type": "Point",
"coordinates": [
7.359116,
48.0787229
]
},
"id": "node/4907320441"
},
{
"type": "Feature",
"properties": {
"@id": "node/4907364791",
"brand": "Armand Thiery",
"brand:wikidata": "Q2861975",
"brand:wikipedia": "fr:Armand Thiery",
"clothes": "women",
"name": "Armand Thiery",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3601857,
48.0783373
]
},
"id": "node/4907364791"
},
{
"type": "Feature",
"properties": {
"@id": "node/4907385675",
"check_date": "2024-05-19",
"clothes": "children",
"name": "Du Pareil...au même",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3604521,
48.0779726
]
},
"id": "node/4907385675"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922191645",
"name": "Abilos",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3566167,
48.0794136
]
},
"id": "node/4922191645"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922191648",
"brand": "Esprit",
"brand:wikidata": "Q532746",
"brand:wikipedia": "en:Esprit Holdings",
"name": "Esprit",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3554004,
48.0787549
]
},
"id": "node/4922191648"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922191972",
"brand": "Guess",
"brand:wikidata": "Q2470307",
"brand:wikipedia": "en:Guess (clothing)",
"name": "Guess",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.355273,
48.0788003
]
},
"id": "node/4922191972"
},
{
"type": "Feature",
"properties": {
"@id": "node/4922192001",
"name": "Lingerie",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3575453,
48.0779317
]
},
"id": "node/4922192001"
},
{
"type": "Feature",
"properties": {
"@id": "node/5359915869",
"name": "Al Assil",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3305665,
48.0780902
]
},
"id": "node/5359915869"
},
{
"type": "Feature",
"properties": {
"@id": "node/9089360040",
"brand": "Grain de Malice",
"brand:wikidata": "Q66757157",
"clothes": "women",
"name": "Grain de Malice",
"shop": "clothes",
"short_name": "GDM"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3593125,
48.0786234
]
},
"id": "node/9089360040"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095193153",
"brand": "Undiz",
"brand:wikidata": "Q105306275",
"clothes": "underwear",
"name": "Undiz",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3599579,
48.0782846
]
},
"id": "node/9095193153"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095193154",
"branch": "Lingerie",
"brand": "RougeGorge",
"brand:wikidata": "Q104600739",
"clothes": "underwear",
"name": "RougeGorge",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3604883,
48.0781607
]
},
"id": "node/9095193154"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095212690",
"alt_name": "North Face",
"brand": "The North Face",
"brand:wikidata": "Q152784",
"brand:wikipedia": "en:The North Face",
"check_date": "2024-05-19",
"name": "The North Face",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3603923,
48.0773727
]
},
"id": "node/9095212690"
},
{
"type": "Feature",
"properties": {
"@id": "node/9095270059",
"air_conditioning": "no",
"clothes": "men",
"level": "0",
"name": "Maison Aume",
"second_hand": "no",
"shop": "clothes",
"wheelchair": "no"
},
"geometry": {
"type": "Point",
"coordinates": [
7.361364,
48.0799999
]
},
"id": "node/9095270059"
},
{
"type": "Feature",
"properties": {
"@id": "node/9098624272",
"name": "Destock Place",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3575161,
48.0793009
]
},
"id": "node/9098624272"
},
{
"type": "Feature",
"properties": {
"@id": "node/9123861652",
"name": "Weackers",
"shop": "shoes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.361329,
48.0785972
]
},
"id": "node/9123861652"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162179887",
"brand": "Calzedonia",
"brand:wikidata": "Q1027874",
"brand:wikipedia": "en:Calzedonia",
"name": "Calzedonia",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3606374,
48.0780809
]
},
"id": "node/9162179887"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162206449",
"clothes": "women",
"name": "Cop. Copine",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3600947,
48.078399
]
},
"id": "node/9162206449"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162226360",
"brand": "Okaïdi",
"brand:wikidata": "Q3350027",
"brand:wikipedia": "fr:Okaïdi",
"name": "Okaïdi",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3596986,
48.078428
]
},
"id": "node/9162226360"
},
{
"type": "Feature",
"properties": {
"@id": "node/9162227010",
"brand": "Jules",
"brand:wikidata": "Q3188386",
"brand:wikipedia": "fr:Jules (enseigne)",
"clothes": "men",
"name": "Jules",
"opening_hours": "Mo-Sa 09:30-19:00",
"phone": "+33 3 89 41 03 62",
"shop": "clothes",
"website": "https://www.jules.com/fr-fr/magasins/1600133/"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3600323,
48.0782229
]
},
"id": "node/9162227010"
},
{
"type": "Feature",
"properties": {
"@id": "node/10151865029",
"name": "Atelier Cinq",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3571756,
48.0772657
]
},
"id": "node/10151865029"
},
{
"type": "Feature",
"properties": {
"@id": "node/10862176110",
"name": "L'hexagone",
"shop": "bag"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3808571,
48.0814138
]
},
"id": "node/10862176110"
},
{
"type": "Feature",
"properties": {
"@id": "node/11150877331",
"brand": "Punt Roma",
"brand:wikidata": "Q101423290",
"clothes": "women",
"name": "Punt Roma",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3571859,
48.0779406
]
},
"id": "node/11150877331"
},
{
"type": "Feature",
"properties": {
"@id": "node/11150959880",
"name": "Caroll",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3579354,
48.0779291
]
},
"id": "node/11150959880"
},
{
"type": "Feature",
"properties": {
"@id": "node/11302242094",
"branch": "Wintzenheim",
"name": "Label Fripe",
"opening_hours": "Mo-Sa 09:00-18:45",
"phone": "+33 3 89 27 39 25",
"second_hand": "only",
"shop": "clothes",
"website": "https://labelfripe.fr/label-fripe-wintzenheim/"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3109899,
48.0850362
]
},
"id": "node/11302242094"
},
{
"type": "Feature",
"properties": {
"@id": "node/11392247003",
"name": "Lingerie Sipp",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3111507,
48.0841835
]
},
"id": "node/11392247003"
},
{
"type": "Feature",
"properties": {
"@id": "node/11778819781",
"addr:city": "Colmar",
"addr:housenumber": "10",
"addr:postcode": "68000",
"addr:street": "Rue des Têtes",
"clothes": "suits;hats;men",
"name": "Phillipe",
"phone": "0389411983",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3559389,
48.0789064
]
},
"id": "node/11778819781"
},
{
"type": "Feature",
"properties": {
"@id": "node/11799215969",
"brand": "Petit Bateau",
"brand:wikidata": "Q3377090",
"name": "Petit Bateau",
"opening_hours": "Mo-Sa 10:00-19:00; Su 10:00-18:00",
"phone": "+33 3 89 24 97 85",
"shop": "clothes",
"website": "https://stores.petit-bateau.com/france/colmar/9-rue-des-boulangers"
},
"geometry": {
"type": "Point",
"coordinates": [
7.355149,
48.0780213
]
},
"id": "node/11799215969"
},
{
"type": "Feature",
"properties": {
"@id": "node/11816704669",
"addr:housenumber": "10",
"addr:street": "Rue des Boulangers",
"name": "des petits hauts",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3555001,
48.0780768
]
},
"id": "node/11816704669"
},
{
"type": "Feature",
"properties": {
"@id": "node/12320343534",
"addr:city": "Colmar",
"addr:housenumber": "44",
"addr:postcode": "68000",
"addr:street": "Rue des Clefs",
"brand": "Un Jour Ailleurs",
"brand:wikidata": "Q105106211",
"clothes": "women",
"name": "Un Jour Ailleurs",
"opening_hours": "Mo-Fr 10:00-19:00; Sa 10:00-18:30",
"phone": "+33368318572",
"shop": "clothes",
"website": "https://boutique.unjourailleurs.com/fr/mode-femme/boutique-colmar-76"
},
"geometry": {
"type": "Point",
"coordinates": [
7.35897,
48.0789807
]
},
"id": "node/12320343534"
},
{
"type": "Feature",
"properties": {
"@id": "node/12320343536",
"addr:city": "Colmar",
"addr:housenumber": "38",
"addr:postcode": "68000",
"addr:street": "Rue des Clefs",
"brand": "Timberland",
"brand:wikidata": "Q1539185",
"name": "Timberland",
"opening_hours": "Mo-Sa 10:00-19:00",
"phone": "+33389298650",
"shop": "clothes"
},
"geometry": {
"type": "Point",
"coordinates": [
7.3592409,
48.0788785
]
},
"id": "node/12320343536"
}
]
}

View File

@ -1,350 +0,0 @@
# pylint: skip-file
import numpy as np
import json
import os
from typing import Optional, Literal
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from pydantic import BaseModel
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from math import sin, cos, sqrt, atan2, radians
EARTH_RADIUS_KM = 6373
class ShoppingLocation(BaseModel):
type: Literal['street', 'area']
importance: int
centroid: tuple
start: Optional[list] = None
end: Optional[list] = None
# Output to frontend
class Landmark(BaseModel) :
# Properties of the landmark
name : str
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
location : tuple
osm_type : str
osm_id : int
attractiveness : int
n_tags : int
image_url : Optional[str] = None
website_url : Optional[str] = None
description : Optional[str] = None # TODO future
duration : Optional[int] = 0
name_en : Optional[str] = None
# Additional properties depending on specific tour
must_do : Optional[bool] = False
must_avoid : Optional[bool] = False
is_secondary : Optional[bool] = False
time_to_reach_next : Optional[int] = 0
next_uuid : Optional[str] = None
def extract_points(filestr: str) :
"""
Extract points from geojson file.
Returns :
np.array containing the points
"""
points = []
with open(os.path.dirname(__file__) + '/' + filestr, 'r') as f:
geojson = json.load(f)
for feature in geojson['features']:
if feature['geometry']['type'] == 'Point':
centroid = feature['geometry']['coordinates']
points.append(centroid)
elif feature['geometry']['type'] == 'Polygon':
centroid = np.array(feature['geometry']['coordinates'][0][0])
points.append(centroid)
# Convert the list of points to a NumPy array
return np.array(points)
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
Calculate the time in minutes to travel from one location to another.
Args:
p1 (tuple[float, float]): Coordinates of the starting location.
p2 (tuple[float, float]): Coordinates of the destination.
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
return EARTH_RADIUS_KM * c
def filter_clusters(cluster_points, cluster_labels):
"""
Remove clusters of less importance.
"""
label_counts = np.bincount(cluster_labels)
# Step 3: Get the indices (labels) of the 5 largest clusters
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
# Step 4: Filter points to keep only the points in the top 5 clusters
filtered_cluster_points = []
filtered_cluster_labels = []
for label in top_5_labels:
filtered_cluster_points.append(cluster_points[cluster_labels == label])
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
# Concatenate filtered clusters into a single array
return np.vstack(filtered_cluster_points), np.concatenate(filtered_cluster_labels)
def fit_lines(points, labels):
"""
Fit lines to identified clusters.
"""
all_x = []
all_y = []
lines = []
locations = []
for label in set(labels):
cluster_points = points[labels == label]
# If there's not enough points, skip
if len(cluster_points) < 2:
continue
# Apply PCA to find the principal component (i.e., the line of best fit)
pca = PCA(n_components=1)
pca.fit(cluster_points)
direction = pca.components_[0]
centroid = pca.mean_
# Project the cluster points onto the principal direction (line direction)
projections = np.dot(cluster_points - centroid, direction)
# Get the range of the projections to find the approximate length of the cluster
cluster_length = projections.max() - projections.min()
# Now adjust `t` so that it scales with the cluster length
t = np.linspace(-cluster_length / 2.75, cluster_length / 2.75, 10)
# Calculate the start and end of the line based on min/max projections
start_point = centroid[0] + t*direction[0]
end_point = centroid[1] + t*direction[1]
# Store the line
lines.append((start_point, end_point))
# For visualization, store the points
all_x.append(min(start_point))
all_x.append(max(start_point))
all_y.append(min(end_point))
all_y.append(max(end_point))
if np.linalg.norm(t) <= 0.0045 :
loc = ShoppingLocation(
type='area',
centroid=tuple((centroid[1], centroid[0])),
importance = len(cluster_points),
)
else :
loc = ShoppingLocation(
type='street',
centroid=tuple((centroid[1], centroid[0])),
importance = len(cluster_points),
start=start_point,
end=end_point
)
locations.append(loc)
xmin = min(all_x)
xmax = max(all_x)
ymin = min(all_y)
ymax = max(all_y)
corners = (xmin, xmax, ymin, ymax)
return corners, locations
def create_landmark(shopping_location: ShoppingLocation):
# Define the bounding box for a given radius around the coordinates
lat, lon = shopping_location.centroid
bbox = ("around:1000", str(lat), str(lon))
overpass = Overpass()
# CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
min_dist = float('inf')
new_name = 'Shopping Area'
new_name_en = None
osm_id = 0
osm_type = 'node'
for sel in selectors :
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node', 'way', 'relation'],
selector = sel,
includeCenter = True,
out = 'center'
)
try:
result = overpass.query(query)
except Exception as e:
raise Exception("query unsuccessful")
for elem in result.elements():
location = (elem.centerLat(), elem.centerLon())
if location[0] is None :
location = (elem.lat(), elem.lon())
if location[0] is None :
# print(f"Fetching coordinates failed with {elem.type()}/{elem.id()}")
continue
# print(f"Distance : {get_distance(shopping_location.centroid, location)}")
d = get_distance(shopping_location.centroid, location)
if d < min_dist :
min_dist = d
new_name = elem.tag('name')
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
# add english name if it exists
try :
new_name_en = elem.tag('name:en')
except:
pass
return Landmark(
name=new_name,
type='shopping',
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
attractiveness=shopping_location.importance,
n_tags=0,
osm_id=osm_id,
osm_type=osm_type,
name_en=new_name_en
)
# Extract points
points = extract_points('vienna_data.json')
# print(len(points))
######## Create a figure with 1 row and 3 columns for side-by-side plots
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Plot Raw data points
axes[0].set_title('Raw Data')
axes[0].scatter(points[:, 0], points[:, 1], color='blue', s=20)
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if len(points) > 400 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(points)
# Separate clustered points and noise points
clustered_points = points[labels != -1]
clustered_labels = labels[labels != -1]
noise_points = points[labels == -1]
######## Plot n°1: DBSCAN Clustering Results
axes[1].set_title('DBSCAN Clusters')
axes[1].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=20)
axes[1].scatter(noise_points[:, 0], noise_points[:, 1], c='blue', s=7, label='Noise')
# Keep the 5 biggest clusters
clustered_points, clustered_labels = filter_clusters(clustered_points, clustered_labels)
# Fit lines
corners, locations = fit_lines(clustered_points, clustered_labels)
(xmin, xmax, ymin, ymax) = corners
######## Plot clustered points in normal size and noise points separately
axes[2].scatter(clustered_points[:, 0], clustered_points[:, 1], c=clustered_labels, cmap='rainbow', s=30)
axes[2].set_title('PCA Fitted Lines on Clusters')
# Create a list of Landmarks for the shopping things
shopping_landmarks = []
for loc in locations :
axes[2].scatter(loc.centroid[1], loc.centroid[0], color='red', marker='x', s=200, linewidth=3)
landmark = create_landmark(loc)
shopping_landmarks.append(landmark)
axes[2].text(loc.centroid[1], loc.centroid[0], landmark.name,
ha='center', va='top', fontsize=6,
bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.2'),
zorder=3)
####### Plot the detected lines in the final plot #######
# for loc in locations:
# if loc.type == 'street' :
# line_x = loc.start
# line_y = loc.end
# axes[2].plot(line_x, line_y, color='lime', linewidth=3)
# else :
axes[0].set_xlim(xmin-0.01, xmax+0.01)
axes[0].set_ylim(ymin-0.01, ymax+0.01)
axes[1].set_xlim(xmin-0.01, xmax+0.01)
axes[1].set_ylim(ymin-0.01, ymax+0.01)
axes[2].set_xlim(xmin-0.01, xmax+0.01)
axes[2].set_ylim(ymin-0.01, ymax+0.01)
print("\n\n\n")
for landmark in shopping_landmarks :
print(f"{landmark.name} is a shopping area with a score of {landmark.attractiveness}")
plt.tight_layout()
plt.show()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,6 @@
"""Definition of the Landmark class to handle visitable objects across the world."""
from typing import Optional, Literal
from uuid import uuid4
from uuid import uuid4, UUID
from pydantic import BaseModel, Field
@ -29,12 +28,12 @@ class Landmark(BaseModel) :
description (Optional[str]): A text description of the landmark.
duration (Optional[int]): The estimated time to visit the landmark (in minutes).
name_en (Optional[str]): The English name of the landmark.
uuid (str): A unique identifier for the landmark, generated by default using uuid4.
uuid (UUID): A unique identifier for the landmark, generated by default using uuid4.
must_do (Optional[bool]): Whether the landmark is a "must-do" attraction.
must_avoid (Optional[bool]): Whether the landmark should be avoided.
is_secondary (Optional[bool]): Whether the landmark is secondary or less important.
time_to_reach_next (Optional[int]): Estimated time (in minutes) to reach the next landmark.
next_uuid (Optional[str]): UUID of the next landmark in sequence (if applicable).
next_uuid (Optional[UUID]): UUID of the next landmark in sequence (if applicable).
"""
# Properties of the landmark
@ -45,14 +44,18 @@ class Landmark(BaseModel) :
osm_id : int
attractiveness : int
n_tags : int
# Optional properties to gather more information.
image_url : Optional[str] = None
website_url : Optional[str] = None
description : Optional[str] = None # TODO future
duration : Optional[int] = 0
wiki_url : Optional[str] = None
keywords: Optional[dict] = {}
description : Optional[str] = None
duration : Optional[int] = 5
name_en : Optional[str] = None
# Unique ID of a given landmark
uuid: str = Field(default_factory=uuid4)
uuid: UUID = Field(default_factory=uuid4)
# Additional properties depending on specific tour
must_do : Optional[bool] = False
@ -60,7 +63,12 @@ class Landmark(BaseModel) :
is_secondary : Optional[bool] = False
time_to_reach_next : Optional[int] = 0
next_uuid : Optional[str] = None
next_uuid : Optional[UUID] = None
# More properties to define the score
is_viewpoint : Optional[bool] = False
is_place_of_worship : Optional[bool] = False
def __str__(self) -> str:
"""
@ -115,28 +123,3 @@ class Landmark(BaseModel) :
return (self.uuid == value.uuid or
self.osm_id == value.osm_id or
(self.name == value.name and self.distance(value) < 0.001))
class Toilets(BaseModel) :
"""
Model for toilets. When false/empty the information is either false either not known.
"""
location : tuple
wheelchair : Optional[bool] = False
changing_table : Optional[bool] = False
fee : Optional[bool] = False
opening_hours : Optional[str] = ""
def __str__(self) -> str:
"""
String representation of the Toilets object.
Returns:
str: A formatted string with the toilets location.
"""
return f'Toilets @{self.location}'
class Config:
# This allows us to easily convert the model to and from dictionaries
orm_mode = True

View File

@ -1,7 +1,7 @@
"""Linked and ordered list of Landmarks that represents the visiting order."""
from .landmark import Landmark
from ..utils.get_time_separation import get_time
from ..utils.get_time_distance import get_time
class LinkedLandmarks:
"""

View File

@ -0,0 +1,26 @@
"""Definition of the Toilets class."""
from typing import Optional
from pydantic import BaseModel, ConfigDict
class Toilets(BaseModel) :
"""
Model for toilets. When false/empty the information is either false either not known.
"""
location : tuple
wheelchair : Optional[bool] = False
changing_table : Optional[bool] = False
fee : Optional[bool] = False
opening_hours : Optional[str] = ""
def __str__(self) -> str:
"""
String representation of the Toilets object.
Returns:
str: A formatted string with the toilets location.
"""
return f'Toilets @{self.location}'
model_config = ConfigDict(from_attributes=True)

View File

@ -1,6 +1,6 @@
"""Definition of the Trip class."""
import uuid
from uuid import uuid4, UUID
from pydantic import BaseModel, Field
from pymemcache.client.base import Client
@ -19,9 +19,9 @@ class Trip(BaseModel):
Methods:
from_linked_landmarks: create a Trip from LinkedLandmarks object.
"""
uuid: str = Field(default_factory=uuid.uuid4)
uuid: UUID = Field(default_factory=uuid4)
total_time: int
first_landmark_uuid: str
first_landmark_uuid: UUID
@classmethod
@ -31,7 +31,7 @@ class Trip(BaseModel):
"""
trip = Trip(
total_time = landmarks.total_time,
first_landmark_uuid = str(landmarks[0].uuid)
first_landmark_uuid = landmarks[0].uuid
)
# Store the trip in the cache

View File

@ -1,42 +0,0 @@
"""Collection of tests to ensure correct handling of invalid input."""
from fastapi.testclient import TestClient
import pytest
from .test_utils import load_trip_landmarks
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
def test_cache(client, request): # pylint: disable=redefined-outer-name
"""
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
Args:
client:
request:
"""
duration_minutes = 15
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.084588, 7.280405]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
landmarks_cached = load_trip_landmarks(client, result['first_landmark_uuid'], True)
# checks :
assert response.status_code == 200 # check for successful planning
assert landmarks_cached == landmarks

View File

@ -1,9 +1,9 @@
"""Collection of tests to ensure correct implementation and track progress. """
import time
from fastapi.testclient import TestClient
import pytest
from .test_utils import landmarks_to_osmid, load_trip_landmarks, log_trip_details
from .test_utils import load_trip_landmarks, log_trip_details
from ..main import app
@pytest.fixture(scope="module")
@ -20,30 +20,41 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
client:
request:
"""
duration_minutes = 15
start_time = time.time() # Start timer
duration_minutes = 20
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"nature": {"type": "nature", "score": 0},
"shopping": {"type": "shopping", "score": 0},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.084588, 7.280405]
# "start": [45.74445023349939, 4.8222687890538865]
# "start": [45.75156398104873, 4.827154464827647]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# checks :
assert response.status_code == 200 # check for successful planning
assert isinstance(landmarks, list) # check that the return type is a list
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert len(landmarks) > 2 # check that there is something to visit
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
# assert 2!= 3
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
"""
@ -53,7 +64,10 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
client:
request:
"""
duration_minutes = 30
start_time = time.time() # Start timer
duration_minutes = 120
response = client.post(
"/trip/new",
json={
@ -67,26 +81,238 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
osm_ids = landmarks_to_osmid(landmarks)
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert 136200148 in osm_ids # check for Cathédrale St. Jean in trip
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°3 : Custom test in Lyon centre to ensure shopping clusters are found.
Test n°3 : Custom test in Cologne to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 240
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [50.942352665, 6.957777972392]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°4 : Custom test in Strasbourg to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 180
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.5846589226, 7.74078715721]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_zurich(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°5 : Custom test in Zurich to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 180
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [47.377884227, 8.5395114066]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_paris(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°6 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 200
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 0},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.85468881798671, 2.3423925755998374]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_new_york(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°7 : Custom test in New York to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 600
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [40.72592726802, -73.9920434795]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°8 : Custom test in Lyon centre to ensure shopping clusters are found.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 240
response = client.post(
"/trip/new",
json={
@ -100,29 +326,18 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# osm_ids = landmarks_to_osmid(landmarks)
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
# def test_new_trip_single_prefs(client):
# response = client.post(
# "/trip/new",
# json={
# "preferences": {"sightseeing": {"type": "sightseeing", "score": 1},
# "nature": {"type": "nature", "score": 1},
# "shopping": {"type": "shopping", "score": 1},
# "max_time_minute": 360,
# "detour_tolerance_minute": 0},
# "start": [48.8566, 2.3522]
# }
# )
# assert response.status_code == 200
# def test_new_trip_matches_prefs(client):
# pass
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"

View File

@ -3,14 +3,16 @@
from fastapi.testclient import TestClient
import pytest
from ..structs.landmark import Toilets
from ..structs.toilets import Toilets
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
@pytest.mark.parametrize(
"location,radius,status_code",
[
@ -39,8 +41,6 @@ def test_invalid_input(client, location, radius, status_code): # pylint: disa
assert response.status_code == status_code
@pytest.mark.parametrize(
"location,status_code",
[
@ -66,11 +66,10 @@ def test_no_toilets(client, location, status_code): # pylint: disable=redefin
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
# checks :
assert response.status_code == 200 # check for successful planning
assert response.status_code == status_code # check for successful planning
assert isinstance(toilets_list, list) # check that the return type is a list
@pytest.mark.parametrize(
"location,status_code",
[
@ -97,6 +96,6 @@ def test_toilets(client, location, status_code): # pylint: disable=redefined-
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
# checks :
assert response.status_code == 200 # check for successful planning
assert response.status_code == status_code # check for successful planning
assert isinstance(toilets_list, list) # check that the return type is a list
assert len(toilets_list) > 0
assert len(toilets_list) > 0

View File

@ -1,10 +1,9 @@
"""Helper methods for testing."""
import logging
from fastapi import HTTPException
from pydantic import ValidationError
from ..structs.landmark import Landmark
from ..persistence import client as cache_client
from ..cache import client as cache_client
def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
@ -23,45 +22,7 @@ def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
return ids
def fetch_landmark(client, landmark_uuid: str):
"""
Fetch landmark data from the API based on the landmark UUID.
Args:
landmark_uuid (str): The UUID of the landmark.
Returns:
dict: Landmark data fetched from the API.
"""
logger = logging.getLogger(__name__)
response = client.get(f"/landmark/{landmark_uuid}")
if response.status_code != 200:
raise HTTPException(status_code=500,
detail=f"Failed to fetch landmark with UUID {landmark_uuid}: {response.status_code}")
try:
json_data = response.json()
logger.info(f"API Response: {json_data}")
except ValueError as e:
logger.error(f"Failed to parse response as JSON: {response.text}")
raise HTTPException(status_code=500, detail="Invalid response format from API")
# Try validating against the Landmark model here to ensure consistency
try:
landmark = Landmark(**json_data)
except ValidationError as ve:
logging.error(f"Validation error: {ve}")
raise HTTPException(status_code=500, detail="Invalid data format received from API")
if "detail" in json_data:
raise HTTPException(status_code=500, detail=json_data["detail"])
return Landmark(**json_data)
def fetch_landmark_cache(landmark_uuid: str):
def fetch_landmark(landmark_uuid: str):
"""
Fetch landmark data from the cache based on the landmark UUID.
@ -75,26 +36,24 @@ def fetch_landmark_cache(landmark_uuid: str):
# Try to fetch the landmark data from the cache
try:
landmark = cache_client.get(f"landmark_{landmark_uuid}")
landmark = cache_client.get(f'landmark_{landmark_uuid}')
if not landmark :
logger.warning(f"Cache miss for landmark UUID: {landmark_uuid}")
raise HTTPException(status_code=404, detail=f"Landmark with UUID {landmark_uuid} not found in cache.")
logger.error(f'Cache miss for landmark UUID: {landmark_uuid}')
raise HTTPException(status_code=404, detail=f'Landmark with UUID {landmark_uuid} not found in cache.')
# Validate that the fetched data is a dictionary
if not isinstance(landmark, Landmark):
logger.error(f"Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.")
logger.error(f'Invalid cache data format for landmark UUID: {landmark_uuid}. Expected dict, got {type(landmark).__name__}.')
raise HTTPException(status_code=500, detail="Invalid cache data format.")
return landmark
except Exception as exc:
logger.error(f"Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}")
logger.error(f'Unexpected error occurred while fetching landmark UUID {landmark_uuid}: {exc}')
raise HTTPException(status_code=500, detail="An unexpected error occurred while fetching the landmark from the cache") from exc
def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landmark]:
def load_trip_landmarks(client, first_uuid: str) -> list[Landmark]:
"""
Load all landmarks for a trip using the response from the API.
@ -108,10 +67,7 @@ def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landma
next_uuid = first_uuid
while next_uuid is not None:
if from_cache :
landmark = fetch_landmark_cache(next_uuid)
else :
landmark = fetch_landmark(client, next_uuid)
landmark = fetch_landmark(next_uuid)
landmarks.append(landmark)
next_uuid = landmark.next_uuid # Prepare for the next iteration
@ -122,14 +78,14 @@ def load_trip_landmarks(client, first_uuid: str, from_cache=None) -> list[Landma
def log_trip_details(request, landmarks: list[Landmark], duration: int, target_duration: int) :
"""
Allows to show the detailed trip in the html test report.
Args:
request:
landmarks (list): the ordered list of visited landmarks
duration (int): the total duration of this trip
target_duration(int): the target duration of this trip
"""
trip_string = [f"{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}" for landmark in landmarks]
trip_string = [f'{landmark.name} ({landmark.attractiveness} | {landmark.duration}) - {landmark.time_to_reach_next}' for landmark in landmarks]
# Pass additional info to pytest for reporting
request.node.trip_details = trip_string

View File

View File

@ -0,0 +1,38 @@
"""Defines the endpoint for fetching toilet locations."""
from fastapi import HTTPException, APIRouter, Query
from ..structs.toilets import Toilets
from .toilets_manager import ToiletsManager
# Define the API router
router = APIRouter()
@router.post("/toilets/new")
def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -> list[Toilets] :
"""
Endpoint to find toilets within a specified radius from a given location.
This endpoint expects the `location` and `radius` as **query parameters**, not in the request body.
Args:
location (tuple[float, float]): The latitude and longitude of the location to search from.
radius (int, optional): The radius (in meters) within which to search for toilets. Defaults to 500 meters.
Returns:
list[Toilets]: A list of Toilets objects that meet the criteria.
"""
if location is None:
raise HTTPException(status_code=406, detail="Coordinates not provided or invalid")
if not (-90 <= location[0] <= 90 or -180 <= location[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
toilets_manager = ToiletsManager(location, radius)
try :
toilets_list = toilets_manager.generate_toilet_list()
except KeyError as exc:
raise HTTPException(status_code=404, detail="No toilets found") from exc
return toilets_list

View File

@ -0,0 +1,122 @@
"""Module for finding public toilets around given coordinates."""
import logging
from ..overpass.overpass import Overpass, get_base_info
from ..structs.toilets import Toilets
from ..utils.bbox import create_bbox
# silence the overpass logger
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
class ToiletsManager:
"""
Manages the process of fetching and caching toilet information from
OpenStreetMap (OSM) based on a specified location and radius.
This class is responsible for:
- Fetching toilet data from OSM using Overpass API around a given set of
coordinates (latitude, longitude).
- Using a caching strategy to optimize requests by saving and retrieving
data from a local cache.
- Logging important events and errors related to data fetching.
Attributes:
logger (logging.Logger): Logger for the class to capture events.
location (tuple[float, float]): Latitude and longitude representing the
location to search around.
radius (int): The search radius in meters for finding nearby toilets.
overpass (Overpass): The Overpass API instance used to query OSM.
"""
logger = logging.getLogger(__name__)
location: tuple[float, float]
radius: int # radius in meters
def __init__(self, location: tuple[float, float], radius : int) -> None:
self.radius = radius
self.location = location
# Setup the caching in the Overpass class.
self.overpass = Overpass()
def generate_toilet_list(self) -> list[Toilets] :
"""
Generates a list of toilet locations by fetching data from OpenStreetMap (OSM)
around the given coordinates stored in `self.location`.
Returns:
list[Toilets]: A list of `Toilets` objects containing detailed information
about the toilets found around the given coordinates.
"""
bbox = create_bbox(self.location, self.radius)
osm_types = ['node', 'way', 'relation']
toilets_list = []
query = Overpass.build_query(
bbox = bbox,
osm_types = osm_types,
selector = '"amenity"="toilets"',
out = 'ids center tags'
)
try:
result = self.overpass.fetch_data_from_api(query_str=query)
except Exception as e:
self.logger.error(f"Error fetching toilets: {e}")
return None
toilets_list = self.to_toilets(result)
return toilets_list
def to_toilets(self, elements: list) -> list[Toilets]:
"""
Parse the Overpass API result and extract landmarks.
This method processes the JSON elements returned by the Overpass API and
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
relevant information such as name, coordinates, and tags, and converts them
into Landmark objects.
Args:
list (osm elements): The root element of the JSON response from Overpass API.
elem_type (str): The type of landmark (e.g., node, way, relation).
Returns:
list[Landmark]: A list of Landmark objects extracted from the JSON data.
"""
if elements is None :
return []
toilets_list = []
for elem in elements:
osm_type = elem.get('type')
# Get coordinates and append them to the points list
_, coords = get_base_info(elem, osm_type)
if coords is None :
continue
toilets = Toilets(location=coords)
# Extract tags as a dictionary
tags = elem.get('tags')
if 'wheelchair' in tags.keys() and tags['wheelchair'] == 'yes':
toilets.wheelchair = True
if 'changing_table' in tags.keys() and tags['changing_table'] == 'yes':
toilets.changing_table = True
if 'fee' in tags.keys() and tags['fee'] == 'yes':
toilets.fee = True
if 'opening_hours' in tags.keys() :
toilets.opening_hours = tags['opening_hours']
toilets_list.append(toilets)
return toilets_list

View File

27
backend/src/utils/bbox.py Normal file
View File

@ -0,0 +1,27 @@
"""Various helper functions"""
import math as m
def create_bbox(coords: tuple[float, float], radius: int):
"""
Create a bounding box around the given coordinates.
Args:
coords (tuple[float, float]): The latitude and longitude of the center of the bounding box.
radius (int): The half-side length of the bounding box in meters.
Returns:
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
defining the bounding box.
"""
# Earth's radius in meters
R = 6378137
lat, lon = coords
d_lat = radius / R
d_lon = radius / (R * m.cos(m.pi * lat / 180))
lat_min = lat - d_lat * 180 / m.pi
lat_max = lat + d_lat * 180 / m.pi
lon_min = lon - d_lon * 180 / m.pi
lon_max = lon + d_lon * 180 / m.pi
return (lat_min, lon_min, lat_max, lon_max)

View File

@ -1,283 +0,0 @@
import logging
from typing import Literal
import numpy as np
from sklearn.cluster import DBSCAN
from pydantic import BaseModel
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from ..structs.landmark import Landmark
from ..utils.get_time_separation import get_distance
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
class ShoppingLocation(BaseModel):
""""
A classe representing an interesting area for shopping.
It can represent either a general area or a specifc route with start and end point.
The importance represents the number of shops found in this cluster.
Attributes:
type : either a 'street' or 'area' (representing a denser field of shops).
importance : size of the cluster (number of points).
centroid : center of the cluster.
start : if the type is a street it goes from here...
end : ...to here
"""
type: Literal['street', 'area']
importance: int
centroid: tuple
# start: Optional[list] = None # for later use if we want to have streets as well
# end: Optional[list] = None
class ShoppingManager:
logger = logging.getLogger(__name__)
# NOTE: all points are in (lat, lon) format
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
all_points: list
cluster_points: list
cluster_labels: list
shopping_locations: list[ShoppingLocation]
def __init__(self, bbox: tuple) -> None:
"""
Upon intialization, generate the point cloud used for cluster detection.
The points represent bag/clothes shops and general boutiques.
Args:
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
"""
# Initialize overpass and cache
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
# Initialize the points for cluster detection
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node'],
selector = ['"shop"~"^(bag|boutique|clothes)$"'],
includeCenter = True,
out = 'skel'
)
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
if len(result.elements()) == 0 :
self.valid = False
else :
points = []
for elem in result.elements() :
points.append(tuple((elem.lat(), elem.lon())))
self.all_points = np.array(points)
self.valid = True
def generate_shopping_landmarks(self) -> list[Landmark]:
"""
Generate shopping landmarks based on clustered locations.
This method first generates clusters of locations and then extracts shopping-related
locations from these clusters. It transforms each shopping location into a `Landmark` object.
Returns:
list[Landmark]: A list of `Landmark` objects representing shopping locations.
Returns an empty list if no clusters are found.
"""
self.generate_clusters()
if len(set(self.cluster_labels)) == 0 :
return [] # Return empty list if no clusters were found
# Then generate the shopping locations
self.generate_shopping_locations()
# Transform the locations in landmarks and return the list
shopping_landmarks = []
for location in self.shopping_locations :
shopping_landmarks.append(self.create_landmark(location))
return shopping_landmarks
def generate_clusters(self) :
"""
Generate clusters of points using DBSCAN.
This method applies the DBSCAN clustering algorithm with different
parameters depending on the size of the city (number of points).
It filters out noise points and keeps only the largest clusters.
The method updates:
- `self.cluster_points`: The points belonging to clusters.
- `self.cluster_labels`: The labels for the points in clusters.
The method also calls `filter_clusters()` to retain only the largest clusters.
"""
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if len(self.all_points) > 200 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(self.all_points)
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
# filter the clusters to keep only the largest ones
self.filter_clusters()
def generate_shopping_locations(self) :
"""
Generate shopping locations based on clustered points.
This method iterates over the different clusters, calculates the centroid
(as the mean of the points within each cluster), and assigns an importance
based on the size of the cluster.
The generated shopping locations are stored in `self.shopping_locations`
as a list of `ShoppingLocation` objects, each with:
- `type`: Set to 'area'.
- `centroid`: The calculated centroid of the cluster.
- `importance`: The number of points in the cluster.
"""
locations = []
# loop through the different clusters
for label in set(self.cluster_labels):
# Extract points belonging to the current cluster
current_cluster = self.cluster_points[self.cluster_labels == label]
# Calculate the centroid as the mean of the points
centroid = np.mean(current_cluster, axis=0)
locations.append(ShoppingLocation(
type='area',
centroid=centroid,
importance = len(current_cluster)
))
self.shopping_locations = locations
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
"""
Create a Landmark object based on the given shopping location.
This method queries the Overpass API for nearby neighborhoods and shopping malls
within a 1000m radius around the shopping location centroid. It selects the closest
result and creates a landmark with the associated details such as name, type, and OSM ID.
Parameters:
shopping_location (ShoppingLocation): A ShoppingLocation object containing
the centroid and importance of the area.
Returns:
Landmark: A Landmark object containing details such as the name, type,
location, attractiveness, and OSM details.
"""
# Define the bounding box for a given radius around the coordinates
lat, lon = shopping_location.centroid
bbox = ("around:1000", str(lat), str(lon))
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
min_dist = float('inf')
new_name = 'Shopping Area'
new_name_en = None
osm_id = 0
osm_type = 'node'
for sel in selectors :
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node', 'way', 'relation'],
selector = sel,
includeCenter = True,
out = 'center'
)
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
continue
for elem in result.elements():
location = (elem.centerLat(), elem.centerLon())
if location[0] is None :
location = (elem.lat(), elem.lon())
if location[0] is None :
continue
d = get_distance(shopping_location.centroid, location)
if d < min_dist :
min_dist = d
new_name = elem.tag('name')
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
# Add english name if it exists
try :
new_name_en = elem.tag('name:en')
except:
pass
return Landmark(
name=new_name,
type='shopping',
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
attractiveness=shopping_location.importance,
n_tags=0,
osm_id=osm_id,
osm_type=osm_type,
name_en=new_name_en
)
def filter_clusters(self):
"""
Filter clusters to retain only the 5 largest clusters by point count.
This method calculates the size of each cluster and filters out all but the
5 largest clusters. It then updates the cluster points and labels to reflect
only those from the top 5 clusters.
"""
label_counts = np.bincount(self.cluster_labels)
# Step 3: Get the indices (labels) of the 5 largest clusters
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
# Step 4: Filter points to keep only the points in the top 5 clusters
filtered_cluster_points = []
filtered_cluster_labels = []
for label in top_5_labels:
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
# update the cluster points and labels with the filtered data
self.cluster_points = np.vstack(filtered_cluster_points)
self.cluster_labels = np.concatenate(filtered_cluster_labels)

View File

@ -1,8 +1,10 @@
import yaml
"""Contains various helper functions to help with distance or score computations."""
from math import sin, cos, sqrt, atan2, radians
import yaml
from ..constants import OPTIMIZER_PARAMETERS_PATH
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
DETOUR_FACTOR = parameters['detour_factor']
@ -10,6 +12,7 @@ with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
EARTH_RADIUS_KM = 6373
def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
Calculate the time in minutes to travel from one location to another.
@ -21,25 +24,23 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
# if p1 == p2:
# return 0
# else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = EARTH_RADIUS_KM * c
distance = EARTH_RADIUS_KM * c
# Consider the detour factor for average an average city
walk_distance = distance * DETOUR_FACTOR
@ -47,7 +48,7 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
# Time to walk this distance (in minutes)
walk_time = walk_distance / AVERAGE_WALKING_SPEED * 60
return round(walk_time)
return min(round(walk_time), 32765)
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
@ -61,22 +62,19 @@ def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:
Returns:
int: Time to travel from p1 to p2 in minutes.
"""
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
return EARTH_RADIUS_KM * c
return EARTH_RADIUS_KM * c

View File

@ -1,386 +0,0 @@
import math, yaml, logging
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from ..structs.preferences import Preferences
from ..structs.landmark import Landmark
from .take_most_important import take_most_important
from .cluster_processing import ShoppingManager
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
# silence the overpass logger
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
class LandmarkManager:
logger = logging.getLogger(__name__)
radius_close_to: int # radius in meters
church_coeff: float # coeff to adjsut score of churches
nature_coeff: float # coeff to adjust score of parks
overall_coeff: float # coeff to adjust weight of tags
N_important: int # number of important landmarks to consider
def __init__(self) -> None:
with AMENITY_SELECTORS_PATH.open('r') as f:
self.amenity_selectors = yaml.safe_load(f)
with LANDMARK_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.max_bbox_side = parameters['city_bbox_side']
self.radius_close_to = parameters['radius_close_to']
self.church_coeff = parameters['church_coeff']
self.nature_coeff = parameters['nature_coeff']
self.overall_coeff = parameters['overall_coeff']
self.tag_exponent = parameters['tag_exponent']
self.image_bonus = parameters['image_bonus']
self.name_bonus = parameters['name_bonus']
self.wikipedia_bonus = parameters['wikipedia_bonus']
self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus']
self.N_important = parameters['N_important']
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.walking_speed = parameters['average_walking_speed']
self.detour_factor = parameters['detour_factor']
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
"""
Generate and prioritize a list of landmarks based on user preferences.
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
landmarks based on a predefined criterion.
Args:
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
preferences (Preferences): The user's preference settings that influence the landmark selection.
Returns:
tuple[list[Landmark], list[Landmark]]:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
"""
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
all_landmarks = set()
# Create a bbox using the around technique
bbox = tuple((f"around:{reachable_bbox_side/2}", str(center_coordinates[0]), str(center_coordinates[1])))
# list for sightseeing
if preferences.sightseeing.score != 0:
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
all_landmarks.update(current_landmarks)
# list for nature
if preferences.nature.score != 0:
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
all_landmarks.update(current_landmarks)
# list for shopping
if preferences.shopping.score != 0:
score_function = lambda score: score * 10 * preferences.shopping.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
# set time for all shopping activites :
for landmark in current_landmarks : landmark.duration = 30
all_landmarks.update(current_landmarks)
# special pipeline for shopping malls
shopping_manager = ShoppingManager(bbox)
if shopping_manager.valid :
shopping_clusters = shopping_manager.generate_shopping_landmarks()
for landmark in shopping_clusters : landmark.duration = 45
all_landmarks.update(shopping_clusters)
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
return all_landmarks, landmarks_constrained
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
"""
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
OpenStreetMap data to count the number of elements within that bounding box.
Args:
coordinates (tuple[float, float]): The latitude and longitude of the location to search around.
Returns:
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
are found or if an error occurs during the query.
"""
lat = coordinates[0]
lon = coordinates[1]
radius = self.radius_close_to
alpha = (180 * radius) / (6371000 * math.pi)
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
# Build the query to find elements within the radius
radius_query = overpassQueryBuilder(
bbox=[bbox['latLower'],
bbox['lonLower'],
bbox['latHigher'],
bbox['lonHigher']],
elementType=['node', 'way', 'relation']
)
try:
radius_result = self.overpass.query(radius_query)
N_elem = radius_result.countWays() + radius_result.countRelations()
self.logger.debug(f"There are {N_elem} ways/relations within 50m")
if N_elem is None:
return 0
return N_elem
except:
return 0
# def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
# """
# Create a bounding box around the given coordinates.
# Args:
# coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
# reachable_bbox_side (int): The side length of the bounding box in meters.
# Returns:
# tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
# defining the bounding box.
# """
# # Half the side length in m (since it's a square bbox)
# half_side_length_m = reachable_bbox_side / 2
# return tuple((f"around:{half_side_length_m}", str(coordinates[0]), str(coordinates[1])))
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
"""
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
Args:
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
score_function (callable): The function to compute the score of the landmark based on its attributes.
Returns:
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
Notes:
- Landmarks are fetched using Overpass API queries.
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
- Landmarks are filtered based on various conditions including tags and type.
- Scores are assigned to landmarks based on their attributes and surrounding elements.
"""
return_list = []
if landmarktype == 'nature' : query_conditions = []
else : query_conditions = ['count_tags()>5']
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
# we need to split the selectors into separate queries and merge the results
for sel in dict_to_selector_list(amenity_selector):
self.logger.debug(f"Current selector: {sel}")
# query_conditions = ['count_tags()>5']
# if landmarktype == 'shopping' : # use this later for shopping clusters
# element_types = ['node']
element_types = ['way', 'relation']
if 'viewpoint' in sel :
query_conditions = []
element_types.append('node')
query = overpassQueryBuilder(
bbox = bbox,
elementType = element_types,
# selector can in principle be a list already,
# but it generates the intersection of the queries
# we want the union
selector = sel,
conditions = query_conditions, # except for nature....
includeCenter = True,
out = 'center'
)
self.logger.debug(f"Query: {query}")
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
continue
for elem in result.elements():
name = elem.tag('name')
location = (elem.centerLat(), elem.centerLon())
osm_type = elem.type() # Add type: 'way' or 'relation'
osm_id = elem.id() # Add OSM id
# TODO: exclude these from the get go
# handle unprecise and no-name locations
if name is None or location[0] is None:
if osm_type == 'node' and 'viewpoint' in elem.tags().values():
name = 'Viewpoint'
name_en = 'Viewpoint'
location = (elem.lat(), elem.lon())
else :
continue
# skip if part of another building
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
continue
elem_type = landmarktype # Add the landmark type as 'sightseeing,
n_tags = len(elem.tags().keys()) # Add number of tags
score = n_tags**self.tag_exponent # Add score
website_url = None
image_url = None
name_en = None
# Adjust scoring, browse through tag keys
skip = False
for tag_key in elem.tags().keys():
if "pay" in tag_key:
# payment options are misleading and should not count for the scoring.
score += self.pay_bonus
if "disused" in tag_key:
# skip disused amenities
skip = True
break
if "boundary" in tag_key:
# skip "areas" like administrative boundaries and stuff
skip = True
break
if "historic" in tag_key and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']:
# skip useless amenities
skip = True
break
if "name" in tag_key :
score += self.name_bonus
if "wiki" in tag_key:
# wikipedia entries count more
score += self.wikipedia_bonus
if "image" in tag_key:
# images must count more
score += self.image_bonus
if elem_type != "nature":
if "leisure" in tag_key and elem.tag('leisure') == "park":
elem_type = "nature"
if landmarktype != "shopping":
if "shop" in tag_key:
skip = True
break
if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
skip = True
break
# Extract image, website and english name
if tag_key in ['website', 'contact:website']:
website_url = elem.tag(tag_key)
if tag_key == 'image':
image_url = elem.tag('image')
if tag_key =='name:en':
name_en = elem.tag('name:en')
if skip:
continue
# Don't visit random apartments
if 'apartments' in elem.tags().values():
continue
score = score_function(score)
if "place_of_worship" in elem.tags().values():
score = score * self.church_coeff
duration = 10
if 'viewpoint' in elem.tags().values() :
# viewpoints must count more
score += self.viewpoint_bonus
duration = 10
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
duration = 60
else:
duration = 5
# finally create our own landmark object
landmark = Landmark(
name = name,
type = elem_type,
location = location,
osm_type = osm_type,
osm_id = osm_id,
attractiveness = int(score),
must_do = False,
n_tags = int(n_tags),
duration = int(duration),
name_en = name_en,
image_url = image_url,
website_url = website_url
)
return_list.append(landmark)
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
return return_list
def dict_to_selector_list(d: dict) -> list:
"""
Convert a dictionary of key-value pairs to a list of Overpass query strings.
Args:
d (dict): A dictionary of key-value pairs representing the selector.
Returns:
list: A list of strings representing the Overpass query selectors.
"""
return_list = []
for key, value in d.items():
if type(value) == list:
val = '|'.join(value)
return_list.append(f'{key}~"^({val})$"')
elif type(value) == str and len(value) == 0:
return_list.append(f'{key}')
else:
return_list.append(f'{key}={value}')
return return_list

View File

@ -1,524 +0,0 @@
import yaml, logging
import numpy as np
from scipy.optimize import linprog
from collections import defaultdict, deque
from ..structs.landmark import Landmark
from .get_time_separation import get_time
from ..constants import OPTIMIZER_PARAMETERS_PATH
class Optimizer:
logger = logging.getLogger(__name__)
detour: int = None # accepted max detour time (in minutes)
detour_factor: float # detour factor of straight line vs real distance in cities
average_walking_speed: float # average walking speed of adult
max_landmarks: int # max number of landmarks to visit
overshoot: float # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive
def __init__(self) :
# load parameters from file
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.detour_factor = parameters['detour_factor']
self.average_walking_speed = parameters['average_walking_speed']
self.max_landmarks = parameters['max_landmarks']
self.overshoot = parameters['overshoot']
# Prevent the use of a particular solution
def prevent_config(self, resx):
"""
Prevent the use of a particular solution by adding constraints to the optimization.
Args:
resx (list[float]): List of edge weights.
Returns:
tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # Number of edges
L = int(np.sqrt(N)) # Number of landmarks
nonzeroind = np.nonzero(resx)[0] # the return is a little funky so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
vertices_visited = ind_a
vertices_visited.remove(0)
ones = [1]*L
h = [0]*N
for i in range(L) :
if i in vertices_visited :
h[i*L:i*L+L] = ones
return h, [len(vertices_visited)-1]
# Prevents the creation of the same circle (both directions)
def prevent_circle(self, circle_vertices: list, L: int) :
"""
Prevent circular paths by by adding constraints to the optimization.
Args:
circle_vertices (list): List of vertices forming a circle.
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
l1 = [0]*L*L
l2 = [0]*L*L
for i, node in enumerate(circle_vertices[:-1]) :
next = circle_vertices[i+1]
l1[node*L + next] = 1
l2[next*L + node] = 1
s = circle_vertices[0]
g = circle_vertices[-1]
l1[g*L + s] = 1
l2[s*L + g] = 1
return np.vstack((l1, l2)), [0, 0]
def is_connected(self, resx) :
"""
Determine the order of visits and detect any circular paths in the given configuration.
Args:
resx (list): List of edge weights.
Returns:
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
# first round the results to have only 0-1 values
for i, elem in enumerate(resx):
resx[i] = round(elem)
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
# Step 1: Create a graph representation
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
# Step 2: Function to perform BFS/DFS to extract journeys
def get_journey(start):
journey_nodes = []
visited = set()
stack = deque([start])
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
return journey_nodes
# Step 3: Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = get_journey(node)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
order = l
all_journeys_nodes.remove(l)
break
if len(all_journeys_nodes) == 0 :
return order, None
return order, all_journeys_nodes
def init_ub_dist(self, landmarks: list[Landmark], max_time: int):
"""
Initialize the objective function coefficients and inequality constraints for the optimization problem.
This function computes the distances between all landmarks and stores their attractiveness to maximize sightseeing.
The goal is to maximize the objective function subject to the constraints A*x < b and A_eq*x = b_eq.
Args:
landmarks (list[Landmark]): List of landmarks.
max_time (int): Maximum time of visit allowed.
Returns:
tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
"""
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = []
# Coefficients of inequality constraints (left-hand side)
A_ub = []
for spot1 in landmarks :
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
t = get_time(spot1.location, spot2.location) + spot1.duration
dist_table[j] = t
closest = sorted(dist_table)[:25]
for i, dist in enumerate(dist_table) :
if dist not in closest :
dist_table[i] = 32700
A_ub += dist_table
c = c*len(landmarks)
return c, A_ub, [max_time*self.overshoot]
def respect_number(self, L, max_landmarks: int):
"""
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
ones = [1]*L
zeros = [0]*L
A = ones + zeros*(L-1)
b = [1]
for i in range(L-1) :
h_new = zeros*i + ones + zeros*(L-1-i)
A = np.vstack((A, h_new))
b.append(1)
A = np.vstack((A, ones*L))
b.append(max_landmarks+1)
return A, b
# Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements
def break_sym(self, L):
"""
Generate constraints to prevent simultaneous travel between two landmarks in both directions.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
upper_ind = np.triu_indices(L,0,L)
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
A = [0]*L*L
b = [1]
for i, _ in enumerate(up_ind_x[1:]) :
l = [0]*L*L
if up_ind_x[i] != up_ind_y[i] :
l[up_ind_x[i]*L + up_ind_y[i]] = 1
l[up_ind_y[i]*L + up_ind_x[i]] = 1
A = np.vstack((A,l))
b.append(1)
return A, b
def init_eq_not_stay(self, L: int):
"""
Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.).
Args:
L (int): Number of landmarks.
Returns:
tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
"""
l = [0]*L*L
for i in range(L) :
for j in range(L) :
if j == i :
l[j + i*L] = 1
l = np.array(np.array(l), dtype=np.int8)
return [l], [0]
def respect_user_must_do(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_do is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
l[i*L:i*L+L] = [1]*L # set mandatory departures from landmarks tagged as 'must_do'
A = np.vstack((A,l))
b.append(1)
return A, b
def respect_user_must_avoid(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization.
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_avoid is True and elem.name not in ['finish', 'start']:
l = [0]*L*L
l[i*L:i*L+L] = [1]*L
A = np.vstack((A,l))
b.append(0) # prevent departures from landmarks tagged as 'must_do'
return A, b
# Constraint to ensure start at start and finish at goal
def respect_start_finish(self, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
l_start[L-1] = 0 # prevents the jump from start to finish
l_goal = [0]*L*L # sets arrivals only for finish (vertical ones)
l_L = [0]*L*(L-1) + [1]*L # prevents arrivals at start and departures from goal
for k in range(L-1) : # sets only vertical ones for goal (go to)
l_L[k*L] = 1
if k != 0 :
l_goal[k*L+L-1] = 1
A = np.vstack((l_start, l_goal))
b = [1, 1]
A = np.vstack((A,l_L))
b.append(0)
return A, b
def respect_order(self, L: int):
"""
Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles.
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
A = [0]*L*L
b = [0]
for i in range(L-1) : # Prevent stacked ones
if i == 0 or i == L-1: # Don't touch start or finish
continue
else :
l = [0]*L
l[i] = -1
l = l*L
for j in range(L) :
l[i*L + j] = 1
A = np.vstack((A,l))
b.append(0)
return A, b
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
"""
Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times.
Args:
order (list[int]): List of indices representing the order of landmarks to visit.
landmarks (list[Landmark]): List of all landmarks.
Returns:
list[Landmark]]: The updated linked list of landmarks with travel times
"""
L = []
j = 0
while j < len(order)-1 :
# get landmarks involved
elem = landmarks[order[j]]
next = landmarks[order[j+1]]
# get attributes
elem.time_to_reach_next = get_time(elem.location, next.location)
elem.must_do = True
elem.location = (round(elem.location[0], 5), round(elem.location[1], 5))
elem.next_uuid = next.uuid
L.append(elem)
j += 1
next.location = (round(next.location[0], 5), round(next.location[1], 5))
next.must_do = True
L.append(next)
return L
# Main optimization pipeline
def solve_optimization(
self,
max_time: int,
landmarks: list[Landmark],
max_landmarks: int = None
) -> list[Landmark]:
"""
Main optimization pipeline to solve the landmark visiting problem.
This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks,
considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present.
Args:
max_time (int): Maximum time allowed for the tour in minutes.
landmarks (list[Landmark]): List of landmarks to visit.
max_landmarks (int): Maximum number of landmarks visited
Returns:
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
"""
if max_landmarks is None :
max_landmarks = self.max_landmarks
L = len(landmarks)
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time) # Add the distances from each landmark to the other
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
A_ub = np.vstack((A_ub, A), dtype=np.int16)
b_ub += b
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
A_ub = np.vstack((A_ub, A), dtype=np.int16)
b_ub += b
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = self.init_eq_not_stay(L) # Force solution not to stay in same place
A, b = self.respect_user_must_do(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_user_must_avoid(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_start_finish(L) # Force start and finish positions
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
# SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1)
x_bounds = [(0, 1)]*L*L
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
# Raise error if no solution is found
if not res.success :
raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).")
# If there is a solution, we're good to go, just check for connectiveness
order, circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
i = 0
timeout = 80
while circles is not None and i < timeout:
A, b = self.prevent_config(res.x)
A_ub = np.vstack((A_ub, A))
b_ub += b
#A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub)
for circle in circles :
A, b = self.prevent_circle(circle, L)
A_eq = np.vstack((A_eq, A))
b_eq += b
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
if not res.success :
raise ArithmeticError("Solving failed because of overconstrained problem")
return None
order, circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
if circles is None :
break
# print(i)
i += 1
if i == timeout :
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
#sort the landmarks in the order of the solution
tour = [landmarks[i] for i in order]
self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}")
return tour

View File

@ -1,3 +1,4 @@
"""Helper function to return only the major landmarks from a large list."""
from ..structs.landmark import Landmark
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:

View File

@ -1,78 +0,0 @@
import logging, yaml
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from ..structs.landmark import Toilets
from ..constants import LANDMARK_PARAMETERS_PATH, OSM_CACHE_DIR
# silence the overpass logger
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
class ToiletsManager:
logger = logging.getLogger(__name__)
location: tuple[float, float]
radius: int # radius in meters
def __init__(self, location: tuple[float, float], radius : int) -> None:
self.radius = radius
self.location = location
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
def generate_toilet_list(self) -> list[Toilets] :
# Create a bbox using the around technique
bbox = tuple((f"around:{self.radius}", str(self.location[0]), str(self.location[1])))
toilets_list = []
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['node', 'way', 'relation'],
# selector can in principle be a list already,
# but it generates the intersection of the queries
# we want the union
selector = ['"amenity"="toilets"'],
includeCenter = True,
out = 'center'
)
self.logger.debug(f"Query: {query}")
try:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
return None
for elem in result.elements():
location = (elem.centerLat(), elem.centerLon())
# handle unprecise and no-name locations
if location[0] is None:
location = (elem.lat(), elem.lon())
else :
continue
toilets = Toilets(location=location)
if 'wheelchair' in elem.tags().keys() and elem.tag('wheelchair') == 'yes':
toilets.wheelchair = True
if 'changing_table' in elem.tags().keys() and elem.tag('changing_table') == 'yes':
toilets.changing_table = True
if 'fee' in elem.tags().keys() and elem.tag('fee') == 'yes':
toilets.fee = True
if 'opening_hours' in elem.tags().keys() :
toilets.opening_hours = elem.tag('opening_hours')
toilets_list.append(toilets)
return toilets_list

View File

@ -39,7 +39,7 @@ jobs:
# remove the 'v' prefix from the tag name
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Load secrets from github
- name: Put selected secrets into files
run: |
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
@ -51,8 +51,9 @@ jobs:
working-directory: android
- name: Run fastlane lane
run: bundle exec fastlane deploy_testing
run: bundle exec fastlane deploy_release
working-directory: android
env:
BUILD_NUMBER: ${{ github.run_number }}
# BUILD_NAME is implicitly available
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}

View File

@ -0,0 +1,64 @@
on:
push:
tags:
- 'v*'
jobs:
build:
runs-on: macos-latest
env:
# $BUNDLE_GEMFILE must be set at the job level, so it is set for all steps
BUNDLE_GEMFILE: ${{ github.workspace }}/ios/Gemfile
steps:
- uses: actions/checkout@v4
- name: Set up ruby env
uses: ruby/setup-ruby@v1
with:
ruby-version: 3.3
bundler-cache: true # runs 'bundle install' and caches installed gems automatically
- name: Install Flutter
uses: subosito/flutter-action@v2
with:
channel: stable
flutter-version: 3.22.0
cache: true
- name: Infer version number from git tag
id: version
env:
REF_NAME: ${{ github.ref_name }}
run:
# remove the 'v' prefix from the tag name
echo "BUILD_NAME=${REF_NAME//v}" >> $GITHUB_ENV
- name: Setup SSH key for match git repo
# and mark the host as known
run: |
echo $MATCH_REPO_SSH_KEY | base64 --decode > ~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
ssh-keyscan -p 2222 git.kluster.moll.re > ~/.ssh/known_hosts
env:
MATCH_REPO_SSH_KEY: ${{ secrets.IOS_MATCH_REPO_SSH_KEY_BASE64 }}
- name: Install dependencies and clean up
run: |
flutter pub get
bundle exec pod install
flutter clean
bundle exec pod cache clean --all
working-directory: ios
- name: Run fastlane lane
run: bundle exec fastlane deploy_release --verbose
working-directory: ios
env:
BUILD_NUMBER: ${{ github.run_number }}
# BUILD_NAME is implicitly available
GOOGLE_MAPS_API_KEY: ${{ secrets.GOOGLE_MAPS_API_KEY }}
IOS_ASC_KEY_ID: ${{ secrets.IOS_ASC_KEY_ID }}
IOS_ASC_ISSUER_ID: ${{ secrets.IOS_ASC_ISSUER_ID }}
IOS_ASC_KEY: ${{ secrets.IOS_ASC_KEY }}
MATCH_PASSWORD: ${{ secrets.IOS_MATCH_PASSWORD }}
IOS_GOOGLE_MAPS_API_KEY: ${{ secrets.IOS_GOOGLE_MAPS_API_KEY }}

View File

@ -4,7 +4,7 @@
# This file should be version controlled and should not be manually edited.
version:
revision: "54e66469a933b60ddf175f858f82eaeb97e48c8d"
revision: "09de023485e95e6d1225c2baa44b8feb85e0d45f"
channel: "stable"
project_type: app
@ -13,26 +13,11 @@ project_type: app
migration:
platforms:
- platform: root
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
- platform: android
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
- platform: ios
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
create_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
base_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
- platform: linux
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
- platform: macos
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
- platform: web
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
- platform: windows
create_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
base_revision: 54e66469a933b60ddf175f858f82eaeb97e48c8d
create_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
base_revision: 09de023485e95e6d1225c2baa44b8feb85e0d45f
# User provided section

View File

@ -46,12 +46,16 @@ bundle exec fastlane <lane>
```
This is reused in the CI/CD pipeline to automate the deployment process.
Fastlane assumes mutliple secrets to be present as files in the platform directories. These are:
- for android:
- `secrets.properties` used by gradle to load secrets needed at execution time
- `release.keystore` used by gradle to sign the apk
- `google-key.json` used by fastlane to authenticate with the Google Play Store
- for ios:
- TODO
Secrets used by fastlane are stored on hashicorp vault and are fetched by the CI/CD pipeline. See below.
These files are stored as secrets in the GitHub repository so that the CI pipeline can access them.
## Secrets
These are mostly used by the CI/CD pipeline to deploy the application. The main usage for github actions is documented under [https://github.com/hashicorp/vault-action](https://github.com/hashicorp/vault-action).
**Platform-specific secrets** are used by the CI/CD pipeline to deploy to the respective app stores.
- `GOOGLE_MAPS_API_KEY` is used to authenticate with the Google Maps API and is scoped to the android platform
- `ANDROID_KEYSTORE` is used to sign the android apk
- `ANDROID_GOOGLE_KEY` is used to authenticate with the Google Play Store api
- `IOS_GOOGLE_MAPS_API_KEY` is used to authenticate with the Google Maps API and is scoped to the ios platform
- `IOS_GOOGLE_...`
- `IOS_GOOGLE_...`
- `IOS_GOOGLE_...`

View File

@ -1,220 +0,0 @@
GEM
remote: https://rubygems.org/
specs:
CFPropertyList (3.0.7)
base64
nkf
rexml
addressable (2.8.7)
public_suffix (>= 2.0.2, < 7.0)
artifactory (3.0.17)
atomos (0.1.3)
aws-eventstream (1.3.0)
aws-partitions (1.970.0)
aws-sdk-core (3.202.2)
aws-eventstream (~> 1, >= 1.3.0)
aws-partitions (~> 1, >= 1.651.0)
aws-sigv4 (~> 1.9)
jmespath (~> 1, >= 1.6.1)
aws-sdk-kms (1.88.0)
aws-sdk-core (~> 3, >= 3.201.0)
aws-sigv4 (~> 1.5)
aws-sdk-s3 (1.159.0)
aws-sdk-core (~> 3, >= 3.201.0)
aws-sdk-kms (~> 1)
aws-sigv4 (~> 1.5)
aws-sigv4 (1.9.1)
aws-eventstream (~> 1, >= 1.0.2)
babosa (1.0.4)
base64 (0.2.0)
claide (1.1.0)
colored (1.2)
colored2 (3.1.2)
commander (4.6.0)
highline (~> 2.0.0)
declarative (0.0.20)
digest-crc (0.6.5)
rake (>= 12.0.0, < 14.0.0)
domain_name (0.6.20240107)
dotenv (2.8.1)
emoji_regex (3.2.3)
excon (0.111.0)
faraday (1.10.3)
faraday-em_http (~> 1.0)
faraday-em_synchrony (~> 1.0)
faraday-excon (~> 1.1)
faraday-httpclient (~> 1.0)
faraday-multipart (~> 1.0)
faraday-net_http (~> 1.0)
faraday-net_http_persistent (~> 1.0)
faraday-patron (~> 1.0)
faraday-rack (~> 1.0)
faraday-retry (~> 1.0)
ruby2_keywords (>= 0.0.4)
faraday-cookie_jar (0.0.7)
faraday (>= 0.8.0)
http-cookie (~> 1.0.0)
faraday-em_http (1.0.0)
faraday-em_synchrony (1.0.0)
faraday-excon (1.1.0)
faraday-httpclient (1.0.1)
faraday-multipart (1.0.4)
multipart-post (~> 2)
faraday-net_http (1.0.2)
faraday-net_http_persistent (1.2.0)
faraday-patron (1.0.0)
faraday-rack (1.0.0)
faraday-retry (1.0.3)
faraday_middleware (1.2.0)
faraday (~> 1.0)
fastimage (2.3.1)
fastlane (2.222.0)
CFPropertyList (>= 2.3, < 4.0.0)
addressable (>= 2.8, < 3.0.0)
artifactory (~> 3.0)
aws-sdk-s3 (~> 1.0)
babosa (>= 1.0.3, < 2.0.0)
bundler (>= 1.12.0, < 3.0.0)
colored (~> 1.2)
commander (~> 4.6)
dotenv (>= 2.1.1, < 3.0.0)
emoji_regex (>= 0.1, < 4.0)
excon (>= 0.71.0, < 1.0.0)
faraday (~> 1.0)
faraday-cookie_jar (~> 0.0.6)
faraday_middleware (~> 1.0)
fastimage (>= 2.1.0, < 3.0.0)
gh_inspector (>= 1.1.2, < 2.0.0)
google-apis-androidpublisher_v3 (~> 0.3)
google-apis-playcustomapp_v1 (~> 0.1)
google-cloud-env (>= 1.6.0, < 2.0.0)
google-cloud-storage (~> 1.31)
highline (~> 2.0)
http-cookie (~> 1.0.5)
json (< 3.0.0)
jwt (>= 2.1.0, < 3)
mini_magick (>= 4.9.4, < 5.0.0)
multipart-post (>= 2.0.0, < 3.0.0)
naturally (~> 2.2)
optparse (>= 0.1.1, < 1.0.0)
plist (>= 3.1.0, < 4.0.0)
rubyzip (>= 2.0.0, < 3.0.0)
security (= 0.1.5)
simctl (~> 1.6.3)
terminal-notifier (>= 2.0.0, < 3.0.0)
terminal-table (~> 3)
tty-screen (>= 0.6.3, < 1.0.0)
tty-spinner (>= 0.8.0, < 1.0.0)
word_wrap (~> 1.0.0)
xcodeproj (>= 1.13.0, < 2.0.0)
xcpretty (~> 0.3.0)
xcpretty-travis-formatter (>= 0.0.3, < 2.0.0)
gh_inspector (1.1.3)
google-apis-androidpublisher_v3 (0.54.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-core (0.11.3)
addressable (~> 2.5, >= 2.5.1)
googleauth (>= 0.16.2, < 2.a)
httpclient (>= 2.8.1, < 3.a)
mini_mime (~> 1.0)
representable (~> 3.0)
retriable (>= 2.0, < 4.a)
rexml
google-apis-iamcredentials_v1 (0.17.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-playcustomapp_v1 (0.13.0)
google-apis-core (>= 0.11.0, < 2.a)
google-apis-storage_v1 (0.31.0)
google-apis-core (>= 0.11.0, < 2.a)
google-cloud-core (1.7.1)
google-cloud-env (>= 1.0, < 3.a)
google-cloud-errors (~> 1.0)
google-cloud-env (1.6.0)
faraday (>= 0.17.3, < 3.0)
google-cloud-errors (1.4.0)
google-cloud-storage (1.47.0)
addressable (~> 2.8)
digest-crc (~> 0.4)
google-apis-iamcredentials_v1 (~> 0.1)
google-apis-storage_v1 (~> 0.31.0)
google-cloud-core (~> 1.6)
googleauth (>= 0.16.2, < 2.a)
mini_mime (~> 1.0)
googleauth (1.8.1)
faraday (>= 0.17.3, < 3.a)
jwt (>= 1.4, < 3.0)
multi_json (~> 1.11)
os (>= 0.9, < 2.0)
signet (>= 0.16, < 2.a)
highline (2.0.3)
http-cookie (1.0.7)
domain_name (~> 0.5)
httpclient (2.8.3)
jmespath (1.6.2)
json (2.7.2)
jwt (2.8.2)
base64
mini_magick (4.13.2)
mini_mime (1.1.5)
multi_json (1.15.0)
multipart-post (2.4.1)
nanaimo (0.3.0)
naturally (2.2.1)
nkf (0.2.0)
optparse (0.5.0)
os (1.1.4)
plist (3.7.1)
public_suffix (6.0.1)
rake (13.2.1)
representable (3.2.0)
declarative (< 0.1.0)
trailblazer-option (>= 0.1.1, < 0.2.0)
uber (< 0.2.0)
retriable (3.1.2)
rexml (3.3.6)
strscan
rouge (2.0.7)
ruby2_keywords (0.0.5)
rubyzip (2.3.2)
security (0.1.5)
signet (0.19.0)
addressable (~> 2.8)
faraday (>= 0.17.5, < 3.a)
jwt (>= 1.5, < 3.0)
multi_json (~> 1.10)
simctl (1.6.10)
CFPropertyList
naturally
strscan (3.1.0)
terminal-notifier (2.0.0)
terminal-table (3.0.2)
unicode-display_width (>= 1.1.1, < 3)
trailblazer-option (0.1.2)
tty-cursor (0.7.1)
tty-screen (0.8.2)
tty-spinner (0.9.3)
tty-cursor (~> 0.7)
uber (0.1.0)
unicode-display_width (2.5.0)
word_wrap (1.0.0)
xcodeproj (1.25.0)
CFPropertyList (>= 2.3.3, < 4.0)
atomos (~> 0.1.3)
claide (>= 1.0.2, < 2.0)
colored2 (~> 3.1)
nanaimo (~> 0.3.0)
rexml (>= 3.3.2, < 4.0)
xcpretty (0.3.0)
rouge (~> 2.0.7)
xcpretty-travis-formatter (1.0.1)
xcpretty (~> 0.2, >= 0.0.7)
PLATFORMS
ruby
x86_64-linux
DEPENDENCIES
fastlane
BUNDLED WITH
2.5.18

View File

@ -63,11 +63,3 @@ Compared to the flutter template application, a few changes have to be made:
}
```
### Using the credentials in CI
- Add the secret files to the repository secrets (e.g. `ANDROID_SECRETS_PROPERTIES`).
- temporarily write them back to files during the CI execution:
```bash
echo {{ secrets.ANDROID_SECRETS }} >> android/secrets.properties
```

View File

@ -65,7 +65,7 @@ android {
}
defaultConfig {
// TODO: Specify your own unique Application ID (https://developer.android.com/studio/build/application-id.html).
applicationId "com.anydev.anyway"
// You can update the following values to match your application needs.
// For more information, see: https://docs.flutter.dev/deployment/android#reviewing-the-gradle-build-configuration.
@ -77,7 +77,7 @@ android {
versionCode flutterVersionCode.toInteger()
versionName flutterVersionName
// // Placeholders of keys that are replaced by the build system.
manifestPlaceholders += ['MAPS_API_KEY': secretProperties.getProperty('MAPS_API_KEY')]
manifestPlaceholders += ['MAPS_API_KEY': System.getenv('ANDROID_GOOGLE_MAPS_API_KEY')]
}

View File

@ -1,3 +1,2 @@
# This file mirrors the state of secrets.properties as a reference for the developer.
# And as a fallback for build.gradle
MAPS_API_KEY=Key

View File

@ -1,12 +1,9 @@
# Uncomment the line if you want fastlane to automatically update itself
# update_fastlane
default_platform(:android)
platform :android do
desc "Deploy a new version to closed testing"
lane :deploy_testing do
desc "Deploy a new version to closed testing (play store)"
lane :deploy_beta do
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
@ -21,6 +18,7 @@ platform :android do
upload_to_play_store(
track: 'alpha',
# upload aab files intstead
skip_upload_apk: true,
skip_upload_changelogs: true,
aab: "../build/app/outputs/bundle/release/app-release.aab",
@ -30,24 +28,26 @@ platform :android do
)
end
desc "Deploy a new version as a full release"
lane :deploy_release do
gradle(
task: "clean assembleRelease",
# todo update to a flutter call
properties: {
# loaded from environment
"android.injected.version.name" => ENV["VERSION_NAME"],
}
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
sh(
"flutter",
"build",
"appbundle",
"--release",
"--build-name=#{build_name}",
"--build-number=#{build_number}",
)
upload_to_play_store(
track: "production",
track: 'production',
skip_upload_apk: true,
skip_upload_changelogs: true,
aab: "../build/app/outputs/bundle/release/app-release.aab",
# this is the default output of flutter build ... --release
# in particular this the build folder lies in the flutter root folder
# this is the parent folder for the android folder
)
)
end
end

View File

@ -19,7 +19,7 @@ pluginManagement {
plugins {
id "dev.flutter.flutter-plugin-loader" version "1.0.0"
id "com.android.application" version "7.3.0" apply false
id "com.android.application" version "8.1.0" apply false
id "org.jetbrains.kotlin.android" version "2.0.20" apply false
}

View File

@ -0,0 +1,2 @@
## Vector assets
As per https://www.svgrepo.com/collection/pixellove-bordered-vectors/ these icons are licensed under CC0.

View File

@ -1,107 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 500 500" style="enable-background:new 0 0 500 500;" xml:space="preserve">
<g id="OBJECTS">
<g>
<path style="fill:#F2DBDE;" d="M381.005,363.01c-53.963,8.445-84.441,11.1-138.832,6.101
c-54.388-4.998-109.48-25.844-144.743-67.555c-23.468-27.759-36.728-62.943-43.732-98.613c-3.745-19.07-5.754-39.21,0.433-57.635
c7.513-22.378,26.565-39.569,48.136-49.156c21.572-9.589,45.552-12.365,69.151-12.944c47.753-1.172,95.706,6.26,140.863,21.831
c35.603,12.277,69.954,29.937,96.972,56.171c27.019,26.233,46.213,61.723,47.963,99.341
C458.967,298.17,438.434,354.022,381.005,363.01z"/>
<g>
<path style="fill:#F2BFC6;" d="M314.479,248.209c-22.398,36.41-29.246,81.831-19.597,123.401
c27.302-0.242,52.026-3.263,86.124-8.6c57.429-8.989,77.961-64.84,76.211-102.458c-1.503-32.308-15.881-63.041-37.024-87.694
C375.546,184.337,337.241,211.21,314.479,248.209z"/>
<path style="fill:#F2BFC6;" d="M60.074,229.111c2.232,7.566,4.802,15.029,7.749,22.32c40.138-5.931,78.066-26.379,104.834-56.907
c26.459-30.176,41.716-69.876,42.677-109.969c-14.6-1.246-29.267-1.705-43.916-1.345c-11.908,0.292-23.911,1.147-35.655,3.151
C136.569,142.478,107.155,198.423,60.074,229.111z"/>
<path style="fill:#F2BFC6;" d="M365.131,128.557c-16.748-9.529-34.631-17.233-52.85-23.516
c-6.45-2.224-12.962-4.262-19.517-6.153c-1.712,23.304-4.543,46.555-11.914,68.659c-9.236,27.692-26.464,53.808-52.01,67.931
c-22.973,12.7-50.376,14.689-74.443,25.169c-21.624,9.417-39.587,25.305-54.36,43.893c8.346,9.381,17.714,17.663,27.862,24.902
c16.736-21.461,41.874-37.166,67.161-48.559c35.578-16.03,74.129-26.682,105.739-49.566
C334.357,207.023,357.577,169.22,365.131,128.557z"/>
</g>
</g>
<ellipse style="opacity:0.15;fill:#2D3038;" cx="250.223" cy="394.224" rx="109.236" ry="18.917"/>
<g>
<path style="fill:#2D3038;" d="M305.132,388.442c-0.168,1.158-0.626,2.243-1.458,3.061c-1.863,1.832-4.823,1.724-7.427,1.538
c-17.939-1.285-36.017-0.625-53.815,1.965c-7.053,3.155-16.423,3.233-25.275,2.004c-8.853-1.231-17.514-3.684-26.397-4.661
c-8.885-0.976-21.867-0.33-26.499,2.758c0,0-7.266,3.996-12.907,12.021c-3.367,4.789-4.105,11.306-2.377,16.899
c2.452,7.945,10.312,13.334,18.475,14.912c8.163,1.579,16.603-0.053,24.6-2.327c22.82-6.49,43.805-18.134,66.018-26.468
c22.213-8.334,47.017-13.282,69.546-5.844c3.96,1.306,7.879,3.033,10.941,5.866c3.062,2.832,5.173,6.927,4.813,11.081
c-0.464,5.356-4.97,9.719-10.061,11.444c-5.092,1.726-10.658,1.275-15.953,0.346c-5.296-0.93-10.554-2.17-15.926-2.414
c-20.08-0.909-38.455,4.247-56.124,10.857c-17.669,6.608-35.096,14.21-53.56,18.085c-18.463,3.874-35.807,8.106-51.682-4.186
c-20.345-15.753-19.603-41.137-8.091-63.296c5.521-10.629,12.589-18.637,19.416-27.732c-1.72-12.542-6.898-24.945-9.467-37.525
c-4.135-20.25-1.309-41.854,7.666-61.314c5.614-15.439,11.257-30.942,19.093-45.38c7.835-14.438,18.007-27.88,31.297-37.536
c13.289-9.656,29.927-15.279,46.993-13.222c7.787-8.403,16.038-16.377,24.703-23.871c-1.319-7.29-1.183-14.637,0.584-20.961
c-4.077-8.872-8.2-17.907-9.54-27.579c-0.835-6.027-0.441-12.408,1.577-17.991c1.878-5.198,8.452-6.799,12.542-3.08
c6.673,6.07,12.683,12.869,17.891,20.235c18.398-4.802,38.164-4.231,56.264,1.583c6.473-8.017,14.398-14.861,23.286-20.075
c2.366-1.388,5.533-2.613,7.657-0.875c1.683,1.377,1.736,3.89,1.592,6.059c-0.815,12.217-3.418,24.313-8.016,36.577
c4.862,15.779,0.82,33.862-9.812,46.412c-2.168,11.956,1.193,24.438,2.504,36.665c2.294,21.385-1.98,43.411-12.271,62.744
c-2.4,4.508-5.754,8.444-9.863,11.477c-1.71,1.263-3.38,2.581-5.006,3.951c-5.172,20.881-10.139,41.311-15.351,62.281
c2.061,7.78,4.487,15.496,7.272,23.126c3.209-0.899,6.478-1.696,9.816-1.809c3.896-0.132,7.942,0.744,11.024,3.131
c2.308,1.785,3.979,4.375,4.658,7.212c0.484,2.028,0.445,4.26-0.563,6.086c-0.663,1.203-1.81,2.171-3.102,2.583
c0.454,1.78,0.565,3.616,0.106,5.385c-0.778,3.004-3.622,5.6-6.675,5.375c-0.047,0.112-0.097,0.223-0.151,0.333
c-0.979,1.985-3.08,3.228-5.239,3.714c-2.063,0.464-4.207,0.333-6.319,0.174c-0.138,0.225-0.3,0.437-0.489,0.633
c-1.556,1.603-4.16,1.338-6.346,0.87c-3.015-0.645-6.04-1.471-8.688-3.051c-2.647-1.583-4.906-4.013-5.707-6.991
c-1.237-4.607,2.111-10.097,0.151-14.313c-3.538-7.609-7.733-14.893-12.004-22.126c-8.712,7.077-18.162,13.242-28.147,18.367
c6.95-0.974,14.248-1.345,21.476-0.293c3.273,0.475,6.596,1.283,9.285,3.208c2.689,1.924,4.631,5.173,4.214,8.453
c-0.34,2.664-2.596,5.054-5.156,5.449"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M151.465,379.089
c0.578-3.877,0.614-7.729,0.28-11.566"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M296.431,98.602
c1.739,2.591,3.381,5.247,4.918,7.962"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M273.736,153.553
c-0.645-1.929-1.188-3.891-1.625-5.865"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.23,106.811
c-4.87-7.904-10.55-15.309-16.923-22.061c-1.834-1.943-4.156-3.987-6.799-3.598c-2.928,0.431-4.574,3.626-5.147,6.53
c-1.629,8.254,1.474,16.627,4.521,24.47"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M352.846,98.327
c1.084,0.372,2.162,0.763,3.232,1.174"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.545,168.179
c-1.077,1.107-2.211,2.161-3.399,3.155"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M295.583,130.136
c3.86-4.907,10.772-7.181,16.791-5.521c6.019,1.659,10.791,7.151,11.446,13.054c-4.594,3.601-11.6,3.717-16.311,0.268
c-3.162-2.315-5.105-6.101-5.423-9.993"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M363.109,126.785
c-1.79-2.631-5.159-4.002-8.321-3.646c-3.162,0.356-6.042,2.317-7.787,4.979c-1.743,2.662-2.395,5.96-1.828,9.854
c4.738,1.952,10.727,0.164,13.621-4.066c1.462-2.137,2.057-4.785,1.832-7.36"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M350.957,171.048
c-4.278,4.378-10.749,6.497-16.787,5.499"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.68,282.717
c-5.42,4.867-10.31,10.327-14.541,16.258"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M333.834,368.351
c0.757,2.017,1.54,4.028,2.348,6.032c2.26-0.589,4.541-1.183,6.876-1.268c2.333-0.084,4.757,0.381,6.656,1.74
c1.559,1.116,2.664,2.753,3.552,4.452c0.261,0.499,0.505,1.013,0.727,1.536"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M317.138,283.315
c0.476,18.805,3.038,37.553,7.633,55.961"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M337.823,376.837
c2.877-0.595,5.878,0.99,7.67,3.316c1.791,2.327,2.567,5.273,3.025,8.174c0.191,1.214,0.327,2.48,0.209,3.695"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M327.236,380.633
c3.086-0.38,6.102,1.606,7.733,4.252c1.632,2.645,2.112,5.835,2.285,8.939c0.04,0.721,0.054,1.476-0.027,2.204"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M305.059,385.808
c-0.036-0.193-0.079-0.385-0.128-0.573c-1.058-4.111-4.728-7.422-8.927-8.052"/>
<g>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M250.442,264.812
c-1.67-3.125-3.183-6.325-4.488-9.622c-5.098-12.883-6.92-27.047-5.248-40.801"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M302.266,351.248
c-7.667-12.944-15.022-25.405-19.496-39.762"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M272.435,372.065
c-3.368,0.554-6.637,1.226-9.757,1.918c10.852-22.715,21.971-46.794,19.913-71.883c-0.826-10.055-4.036-20.316-11.156-27.463
c-8.522-8.553-21.576-11.406-33.547-9.827c-22.022,2.903-41.327,20.57-46.167,42.248"/>
</g>
<g>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M328.579,152.076
c1.379-0.341,2.796,0.501,3.736,1.565c0.942,1.065,1.588,2.366,2.551,3.41c0.963,1.044,2.43,1.826,3.784,1.398
c1.002-0.317,1.702-1.217,2.207-2.139c0.504-0.921,0.888-1.923,1.572-2.721c1.237-1.447,3.432-1.978,5.192-1.258"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M360.735,158.173
c-2.16,5.007-7.325,8.57-12.773,8.812c-1.946,0.086-3.967-0.245-5.593-1.317c-1.872-1.234-2.979-3.253-3.85-5.361
c-0.089,1.146-0.496,2.29-1.133,3.25c-1.229,1.854-3.175,3.116-5.189,4.059c-3.3,1.546-7.007,2.373-10.616,1.879
c-3.611-0.495-7.099-2.413-9.07-5.477"/>
<path style="fill:none;stroke:#FFFFFF;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;" d="M338.276,158.534
c0,0,0.176,1.073,0.244,1.773"/>
</g>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 9.5 KiB

View File

@ -0,0 +1,79 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>cel-snow-globe</title>
<desc>Created with Sketch.</desc>
<defs>
</defs>
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="SLICES-64px" transform="translate(-450.000000, 0.000000)">
</g>
<g id="ICONS" transform="translate(-445.000000, 5.000000)">
<g id="cel-snow-globe" transform="translate(450.000000, 2.000000)">
<path d="M46,44 C48.209,44 50,45.791 50,48 L50,52 L2,52 L2,48 C2,45.791 3.791,44 6,44 L46,44 Z" id="Fill-1055" fill="#EEC261">
</path>
<path d="M7.2402,44.002 C2.7562,39.33 0.0002,32.987 0.0002,26 C0.0002,11.641 11.6402,0 26.0002,0 C40.3592,0 52.0002,11.641 52.0002,26 C52.0002,32.986 49.2442,39.33 44.7602,44.001 L7.2402,44.002 Z" id="Fill-1056" fill="#B6E0F2">
</path>
<path d="M38,37 C38,33.134 34.866,30 31,30 C27.134,30 24,33.134 24,37 C24,40.866 27.134,44 31,44 C34.866,44 38,40.866 38,37" id="Fill-1057" fill="#E9EFFA">
</path>
<path d="M26,25 C26,22.238 28.239,20 31,20 C33.761,20 36,22.238 36,25 C36,27.762 33.761,30 31,30 C28.239,30 26,27.762 26,25" id="Fill-1058" fill="#E9EFFA">
</path>
<path d="M38,37 C38,33.134 34.866,30 31,30 C27.134,30 24,33.134 24,37 C24,40.866 27.134,44 31,44 C34.866,44 38,40.866 38,37 Z" id="Stroke-1059" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M26,25 C26,22.238 28.239,20 31,20 C33.761,20 36,22.238 36,25 C36,27.762 33.761,30 31,30 C28.239,30 26,27.762 26,25 Z" id="Stroke-1060" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M46,44 C48.209,44 50,45.791 50,48 L50,52 L2,52 L2,48 C2,45.791 3.791,44 6,44 L46,44 Z" id="Stroke-1061" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M7.2402,44.002 C2.7562,39.33 0.0002,32.987 0.0002,26 C0.0002,11.641 11.6402,0 26.0002,0 C40.3592,0 52.0002,11.641 52.0002,26 C52.0002,32.986 49.2442,39.33 44.7602,44.001" id="Stroke-1062" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M8,24 C8,14.059 16.059,6 26,6" id="Stroke-1063" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M20,28 L26.061,32.04" id="Stroke-1064" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M42,28 L35.939,32.04" id="Stroke-1065" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M42,25 L42,28" id="Stroke-1066" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M45,28 L42,28" id="Stroke-1067" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M20,25 L20,28" id="Stroke-1068" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M17,28 L20,28" id="Stroke-1069" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M10.02,31.0098 C10.02,31.5688 9.568,32.0208 9.01,32.0208 C8.452,32.0208 8,31.5688 8,31.0098 C8,30.4518 8.452,29.9998 9.01,29.9998 C9.568,29.9998 10.02,30.4518 10.02,31.0098 Z" id="Stroke-1070" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M22.02,15.0098 C22.02,15.5688 21.568,16.0208 21.01,16.0208 C20.452,16.0208 20,15.5688 20,15.0098 C20,14.4518 20.452,13.9998 21.01,13.9998 C21.568,13.9998 22.02,14.4518 22.02,15.0098 Z" id="Stroke-1071" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M44.02,17.0098 C44.02,17.5688 43.568,18.0208 43.01,18.0208 C42.452,18.0208 42,17.5688 42,17.0098 C42,16.4518 42.452,15.9998 43.01,15.9998 C43.568,15.9998 44.02,16.4518 44.02,17.0098 Z" id="Stroke-1072" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M18.02,37.0098 C18.02,37.5688 17.568,38.0208 17.01,38.0208 C16.452,38.0208 16,37.5688 16,37.0098 C16,36.4518 16.452,35.9998 17.01,35.9998 C17.568,35.9998 18.02,36.4518 18.02,37.0098 Z" id="Stroke-1073" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M36.02,9.0098 C36.02,9.5688 35.568,10.0208 35.01,10.0208 C34.452,10.0208 34,9.5688 34,9.0098 C34,8.4518 34.452,7.9998 35.01,7.9998 C35.568,7.9998 36.02,8.4518 36.02,9.0098 Z" id="Stroke-1074" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 5.1 KiB

View File

@ -1,273 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 1000 700" style="enable-background:new 0 0 1000 700;" xml:space="preserve">
<g id="Shadow">
<g style="opacity:0.1;">
<path style="fill:#38415C;" d="M186.919,556.734c0,0.331,0.541,0.599,1.208,0.599c0.667,0,1.208-0.268,1.208-0.599
c0-0.331-0.541-0.599-1.208-0.599C187.46,556.135,186.919,556.403,186.919,556.734z"/>
<path style="fill:#38415C;" d="M957.699,446.328h-12.196h-37.267h-8.131h-4.525h-22.106h-29.729h-8.01h-8.921h-7.462H777.69h-5.38
h-8.517h-13.921h-24.898h-0.367h-35.201h-33.29h-13.405h-8.642h-18.387h-20.084H584.19h-2.542h-5.421h-37.944h-7.453h-2.757
h-2.757h-1.428h-8.748h-5.514h-10.175h-0.905h-4.609h-10.175h-5.514h-10.175h-2.757h-2.757h-27.938h-8.05h-29.96h-6.713h-18.964
h-11.234h-48.644h-12.099h-10.229h-20.764h-12.382h-3.512h-23.242h-5.943h-13.266h-10.795h-35.413h-16.467h-4.656h-8.696h-25.877
H89.054h-4.763H72.026h-7.508H53.821H42.302v9.376h11.519v6.41h10.696v6.835h19.774v2.177h20.658v9.405h17.084v-5.919h11.557
v10.475h3.789v11.69h11.18v9.823h-4.017v1.763h7.066v4.785h23.433v28.254h-1.845v1.897h4.028v2.429h4.636v0.913v2.777v2.41h5.594
v4.306h0.673l0,0h0.673v-4.306h3.015l1.823-2.41h12.206v-3.69h31.948V543.3h4.028v-1.897h-1.845V484.37h15.302v40.617h1.509v3.023
h2.811v10.012h1.016v-10.012h2.287v7.997h1.017v-7.997h4.828v-3.023h6.098v-10.569h11.445v-0.743h-1.492v-2.116h7.56v32.974
h-1.078v0.849h7.678v5.101h-0.992v0.817h7.047v2.933h-1.099v0.627h3.502v2.77h3.348v5.513h0.402h0.398h0.314v-5.513h1.354v9.889
h0.402h0.399h0.314v-9.889h0.451h2.897v-2.77h3.034v-0.627h-0.632v-2.933h7.047v-0.817h-0.992v-5.101h7.678v-0.849h-1.078v-43.096
h23.505v-5.982h8.399v31.88h-4.954v0.806h4.954v1.443h6.279v2.37h30.344v27.318h7.165v21.803h13.871V593h1.952v-11.927h4.298
v9.528h1.952v-9.528h21.941v-12.964h3.982v-8.839h11.148v-32.999h4.318v-7.629l6.342,0.769v1.742h5.514v-1.073l10.175,1.234v1.969
h5.514v-1.3l9.332,1.131v9.523h2.491v16.539h11.982v6.297h6.46v5.29h2.267v9.068h0.586v-9.068h2.267v-5.29h6.46v-6.297h12.075
v-16.539h2.399v-45.67l5.467,13.925h5.729v12.219h-2.645v0.527h31.278v6.75h-3.52v0.763h-1.791v2.08h8.284v2.313h-1.087v0.668
h18.198v-0.668h-1.087v-2.313h23.966c0.802,1.935,2.023,3.811,3.668,5.596l-3.992,0.913c-0.688-0.732-2.184-1.239-3.92-1.239
c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143c2.388,0,4.324-0.96,4.324-2.143
c0-0.239-0.08-0.468-0.225-0.683l4.015-0.919c2.595,2.749,6.165,5.281,10.623,7.491c0.352,0.174,0.709,0.346,1.069,0.515
l-3.154,1.668c-0.76-0.329-1.753-0.528-2.841-0.528c-2.388,0-4.324,0.959-4.324,2.143s1.936,2.143,4.324,2.143
c2.388,0,4.324-0.959,4.324-2.143c0-0.559-0.432-1.068-1.139-1.449l3.16-1.671c5.36,2.471,11.576,4.337,18.308,5.527l-1.744,2.453
c-0.378-0.054-0.777-0.083-1.19-0.083c-2.388,0-4.324,0.96-4.324,2.143c0,1.183,1.936,2.143,4.324,2.143
c2.388,0,4.324-0.96,4.324-2.143c0-0.895-1.107-1.662-2.68-1.982l1.743-2.451c5.551,0.953,11.445,1.449,17.493,1.449
c0.498,0,0.995-0.003,1.491-0.01l0.198,3.017c-2.096,0.148-3.707,1.041-3.707,2.121c0,1.183,1.936,2.143,4.324,2.143
c2.388,0,4.324-0.96,4.324-2.143c0-1.184-1.936-2.143-4.324-2.143c-0.046,0-0.091,0.001-0.137,0.002l-0.197-3.004
c2.456-0.044,4.881-0.173,7.265-0.378l-2.223,24.735l79.948-8.225v-43.336h13.883v22.309h24.985v8.902h1.355v-8.902h2.795v16.446
h1.355v-16.446h3.219v11.855h1.355v-11.855h4.235v-54.059h12.874V506.6h2.033v3.715h2.033v2.582h14.483v-2.582h2.033V506.6h7.369
v1.594h3.557V506.6h1.259v4.262h5.082V506.6h1.452l3.161-11.593h11.528v5.526h0.762v-5.526h4.32v6.746h0.762v-6.746h6.25v-1.567
h-1.592v-17.317h12.874l1.507-4.997h10.931v-9.012h11.954v-6.86h12.196V446.328z M653.829,518.335l-11.117,0.179v-7.937h2.055
v-0.76h-2.055v-0.593l13.295,2.426c-1.417,1.94-2.19,4.031-2.19,6.21C653.816,518.019,653.821,518.177,653.829,518.335z
M689.289,499.58c-4.354,0.083-8.516,0.542-12.36,1.312l-5.314-6.414v-0.42h5.082v4.786h5.082v-4.786h7.148L689.289,499.58z
M702.329,517.554l-8.713,0.14c-0.026-0.114-0.079-0.224-0.155-0.328l9.073-2.076L702.329,517.554z M666.025,494.058v0.401
c-0.325,0.085-0.657,0.163-0.979,0.251l-0.713-0.651H666.025z M666.025,495.263v0.341l-0.291-0.266
C665.83,495.311,665.929,495.289,666.025,495.263z M666.025,496.603v2.241h2.454l3.554,3.247c-2.98,0.871-5.693,1.943-8.062,3.179
l-10.904-5.064c0.33-0.173,0.666-0.344,1.007-0.513c3.276-1.624,6.914-3.003,10.823-4.12L666.025,496.603z M672.377,502.405
l15.07,13.768l-22.95-10.659C666.813,504.306,669.465,503.258,672.377,502.405z M669.572,498.844h2.043v-3.739l4.87,5.877
c-1.242,0.259-2.449,0.55-3.618,0.872L669.572,498.844z M691.664,494.058v4.786h12.332l-1.224,1.721
c-3.776-0.648-7.828-1.001-12.044-1.001c-0.32,0-0.64,0.002-0.959,0.006l-0.361-5.512H691.664z M703.939,499.641l-0.101,1.127
c-0.206-0.039-0.404-0.087-0.612-0.124L703.939,499.641z M702.896,511.25l-8.307,4.394l8.619-7.874L702.896,511.25z
M702.863,511.616l-0.306,3.407l-9.299,2.127c-0.053-0.046-0.11-0.09-0.172-0.133l0.598-0.547L702.863,511.616z M693.364,518.468
l8.74,1.595l-0.252,2.801l-8.846-4.108C693.147,518.667,693.268,518.571,693.364,518.468z M693.53,518.245
c0.056-0.1,0.091-0.205,0.102-0.312l8.676-0.14l-0.182,2.021L693.53,518.245z M656.116,486.551l-11.415-10.428h11.415V486.551z
M656.116,487.55v4.746h-1.779v1.763h8.903l0.969,0.885c-4.029,1.15-7.778,2.571-11.154,4.243
c-0.352,0.175-0.698,0.352-1.039,0.53l-3.311-1.538c0.63-0.372,1.01-0.852,1.01-1.376c0-1.184-1.936-2.143-4.324-2.143
c-1.018,0-1.941,0.182-2.68,0.473v-5.035h2.055v-0.76h-2.055v-9.479h2.055v-0.76h-2.055v-2.977h0.897L656.116,487.55z
M642.711,500.338h2.055v-0.76h-2.055v-1.104c0.739,0.292,1.662,0.473,2.68,0.473c1.158,0,2.209-0.226,2.985-0.593l3.31,1.537
c-3.677,1.959-6.684,4.15-8.975,6.503V500.338z M642.711,508.163c2.337-2.844,5.703-5.479,10.027-7.784l10.906,5.065
c-3.215,1.722-5.771,3.749-7.47,5.983l-13.463-2.457V508.163z M664.17,505.688l24.004,11.148l0.198,0.181
c-0.107,0.074-0.2,0.152-0.279,0.235l-31.242-5.701C658.515,509.362,661.02,507.375,664.17,505.688z M673.21,502.168
c1.146-0.316,2.33-0.602,3.548-0.855l12.647,15.264c-0.111,0.028-0.218,0.06-0.32,0.094L673.21,502.168z M677.203,501.222
c3.766-0.755,7.844-1.204,12.11-1.286l1.082,16.492c-0.187,0.011-0.369,0.03-0.544,0.057L677.203,501.222z M689.793,499.928
c0.311-0.004,0.623-0.006,0.935-0.006c4.131,0,8.103,0.346,11.804,0.981l-11.067,15.563c-0.19-0.025-0.388-0.04-0.591-0.045
L689.793,499.928z M702.985,500.982c0.278,0.05,0.543,0.112,0.818,0.165l-0.497,5.535l-10.935,9.99
c-0.142-0.048-0.294-0.09-0.453-0.126L702.985,500.982z M692.678,518.929l9.146,4.247l-0.629,7.002l-9.143-11.035
C692.279,519.085,692.49,519.013,692.678,518.929z M656.683,511.774l31.244,5.702c-0.056,0.1-0.091,0.204-0.102,0.312
l-33.276,0.536c-0.008-0.154-0.012-0.309-0.012-0.464C654.537,515.724,655.295,513.675,656.683,511.774z M687.841,518.026
c0.026,0.114,0.079,0.224,0.155,0.328l-30.225,6.916c-1.892-2.059-3.018-4.325-3.204-6.708L687.841,518.026z M688.199,518.57
c0.106,0.092,0.231,0.178,0.373,0.257l-22.753,12.035c-3.243-1.527-5.915-3.348-7.845-5.376L688.199,518.57z M688.923,518.989
c0.188,0.074,0.394,0.137,0.616,0.186l-11.067,15.563c-4.604-0.824-8.776-2.098-12.301-3.714L688.923,518.989z M689.992,519.254
c0.19,0.024,0.388,0.04,0.591,0.045l1.082,16.493c-0.311,0.004-0.623,0.006-0.936,0.006c-4.131,0-8.102-0.346-11.804-0.98
L689.992,519.254z M691.063,519.291c0.187-0.011,0.369-0.03,0.544-0.057l9.537,11.51l-0.39,4.342
c-2.753,0.394-5.632,0.641-8.61,0.697L691.063,519.291z M640.035,523.229h7.987v-2.08h-1.791v-0.763h-3.52v-1.635l11.136-0.179
c0.189,2.432,1.339,4.745,3.27,6.846l-13.578,3.106C641.982,526.835,640.816,525.059,640.035,523.229z M654.074,536.027
c-4.336-2.149-7.809-4.612-10.333-7.285l13.579-3.107c1.969,2.07,4.697,3.929,8.007,5.487l-10.218,5.404
C654.761,536.362,654.415,536.196,654.074,536.027z M655.459,536.689l10.219-5.405c3.597,1.65,7.855,2.95,12.553,3.791
l-4.97,6.989C666.716,540.907,660.672,539.092,655.459,536.689z M690.728,543.552c-5.882,0-11.614-0.483-17.013-1.409l4.97-6.989
c3.776,0.648,7.828,1.001,12.043,1.001c0.321,0,0.64-0.002,0.959-0.006l0.485,7.393
C691.692,543.549,691.211,543.552,690.728,543.552z M692.653,543.535l-0.485-7.395c2.956-0.057,5.813-0.299,8.553-0.681
l-0.69,7.679C697.611,543.354,695.148,543.49,692.653,543.535z"/>
</g>
</g>
<g id="Object">
<g style="opacity:0.3;">
<linearGradient id="SVGID_1_" gradientUnits="userSpaceOnUse" x1="207.5072" y1="393.376" x2="207.5072" y2="229.7061">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
<stop offset="0.5479" style="stop-color:#626262"/>
<stop offset="1" style="stop-color:#646464"/>
</linearGradient>
<polygon style="fill:url(#SVGID_1_);" points="175.04,393.376 239.974,393.376 239.974,259.43 241.819,259.43 241.819,255.601
237.792,255.601 237.792,250.701 205.844,250.701 205.844,243.255 193.638,243.255 191.815,238.393 188.799,238.393
188.799,229.706 188.126,229.706 187.454,229.706 187.454,238.393 181.859,238.393 181.859,243.255 181.859,248.859
181.859,250.701 177.223,250.701 177.223,255.601 173.195,255.601 173.195,259.43 175.04,259.43 "/>
<linearGradient id="SVGID_00000000931258187104496080000017865145222397382034_" gradientUnits="userSpaceOnUse" x1="188.1266" y1="229.7061" x2="188.1266" y2="227.2891">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
<stop offset="0.5479" style="stop-color:#626262"/>
<stop offset="1" style="stop-color:#646464"/>
</linearGradient>
<path style="fill:url(#SVGID_00000000931258187104496080000017865145222397382034_);" d="M189.335,228.498
c0-0.668-0.541-1.209-1.209-1.209c-0.667,0-1.208,0.541-1.208,1.209c0,0.667,0.541,1.208,1.208,1.208
C188.794,229.706,189.335,229.165,189.335,228.498z"/>
<linearGradient id="SVGID_00000036247364810958532620000001993945857249512106_" gradientUnits="userSpaceOnUse" x1="508.9194" y1="421.4165" x2="508.9194" y2="155.3276">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="0.1275" style="stop-color:#4E4D4E"/>
<stop offset="0.3124" style="stop-color:#5A5A5A"/>
<stop offset="0.5479" style="stop-color:#626262"/>
<stop offset="1" style="stop-color:#646464"/>
</linearGradient>
<polygon style="fill:url(#SVGID_00000036247364810958532620000001993945857249512106_);" points="777.689,401.218 777.689,221.14
697.741,204.545 706.501,401.218 471.904,401.218 471.904,289.958 467.586,289.958 467.586,223.38 456.438,223.38
456.438,205.547 452.456,205.547 452.456,179.391 430.514,179.391 430.514,160.168 428.562,160.168 428.562,179.391
424.264,179.391 424.264,155.328 422.311,155.328 422.311,179.391 408.44,179.391 408.44,223.38 401.275,223.38 401.275,289.958
395.133,289.958 395.133,401.218 332.748,401.218 332.748,253.114 333.825,253.114 333.825,251.402 326.147,251.402
326.147,241.111 327.14,241.111 327.14,239.463 320.092,239.463 320.092,233.547 320.725,233.547 320.725,232.282 317.69,232.282
317.69,226.693 314.794,226.693 314.343,226.693 314.343,206.742 314.029,206.742 313.63,206.742 313.228,206.742
313.228,226.693 311.874,226.693 311.874,215.571 311.56,215.571 311.161,215.571 310.759,215.571 310.759,226.693
307.411,226.693 307.411,232.282 303.909,232.282 303.909,233.547 305.009,233.547 305.009,239.463 297.962,239.463
297.962,241.111 298.954,241.111 298.954,251.402 291.276,251.402 291.276,253.114 292.354,253.114 292.354,401.218
84.29,401.218 84.29,421.417 933.548,421.417 933.548,401.218 "/>
</g>
<linearGradient id="SVGID_00000121963338060960119620000016097684000583641491_" gradientUnits="userSpaceOnUse" x1="499.6613" y1="451.2495" x2="499.6613" y2="202.0752">
<stop offset="0.0815" style="stop-color:#403E40"/>
<stop offset="0.4715" style="stop-color:#444244"/>
<stop offset="0.8768" style="stop-color:#504F50"/>
<stop offset="1" style="stop-color:#555455"/>
</linearGradient>
<path style="fill:url(#SVGID_00000121963338060960119620000016097684000583641491_);" d="M918.278,419.4v-18.183h-25.56
l-9.674-71.571h-1.452v-8.598h-5.082v8.598h-1.259v-3.216h-3.557v3.216h-7.369v-7.496h-2.033v-5.209h-14.483v5.209h-2.033v7.496
h-2.033v42.986h-12.874V263.564h-4.235v-23.92h-1.355v23.92h-3.219v-33.181h-1.355v33.181h-2.795v-17.961h-1.355v17.961h-24.985
v77.418h-27.78v50.154h-25.944l-20.601-37.972c3.473-2,6.738-4.405,9.735-7.193l4.225,4.508c-0.907,0.793-1.481,1.957-1.481,3.256
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-0.916,0-1.764,0.285-2.463,0.771l-4.255-4.54c0.36-0.341,0.717-0.687,1.069-1.039c4.458-4.459,8.028-9.568,10.623-15.114
l4.705,2.172c-0.086,0.339-0.131,0.693-0.131,1.059c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324
c0-2.388-1.936-4.324-4.324-4.324c-1.852,0-3.432,1.165-4.048,2.803l-4.648-2.146c2.866-6.273,4.489-13.092,4.744-20.153
l5.065,0.165c0.062,2.334,1.972,4.207,4.321,4.207c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-2.266,0-4.123,1.743-4.308,3.961l-5.064-0.165c0.013-0.496,0.021-0.993,0.021-1.491c0-6.303-1.088-12.438-3.173-18.192
l4.231-1.558c0.664,1.533,2.191,2.606,3.968,2.606c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-2.388,0-4.324,1.936-4.324,4.324c0,0.44,0.066,0.866,0.189,1.267l-4.229,1.557c-2.41-6.464-6.085-12.437-10.898-17.611
l3.31-3.102c0.776,0.741,1.827,1.197,2.985,1.197c2.388,0,4.324-1.935,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324
c-2.388,0-4.324,1.936-4.324,4.324c0,1.057,0.38,2.025,1.01,2.776l-3.31,3.102c-0.341-0.36-0.687-0.717-1.039-1.069
c-5.012-5.013-10.848-8.903-17.201-11.546l1.821-4.434c0.413,0.131,0.853,0.203,1.309,0.203c2.388,0,4.324-1.936,4.324-4.324
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,1.762,1.054,3.276,2.566,3.95l-1.816,4.423
c-5.685-2.304-11.775-3.615-18.057-3.842l0.197-6.06c0.046,0.001,0.091,0.003,0.137,0.003c2.388,0,4.324-1.936,4.324-4.324
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.179,1.611,3.98,3.707,4.279l-0.198,6.086
c-0.496-0.014-0.993-0.021-1.491-0.021c-6.048,0-11.942,1.001-17.493,2.925l-1.743-4.946c1.573-0.647,2.68-2.193,2.68-4
c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324
c0.413,0,0.812-0.059,1.19-0.167l1.744,4.948c-6.732,2.401-12.948,6.166-18.308,11.152l-3.16-3.372
c0.707-0.77,1.139-1.796,1.139-2.923c0-2.388-1.936-4.324-4.324-4.324c-2.388,0-4.324,1.935-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c1.088,0,2.081-0.402,2.841-1.065l3.154,3.366c-0.36,0.341-0.717,0.688-1.069,1.04
c-4.458,4.458-8.028,9.568-10.623,15.114l-4.015-1.854c0.146-0.433,0.225-0.896,0.225-1.377c0-2.388-1.936-4.324-4.324-4.324
c-2.388,0-4.324,1.936-4.324,4.324c0,2.388,1.936,4.324,4.324,4.324c1.736,0,3.232-1.023,3.92-2.5l3.992,1.843
c-2.865,6.273-4.489,13.093-4.744,20.153l-5.154-0.167c-0.064-2.333-1.973-4.204-4.321-4.204c-2.388,0-4.324,1.936-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.267,0,4.125-1.744,4.308-3.963l5.153,0.167c-0.013,0.496-0.021,0.993-0.021,1.491
c0,6.302,1.088,12.438,3.173,18.191l-4.231,1.558c-0.664-1.533-2.191-2.606-3.969-2.606c-2.388,0-4.324,1.936-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-0.44-0.066-0.866-0.189-1.266l4.229-1.557
c2.409,6.464,6.084,12.436,10.898,17.611l-3.31,3.102c-0.776-0.741-1.827-1.197-2.985-1.197c-2.388,0-4.324,1.935-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.057-0.38-2.025-1.01-2.776l3.311-3.102
c0.341,0.36,0.687,0.717,1.039,1.069c3.376,3.375,7.125,6.242,11.154,8.561l-20.601,37.972h-16.685v-25.743h-6.801v-48.882h2.645
v-1.063H564.32v1.063h2.645v24.652h-5.729l-5.467,28.096v-92.143h-2.399v-33.37h-12.075v-12.705h-6.46V220.37h-2.267v-18.294
h-0.586v18.294h-2.267v10.672h-6.46v12.705h-11.982v33.37h-2.491V337.7h-18.579v53.436h-61.639V287.814h4.954v-1.626h-4.954v-2.911
h-6.279v-4.781h-51.354v4.781h-6.279v2.911h-4.954v1.626h4.954v64.319h-8.4v-12.069h-51.819v14.737h-11.298v27.442h-18.294V292.55
h-6.098v-6.099h-4.828v-16.134h-1.017v16.134h-2.287v-20.2h-1.016v20.2h-2.811v6.099h-1.509v89.693h-37.859v-52.597h1.779v-3.557
h-11.688v-9.655h-5.59v9.655h-5.082v-9.655h-5.082v9.655h-9.885v-9.655h-30.261v9.655h-7.066v3.557h4.017v19.819h-11.18v44.72
h-15.346v-11.942h-17.084v26.044H84.29V419.4H53.82v31.849h891.682V419.4H918.278z M716.559,351.896l-7.135-13.152
c2.287-1.349,4.417-2.938,6.354-4.731l10.219,10.906C723.091,347.622,719.925,349.955,716.559,351.896z M689.85,309.7
c0.175,0.055,0.357,0.094,0.544,0.116l-1.082,33.274c-4.266-0.165-8.344-1.071-12.11-2.594L689.85,309.7z M676.758,340.314
c-1.218-0.512-2.402-1.089-3.548-1.726l15.875-29.261c0.102,0.07,0.209,0.133,0.32,0.19L676.758,340.314z M690.874,309.832
c0.203-0.01,0.401-0.041,0.591-0.091l11.067,31.4c-3.701,1.281-7.673,1.978-11.804,1.978c-0.313,0-0.625-0.004-0.936-0.012
L690.874,309.832z M691.917,309.581c0.159-0.072,0.311-0.157,0.453-0.254l15.875,29.261c-1.677,0.932-3.435,1.734-5.261,2.394
L691.917,309.581z M694.589,311.399l20.697,22.088c-1.893,1.751-3.973,3.303-6.206,4.623L694.589,311.399z M693.683,309.731
l-0.598-1.103c0.062-0.086,0.119-0.176,0.172-0.268l30.224,13.952c-1.93,4.091-4.602,7.766-7.844,10.847L693.683,309.731z
M693.46,307.925c0.077-0.21,0.129-0.432,0.156-0.662l33.274,1.082c-0.186,4.809-1.313,9.38-3.204,13.534L693.46,307.925z
M693.631,306.783c-0.011-0.217-0.046-0.428-0.102-0.63l31.244-11.503c1.388,3.836,2.146,7.971,2.146,12.279
c0,0.313-0.004,0.624-0.012,0.936L693.631,306.783z M693.364,305.702c-0.097-0.207-0.217-0.401-0.358-0.579l24.281-22.752
c3.15,3.404,5.654,7.411,7.319,11.828L693.364,305.702z M692.678,304.772c-0.188-0.17-0.399-0.315-0.627-0.433l12.647-30.797
c4.661,1.958,8.83,4.864,12.261,8.477L692.678,304.772z M691.606,304.157c-0.175-0.055-0.357-0.094-0.544-0.116l1.082-33.273
c4.265,0.164,8.344,1.071,12.11,2.594L691.606,304.157z M690.582,304.025c-0.203,0.01-0.401,0.041-0.591,0.09l-11.067-31.4
c3.701-1.281,7.672-1.978,11.804-1.978c0.313,0,0.625,0.004,0.936,0.012L690.582,304.025z M689.539,304.276
c-0.221,0.099-0.428,0.226-0.616,0.375L666.17,280.37c3.525-3.261,7.697-5.832,12.301-7.494L689.539,304.276z M688.572,304.978
c-0.143,0.158-0.268,0.332-0.373,0.518l-30.224-13.953c1.929-4.091,4.602-7.766,7.845-10.847L688.572,304.978z M687.996,305.932
c-0.077,0.211-0.129,0.432-0.156,0.662l-33.274-1.082c0.186-4.809,1.313-9.38,3.204-13.534L687.996,305.932z M687.825,307.075
c0.011,0.217,0.046,0.427,0.102,0.629l-31.244,11.503c-1.388-3.836-2.146-7.97-2.146-12.279c0-0.313,0.004-0.625,0.012-0.936
L687.825,307.075z M688.092,308.155c0.078,0.168,0.171,0.326,0.279,0.474l-0.198,0.365l-24.004,22.492
c-3.15-3.404-5.654-7.411-7.319-11.828L688.092,308.155z M687.446,310.332l-15.07,27.777c-2.912-1.72-5.564-3.835-7.88-6.272
L687.446,310.332z M672.866,339.221c1.169,0.649,2.376,1.238,3.618,1.759l-5.681,13.833c-1.732-0.721-3.424-1.537-5.07-2.445
L672.866,339.221z M676.929,341.163c3.843,1.555,8.006,2.479,12.36,2.647l-0.485,14.92c-6.107-0.221-12.028-1.496-17.555-3.735
L676.929,341.163z M689.769,343.828c0.319,0.008,0.638,0.013,0.959,0.013c4.215,0,8.267-0.712,12.043-2.02l4.97,14.101
c-5.399,1.87-11.131,2.844-17.013,2.844c-0.482,0-0.964-0.007-1.444-0.021L689.769,343.828z M703.225,341.661
c1.862-0.672,3.655-1.49,5.365-2.44l7.133,13.148c-2.417,1.333-4.933,2.468-7.528,3.394L703.225,341.661z M727.382,343.582
c-0.341,0.341-0.686,0.676-1.035,1.007l-10.217-10.904c3.31-3.144,6.038-6.895,8.007-11.07l13.579,6.269
C735.191,334.277,731.718,339.247,727.382,343.582z M737.917,328.448l-13.578-6.268c1.931-4.239,3.081-8.904,3.27-13.813
l14.921,0.485C742.281,315.718,740.702,322.349,737.917,328.448z M742.565,306.929c0,0.482-0.007,0.963-0.02,1.444l-14.917-0.485
c0.008-0.319,0.012-0.639,0.012-0.959c0-4.397-0.774-8.615-2.19-12.528l14.03-5.165
C741.507,294.832,742.565,300.799,742.565,306.929z M728.718,271.66c4.68,5.032,8.253,10.839,10.596,17.124l-14.032,5.167
c-1.699-4.508-4.255-8.598-7.47-12.072L728.718,271.66z M727.382,270.274c0.341,0.341,0.676,0.686,1.007,1.035l-10.904,10.217
c-3.502-3.687-7.756-6.653-12.513-8.65l5.681-13.833C716.831,261.615,722.507,265.399,727.382,270.274z M692.652,255.126
c6.107,0.221,12.028,1.496,17.555,3.735l-5.681,13.833c-3.843-1.555-8.006-2.479-12.36-2.647L692.652,255.126z M690.728,255.092
c0.482,0,0.964,0.007,1.444,0.02l-0.485,14.917c-0.319-0.008-0.638-0.012-0.959-0.012c-4.215,0-8.267,0.712-12.043,2.019
l-4.97-14.101C679.114,256.065,684.846,255.092,690.728,255.092z M673.261,258.094l4.97,14.102
c-4.698,1.696-8.956,4.319-12.553,7.648l-10.219-10.906C660.671,264.091,666.716,260.43,673.261,258.094z M654.074,270.274
c0.341-0.341,0.687-0.676,1.035-1.007l10.218,10.904c-3.31,3.144-6.038,6.895-8.007,11.071l-13.579-6.269
C646.265,279.58,649.738,274.61,654.074,270.274z M643.539,285.409l13.578,6.268c-1.931,4.239-3.081,8.905-3.27,13.813
l-14.921-0.485C639.175,298.14,640.754,291.509,643.539,285.409z M638.891,306.929c0-0.482,0.007-0.964,0.02-1.444l14.917,0.485
c-0.008,0.318-0.012,0.638-0.012,0.959c0,4.396,0.774,8.614,2.19,12.528l-14.03,5.166
C639.949,319.025,638.891,313.058,638.891,306.929z M652.738,342.197c-4.68-5.032-8.253-10.839-10.597-17.124l14.032-5.167
c1.699,4.508,4.255,8.598,7.47,12.072L652.738,342.197z M654.074,343.582c-0.341-0.341-0.676-0.686-1.007-1.035l10.904-10.217
c2.368,2.494,5.082,4.656,8.062,6.414l-7.135,13.152C660.988,349.642,657.35,346.859,654.074,343.582z M665.046,353.636
c1.692,0.934,3.431,1.771,5.21,2.512l-1.821,4.434c-0.413-0.131-0.853-0.202-1.309-0.202c-2.388,0-4.324,1.936-4.324,4.324
c0,2.388,1.936,4.324,4.324,4.324c2.388,0,4.324-1.936,4.324-4.324c0-1.762-1.054-3.276-2.566-3.95l1.816-4.423
c5.685,2.304,11.775,3.615,18.057,3.842l-0.148,4.534c-2.341,0.053-4.224,1.967-4.224,4.321c0,2.388,1.936,4.324,4.324,4.324
c2.388,0,4.324-1.936,4.324-4.324c0-2.26-1.734-4.113-3.944-4.306l0.148-4.535c0.496,0.014,0.993,0.021,1.491,0.021
c6.048,0,11.942-1.001,17.493-2.925l1.554,4.408c-1.471,0.69-2.491,2.184-2.491,3.916c0,2.388,1.936,4.324,4.324,4.324
c2.388,0,4.324-1.936,4.324-4.324c0-2.388-1.936-4.324-4.324-4.324c-0.485,0-0.951,0.081-1.387,0.229l-1.547-4.388
c2.667-0.952,5.252-2.117,7.736-3.487l20.345,37.5h-92.055L665.046,353.636z"/>
<g>
<linearGradient id="SVGID_00000121273610027325662480000007068999652675512506_" gradientUnits="userSpaceOnUse" x1="815.83" y1="285.1626" x2="815.83" y2="287.5796">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="1" style="stop-color:#161F21"/>
</linearGradient>
<path style="fill:url(#SVGID_00000121273610027325662480000007068999652675512506_);" d="M816.844,286.371
c0-0.667-0.454-1.208-1.014-1.208c-0.56,0-1.014,0.541-1.014,1.208c0,0.668,0.454,1.208,1.014,1.208
C816.39,287.58,816.844,287.039,816.844,286.371z"/>
<linearGradient id="SVGID_00000011738580747612097720000010840228285618223286_" gradientUnits="userSpaceOnUse" x1="500" y1="287.5796" x2="500" y2="451.2495">
<stop offset="0" style="stop-color:#403E40"/>
<stop offset="1" style="stop-color:#161F21"/>
</linearGradient>
<polygon style="fill:url(#SVGID_00000011738580747612097720000010840228285618223286_);" points="927.404,433.241 921.11,391.136
908.236,391.136 908.236,356.197 909.828,356.197 909.828,353.036 903.578,353.036 903.578,339.427 902.815,339.427
902.815,353.036 898.496,353.036 898.496,341.887 897.734,341.887 897.734,353.036 871.695,353.036 871.695,356.197
873.474,356.197 873.474,427.088 843.745,427.088 843.745,395.334 826.815,395.334 826.815,317.303 828.363,317.303
828.363,313.475 824.982,313.475 824.982,308.574 821.091,308.574 821.091,306.732 821.091,301.129 821.091,296.267
816.395,296.267 816.395,287.58 815.83,287.58 815.265,287.58 815.265,296.267 812.734,296.267 811.204,301.129 800.958,301.129
800.958,308.574 774.141,308.574 774.141,313.475 770.76,313.475 770.76,317.303 772.309,317.303 772.309,368.073
749.871,368.073 749.871,417.957 724.973,406.925 724.973,358.507 728.991,358.507 728.991,354.95 721.924,354.95
721.924,345.294 691.664,345.294 691.664,354.95 681.778,354.95 681.778,345.294 676.696,345.294 676.696,354.95 671.615,354.95
671.615,345.294 666.025,345.294 666.025,354.95 654.337,354.95 654.337,358.507 656.115,358.507 656.115,425.617
644.765,425.617 644.765,424.913 642.711,424.913 642.711,405.789 644.765,405.789 644.765,404.255 642.711,404.255
642.711,385.13 644.765,385.13 644.765,383.597 642.711,383.597 642.711,364.472 644.765,364.472 644.765,362.939
642.711,362.939 642.711,343.814 644.765,343.814 644.765,342.28 642.711,342.28 642.711,323.156 644.765,323.156
644.765,321.622 642.711,321.622 642.711,301.83 646.231,301.83 646.231,300.291 648.021,300.291 648.021,296.095
614.595,296.095 614.595,291.429 615.682,291.429 615.682,290.081 597.484,290.081 597.484,291.429 598.571,291.429
598.571,296.095 590.287,296.095 590.287,300.291 592.078,300.291 592.078,301.83 595.598,301.83 595.598,321.622
593.543,321.622 593.543,323.156 595.598,323.156 595.598,342.28 593.543,342.28 593.543,343.814 595.598,343.814
595.598,362.939 593.543,362.939 593.543,364.472 595.598,364.472 595.598,383.597 593.543,383.597 593.543,385.13
595.598,385.13 595.598,404.255 593.543,404.255 593.543,405.789 595.598,405.789 595.598,424.913 593.543,424.913
593.543,426.447 595.598,426.447 595.598,442.075 584.189,442.075 584.189,381.685 538.283,381.685 538.283,425.617
530.83,425.617 530.83,288.763 525.315,288.763 525.315,292.286 515.14,294.775 515.14,292.487 509.625,292.487 509.625,296.124
499.45,298.612 499.45,295.989 493.936,295.989 493.936,299.961 483.76,302.45 483.76,300.286 478.246,300.286 478.246,303.799
468.071,306.288 468.071,304.423 462.557,304.423 462.557,438.816 454.799,438.816 454.799,367.168 426.065,367.168
426.065,411.227 396.608,411.227 396.608,373.655 392.979,373.655 392.979,361.316 395.133,361.316 395.133,360.077
385.601,360.077 385.601,356.197 384.584,356.197 384.584,360.077 381.535,360.077 381.535,340.162 380.773,340.162
380.773,360.077 376.802,360.077 376.802,361.316 379.138,361.316 379.138,373.655 359.697,373.655 359.697,402.316
340.771,402.316 330.886,438.816 311.053,438.816 311.053,319.642 284.794,319.642 284.794,315.373 286.286,315.373
286.286,313.875 266.397,313.875 266.397,315.373 267.961,315.373 267.961,319.642 267.961,326.508 267.961,408.127
255.579,408.127 255.579,377.289 259.98,377.289 259.98,374.497 228.825,374.497 228.825,355.867 222.882,355.867
222.882,352.039 209.616,352.039 209.616,355.867 198.821,355.867 198.821,422.389 163.408,422.389 163.408,373.052
133.589,373.052 133.589,412.021 107.712,412.021 107.712,436.954 89.054,436.954 89.054,405.609 64.517,405.609 64.517,432.333
42.301,432.333 42.301,451.25 64.517,451.25 72.025,451.25 84.29,451.25 89.054,451.25 107.712,451.25 133.589,451.25
142.285,451.25 146.941,451.25 163.408,451.25 198.821,451.25 209.616,451.25 222.882,451.25 228.825,451.25 252.067,451.25
255.579,451.25 267.961,451.25 288.725,451.25 298.954,451.25 311.053,451.25 359.697,451.25 370.931,451.25 389.895,451.25
396.608,451.25 426.568,451.25 434.618,451.25 462.557,451.25 465.314,451.25 468.071,451.25 478.246,451.25 483.76,451.25
493.936,451.25 498.545,451.25 499.45,451.25 509.625,451.25 515.14,451.25 523.887,451.25 525.315,451.25 528.072,451.25
530.83,451.25 538.283,451.25 576.227,451.25 581.647,451.25 584.189,451.25 595.598,451.25 615.682,451.25 634.069,451.25
642.711,451.25 656.115,451.25 689.405,451.25 724.606,451.25 724.973,451.25 749.871,451.25 763.792,451.25 772.309,451.25
777.689,451.25 819.353,451.25 826.815,451.25 835.736,451.25 843.745,451.25 873.474,451.25 895.58,451.25 900.105,451.25
908.236,451.25 957.698,451.25 957.698,433.241 "/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 28 KiB

View File

@ -0,0 +1,64 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>cld-server</title>
<desc>Created with Sketch.</desc>
<defs>
</defs>
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="SLICES-64px" transform="translate(-810.000000, -200.000000)">
</g>
<g id="ICONS" transform="translate(-805.000000, -195.000000)">
<g id="cld-server" transform="translate(810.000000, 204.000000)">
<path d="M48,12 C51.313,12 54,9.313 54,6 C54,2.687 51.313,0 48,0 L6,0 C2.687,0 0,2.687 0,6 C0,9.313 2.687,12 6,12 L48,12 Z" id="Fill-424" fill="#969CE3">
</path>
<path d="M10,6 C10,7.104 9.104,8 8,8 C6.896,8 6,7.104 6,6 C6,4.896 6.896,4 8,4 C9.104,4 10,4.896 10,6" id="Fill-425" fill="#7BBDEC">
</path>
<path d="M48,30 C51.313,30 54,27.313 54,24 C54,20.687 51.313,18 48,18 L6,18 C2.687,18 0,20.687 0,24 C0,27.313 2.687,30 6,30 L48,30 Z" id="Fill-426" fill="#969CE3">
</path>
<path d="M10,24 C10,25.104 9.104,26 8,26 C6.896,26 6,25.104 6,24 C6,22.896 6.896,22 8,22 C9.104,22 10,22.896 10,24" id="Fill-427" fill="#7BBDEC">
</path>
<path d="M48,48 C51.313,48 54,45.313 54,42 C54,38.687 51.313,36 48,36 L6,36 C2.687,36 0,38.687 0,42 C0,45.313 2.687,48 6,48 L48,48 Z" id="Fill-428" fill="#969CE3">
</path>
<path d="M10,42 C10,43.104 9.104,44 8,44 C6.896,44 6,43.104 6,42 C6,40.896 6.896,40 8,40 C9.104,40 10,40.896 10,42" id="Fill-429" fill="#7BBDEC">
</path>
<path d="M48,12 C51.313,12 54,9.313 54,6 C54,2.687 51.313,0 48,0 L6,0 C2.687,0 0,2.687 0,6 C0,9.313 2.687,12 6,12 L48,12 Z" id="Stroke-430" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M10,6 C10,7.104 9.104,8 8,8 C6.896,8 6,7.104 6,6 C6,4.896 6.896,4 8,4 C9.104,4 10,4.896 10,6 Z" id="Stroke-431" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M48,6 L36,6" id="Stroke-432" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M48,30 C51.313,30 54,27.313 54,24 C54,20.687 51.313,18 48,18 L6,18 C2.687,18 0,20.687 0,24 C0,27.313 2.687,30 6,30 L48,30 Z" id="Stroke-433" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M10,24 C10,25.104 9.104,26 8,26 C6.896,26 6,25.104 6,24 C6,22.896 6.896,22 8,22 C9.104,22 10,22.896 10,24 Z" id="Stroke-434" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M48,24 L36,24" id="Stroke-435" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M48,48 C51.313,48 54,45.313 54,42 C54,38.687 51.313,36 48,36 L6,36 C2.687,36 0,38.687 0,42 C0,45.313 2.687,48 6,48 L48,48 Z" id="Stroke-436" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M10,42 C10,43.104 9.104,44 8,44 C6.896,44 6,43.104 6,42 C6,40.896 6.896,40 8,40 C9.104,40 10,40.896 10,42 Z" id="Stroke-437" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M48,42 L36,42" id="Stroke-438" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 3.7 KiB

View File

@ -0,0 +1,64 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>con-drill</title>
<desc>Created with Sketch.</desc>
<defs>
</defs>
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="SLICES-64px" transform="translate(-450.000000, -300.000000)">
</g>
<g id="ICONS" transform="translate(-445.000000, -295.000000)">
<g id="con-drill" transform="translate(452.000000, 306.000000)">
<path d="M4,46 L20,46 C21.104,46 22,45.104 22,44 L22,36 C22,34.896 21.104,34 20,34 L13.375,34 L2,34 L2,44 C2,45.104 2.896,46 4,46" id="Fill-680" fill="#99A5B7">
</path>
<path d="M40,4 L34,4 L34,12 L40,12 C41.104,12 42,11.104 42,10 L42,6 C42,4.896 41.104,4 40,4" id="Fill-681" fill="#E9EFFA">
</path>
<path d="M30,16 C32.209,16 34,14.209 34,12 L34,4 C34,1.791 32.209,0 30,0 L4,0 C1.791,0 0,1.791 0,4 L0,12 C0,14.209 1.791,16 4,16 L30,16 Z" id="Fill-682" fill="#D3D873">
</path>
<path d="M12.71,22 L18,22 C16.354,20.354 17.87,17.918 19,16 L14,16 L12.71,22 Z" id="Fill-683" fill="#F16963">
</path>
<path d="M13.375,34 C11.926,34 10.75,32.824 10.75,31.375 C10.75,31.12 10.786,30.874 10.854,30.641 L14,16 L6,16 L2,34 L13.375,34 Z" id="Fill-684" fill="#AEC14A">
</path>
<path d="M12.71,22 L18,22 C16.354,20.354 17.87,17.918 19,16" id="Stroke-685" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M42,8 L54,8" id="Stroke-686" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M34,4 L40,4 C41.104,4 42,4.896 42,6 L42,10 C42,11.104 41.104,12 40,12 L34,12" id="Stroke-687" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M2,34 L6,16" id="Stroke-688" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M6,8 L14,8" id="Stroke-689" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M6,4 L14,4" id="Stroke-690" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M2,34 L2,44 C2,45.104 2.896,46 4,46 L20,46 C21.104,46 22,45.104 22,44 L22,36 C22,34.896 21.104,34 20,34 L13.375,34" id="Stroke-691" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M13.375,34 C11.926,34 10.75,32.824 10.75,31.375 C10.75,31.12 10.786,30.874 10.854,30.641 L14,16" id="Stroke-692" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M2,34 L14,34" id="Stroke-693" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M30,16 C32.209,16 34,14.209 34,12 L34,4 C34,1.791 32.209,0 30,0 L4,0 C1.791,0 0,1.791 0,4 L0,12 C0,14.209 1.791,16 4,16 L30,16 Z" id="Stroke-694" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 3.4 KiB

View File

@ -0,0 +1,37 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>con-warning</title>
<desc>Created with Sketch.</desc>
<defs>
</defs>
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="SLICES-64px" transform="translate(-720.000000, -300.000000)">
</g>
<g id="ICONS" transform="translate(-715.000000, -295.000000)">
<g id="con-warning" transform="translate(718.000000, 302.000000)">
<path d="M50,46 C53.313,46 56,43.313 56,40 C56,38.751 55.358,37.299 55.358,37.299 L32.878,2.51 L32.88,2.509 C31.791,0.99 30.011,1.13686838e-13 28,1.13686838e-13 C25.989,1.13686838e-13 24.209,0.99 23.12,2.509 L23.122,2.51 L0.642,37.299 C0.642,37.299 0,38.751 0,40 C0,43.313 2.687,46 6,46 L50,46 Z" id="Fill-390" fill="#F3E777">
</path>
<path d="M26,36 C26,34.896 26.896,34 28,34 C29.104,34 30,34.896 30,36 C30,37.104 29.104,38 28,38 C26.896,38 26,37.104 26,36" id="Fill-391" fill="#F16963">
</path>
<path d="M32,16 C32,13.791 30.209,12 28,12 C25.791,12 24,13.791 24,16 L26,28 C26,29.104 26.896,30 28,30 C29.104,30 30,29.104 30,28 L32,16 Z" id="Fill-392" fill="#F16963">
</path>
<path d="M26,36 C26,34.896 26.896,34 28,34 C29.104,34 30,34.896 30,36 C30,37.104 29.104,38 28,38 C26.896,38 26,37.104 26,36 Z" id="Stroke-393" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M32,16 C32,13.791 30.209,12 28,12 C25.791,12 24,13.791 24,16 L26,28 C26,29.104 26.896,30 28,30 C29.104,30 30,29.104 30,28 L32,16 Z" id="Stroke-394" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M50,46 C53.313,46 56,43.313 56,40 C56,38.751 55.358,37.299 55.358,37.299 L32.878,2.51 L32.88,2.509 C31.791,0.99 30.011,1.13686838e-13 28,1.13686838e-13 C25.989,1.13686838e-13 24.209,0.99 23.12,2.509 L23.122,2.51 L0.642,37.299 C0.642,37.299 0,38.751 0,40 C0,43.313 2.687,46 6,46 L50,46 Z" id="Stroke-395" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.4 KiB

View File

@ -0,0 +1,76 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>gen-lifebelt</title>
<desc>Created with Sketch.</desc>
<defs>
</defs>
<g id="General" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="SLICES-64px">
</g>
<g id="ICONS" transform="translate(5.000000, 5.000000)">
<g id="gen-lifebelt" transform="translate(0.000000, 2.000000)">
<path d="M26.0001,40 C18.2681,40 12.0001,33.732 12.0001,26 C12.0001,18.267 18.2681,12 26.0001,12 C33.7321,12 40.0001,18.267 40.0001,26 C40.0001,33.732 33.7321,40 26.0001,40 M26.0001,0 C11.6411,0 0.0001,11.64 0.0001,26 C0.0001,40.359 11.6411,52 26.0001,52 C40.3591,52 52.0001,40.359 52.0001,26 C52.0001,11.64 40.3591,0 26.0001,0" id="Fill-464" fill="#F16963">
</path>
<path d="M3.0025,13.8716 L13.6385,19.4216 L13.6485,19.4116 C14.9905,16.9016 17.0765,14.8566 19.6105,13.5526 L19.6385,13.5256 L13.8725,3.0026 C9.2455,5.4476 5.4475,9.2456 3.0025,13.8716" id="Fill-465" fill="#F1F0E2">
</path>
<path d="M38.128,3.0022 L32.361,13.5252 L32.39,13.5532 C34.923,14.8562 37.01,16.9012 38.352,19.4122 L38.361,19.4212 L48.998,13.8712 C46.553,9.2452 42.754,5.4472 38.128,3.0022" id="Fill-466" fill="#F1F0E2">
</path>
<path d="M13.648,32.5872 L13.639,32.5782 L3.002,38.1282 C5.447,42.7542 9.246,46.5532 13.872,48.9972 L19.639,38.4742 L19.611,38.4472 C17.077,37.1442 14.99,35.0982 13.648,32.5872" id="Fill-467" fill="#F1F0E2">
</path>
<path d="M48.9976,38.1284 L38.3616,32.5774 L38.3516,32.5864 C37.0106,35.0974 34.9236,37.1434 32.3896,38.4474 L32.3616,38.4744 L38.1276,48.9974 C42.7546,46.5524 46.5526,42.7544 48.9976,38.1284" id="Fill-468" fill="#F1F0E2">
</path>
<path d="M2.9971,13.8689 C2.3621,12.7229 2.0001,11.4029 2.0001,9.9999 C2.0001,5.5819 5.5821,1.9999 10.0001,1.9999 C11.4031,1.9999 12.7231,2.3619 13.8691,2.9969" id="Stroke-469" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M49.003,13.8689 C49.638,12.7229 50,11.4029 50,9.9999 C50,5.5819 46.418,1.9999 42,1.9999 C40.597,1.9999 39.277,2.3619 38.131,2.9969" id="Stroke-470" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M2.9971,38.1311 C2.3621,39.2771 2.0001,40.5961 2.0001,42.0001 C2.0001,46.4171 5.5821,50.0001 10.0001,50.0001 C11.4031,50.0001 12.7231,49.6381 13.8691,49.0031" id="Stroke-471" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M49.003,38.1311 C49.638,39.2771 50,40.5961 50,42.0001 C50,46.4171 46.418,50.0001 42,50.0001 C40.597,50.0001 39.277,49.6381 38.131,49.0031" id="Stroke-472" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M52.0001,26 C52.0001,11.64 40.3591,0 26.0001,0 C11.6411,0 0.0001,11.64 0.0001,26 C0.0001,40.359 11.6411,52 26.0001,52 C40.3591,52 52.0001,40.359 52.0001,26 Z" id="Stroke-473" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M40.0001,26 C40.0001,33.732 33.7321,40 26.0001,40 C18.2681,40 12.0001,33.732 12.0001,26 C12.0001,18.267 18.2681,12 26.0001,12 C33.7321,12 40.0001,18.267 40.0001,26 Z" id="Stroke-474" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M13.8692,2.9968 L19.6392,13.5248" id="Stroke-475" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M13.6387,19.4216 L2.9967,13.8686" id="Stroke-476" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M38.1309,2.9968 L32.3609,13.5248" id="Stroke-477" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M38.3614,19.4216 L49.0034,13.8686" id="Stroke-478" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M13.8692,49.0027 L19.6392,38.4747" id="Stroke-479" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M13.6387,32.5779 L2.9967,38.1309" id="Stroke-480" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M38.1309,49.0027 L32.3609,38.4747" id="Stroke-481" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
<path d="M38.3614,32.5779 L49.0034,38.1309" id="Stroke-482" stroke="#414547" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
</path>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@ -1,161 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.5.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 2200 2200" style="enable-background:new 0 0 2200 2200;" xml:space="preserve">
<g id="Objects">
<g>
<path style="fill:#788D8E;" d="M1202.178,2002.073c-5.328,0-9.648-4.319-9.649-9.647c-0.001-5.328,4.319-9.649,9.647-9.649
c9.63-0.001,19.271-0.006,28.918-0.014c0.003,0,0.006,0,0.009,0c5.325,0,9.643,4.314,9.647,9.639
c0.005,5.328-4.311,9.651-9.639,9.656C1221.458,2002.068,1211.813,2002.072,1202.178,2002.073z M1144.298,2002.03
c-0.006,0-0.01,0-0.016,0c-9.658-0.015-19.305-0.036-28.94-0.061c-5.328-0.014-9.636-4.345-9.622-9.673
c0.014-5.319,4.331-9.622,9.648-9.622c0.008,0,0.017,0,0.025,0c9.628,0.025,19.269,0.046,28.919,0.061
c5.328,0.009,9.641,4.335,9.632,9.663C1153.937,1997.721,1149.619,2002.03,1144.298,2002.03z M1288.979,2001.966
c-5.317,0-9.634-4.306-9.647-9.626c-0.012-5.328,4.298-9.657,9.626-9.669c9.634-0.022,19.274-0.047,28.923-0.075
c5.297,0.018,9.66,4.292,9.676,9.619c0.015,5.328-4.291,9.66-9.619,9.676c-9.652,0.028-19.299,0.054-28.936,0.075
C1288.994,2001.966,1288.986,2001.966,1288.979,2001.966z M1057.498,2001.759c-0.015,0-0.03,0-0.045,0
c-9.659-0.044-19.306-0.095-28.939-0.152c-5.328-0.031-9.622-4.376-9.591-9.704c0.031-5.309,4.344-9.591,9.646-9.591
c0.02,0,0.04,0,0.058,0c9.625,0.057,19.263,0.107,28.914,0.152c5.328,0.025,9.628,4.364,9.603,9.692
C1067.12,1997.468,1062.805,2001.759,1057.498,2001.759z M1375.787,2001.691c-5.31,0-9.625-4.293-9.647-9.609
c-0.022-5.328,4.281-9.665,9.609-9.686c9.636-0.039,19.28-0.079,28.928-0.123c0.015,0,0.029,0,0.044,0
c5.308,0,9.623,4.291,9.647,9.604c0.024,5.328-4.276,9.666-9.604,9.691c-9.651,0.043-19.297,0.084-28.937,0.122
C1375.813,2001.691,1375.8,2001.691,1375.787,2001.691z M1462.601,2001.29c-5.305,0-9.619-4.287-9.647-9.598
c-0.027-5.328,4.27-9.67,9.598-9.698c9.641-0.05,19.285-0.102,28.932-0.156c0.018,0,0.037,0,0.056,0
c5.302,0,9.616,4.284,9.646,9.594c0.029,5.328-4.266,9.671-9.594,9.701c-9.649,0.054-19.297,0.105-28.94,0.156
C1462.635,2001.29,1462.618,2001.29,1462.601,2001.29z M970.707,2001.198c-0.027,0-0.054,0-0.081,0
c-9.662-0.079-19.308-0.166-28.939-0.259c-5.328-0.052-9.605-4.413-9.554-9.741c0.052-5.296,4.361-9.554,9.646-9.554
c0.032,0,0.063,0,0.095,0.001c9.621,0.093,19.258,0.179,28.911,0.258c5.328,0.044,9.612,4.399,9.568,9.727
C980.31,1996.93,975.998,2001.198,970.707,2001.198z M1549.42,2000.802c-5.301,0-9.614-4.281-9.646-9.59
c-0.032-5.328,4.262-9.673,9.59-9.705l28.936-0.176c0.021,0,0.042,0,0.061,0c5.301,0,9.614,4.279,9.647,9.587
c0.033,5.328-4.259,9.674-9.587,9.708l-28.942,0.176C1549.459,2000.802,1549.439,2000.802,1549.42,2000.802z M883.923,2000.297
c-0.041,0-0.083,0-0.124-0.001c-9.663-0.122-19.308-0.25-28.935-0.385c-5.328-0.075-9.586-4.454-9.511-9.782
c0.075-5.328,4.464-9.604,9.782-9.511c9.617,0.136,19.254,0.264,28.907,0.385c5.328,0.067,9.592,4.44,9.525,9.768
C893.501,1996.057,889.195,2000.297,883.923,2000.297z M1636.244,2000.264c-5.3,0-9.612-4.279-9.646-9.586
c-0.034-5.328,4.258-9.675,9.586-9.709l28.943-0.184c0.021,0,0.042,0,0.062,0c5.3,0,9.613,4.279,9.647,9.586
c0.034,5.328-4.259,9.675-9.586,9.709l-28.943,0.184C1636.286,2000.264,1636.265,2000.264,1636.244,2000.264z M1723.075,1999.719
c-5.3,0-9.614-4.28-9.647-9.588c-0.033-5.328,4.26-9.674,9.588-9.707l28.946-0.177c0.02,0,0.04,0,0.059,0
c5.301,0,9.615,4.28,9.647,9.589c0.032,5.328-4.261,9.674-9.589,9.706l-28.945,0.177
C1723.115,1999.719,1723.095,1999.719,1723.075,1999.719z M1809.912,1999.201c-5.303,0-9.616-4.283-9.647-9.593
c-0.03-5.328,4.265-9.672,9.593-9.702l28.952-0.16c0.018,0,0.036,0,0.053,0c5.304,0,9.618,4.285,9.647,9.596
c0.028,5.328-4.268,9.67-9.596,9.699l-28.947,0.16C1809.949,1999.201,1809.931,1999.201,1809.912,1999.201z M797.15,1998.997
c-0.057,0-0.115-0.001-0.172-0.002c-9.665-0.169-19.31-0.346-28.935-0.531c-5.327-0.103-9.562-4.504-9.459-9.832
c0.104-5.327,4.48-9.533,9.832-9.459c9.612,0.186,19.245,0.363,28.899,0.531c5.327,0.092,9.57,4.487,9.477,9.814
C806.701,1994.788,802.399,1998.997,797.15,1998.997z M1896.756,1998.75c-5.307,0-9.621-4.29-9.647-9.602
c-0.025-5.328,4.274-9.667,9.602-9.693c9.658-0.045,19.31-0.089,28.958-0.129c0.014,0,0.027,0,0.041,0
c5.309,0,9.624,4.292,9.647,9.607c0.023,5.328-4.279,9.666-9.607,9.688c-9.644,0.041-19.294,0.084-28.948,0.129
C1896.787,1998.75,1896.771,1998.75,1896.756,1998.75z M710.388,1997.237c-0.076,0-0.152-0.001-0.228-0.003
c-9.667-0.223-19.311-0.457-28.932-0.7c-5.326-0.135-9.535-4.562-9.401-9.889c0.133-5.243,4.425-9.404,9.64-9.404
c0.083,0,0.166,0.001,0.249,0.003c9.607,0.243,19.237,0.477,28.891,0.7c5.327,0.122,9.545,4.541,9.421,9.868
C719.907,1993.064,715.612,1997.237,710.388,1997.237z M623.642,1994.948c-0.096,0-0.193-0.001-0.29-0.004
c-9.67-0.287-19.314-0.585-28.929-0.894c-5.326-0.172-9.503-4.628-9.333-9.953c0.171-5.325,4.65-9.465,9.953-9.333
c9.6,0.309,19.227,0.607,28.88,0.892c5.326,0.158,9.516,4.604,9.357,9.93C633.126,1990.815,628.838,1994.948,623.642,1994.948z
M536.937,1991.683c-0.226,0-0.453-0.007-0.682-0.024c-10.955-0.765-20.624-1.8-29.559-3.167
c-5.267-0.806-8.883-5.728-8.078-10.995c0.805-5.268,5.725-8.888,10.995-8.078c8.408,1.286,17.563,2.264,27.985,2.992
c5.316,0.371,9.323,4.981,8.952,10.296C546.196,1987.794,541.959,1991.683,536.937,1991.683z M452.936,1972.044
c-1.444,0-2.91-0.325-4.291-1.012c-5.129-2.553-10.134-5.398-14.875-8.458c-3.821-2.466-7.597-5.17-11.224-8.036
c-4.179-3.305-4.889-9.372-1.585-13.552c3.305-4.18,9.371-4.889,13.552-1.585c3.144,2.486,6.415,4.828,9.719,6.961
c4.142,2.673,8.519,5.162,13.01,7.397c4.77,2.373,6.713,8.165,4.34,12.935C459.893,1970.083,456.481,1972.044,452.936,1972.044z
M390.843,1913.094c-3.257,0-6.436-1.65-8.252-4.636c-5.088-8.366-9.753-17.406-13.866-26.869
c-2.125-4.886,0.115-10.57,5.002-12.693c4.884-2.125,10.569,0.114,12.694,5.002c3.765,8.661,8.023,16.915,12.657,24.534
c2.768,4.552,1.323,10.487-3.23,13.256C394.28,1912.639,392.55,1913.094,390.843,1913.094z M360.798,1832.103
c-4.545,0-8.593-3.227-9.469-7.857c-1.832-9.681-3.208-19.642-4.092-29.605c-0.471-5.307,3.45-9.991,8.757-10.463
c5.305-0.466,9.991,3.449,10.462,8.757c0.828,9.335,2.117,18.663,3.831,27.724c0.99,5.236-2.451,10.282-7.686,11.272
C361.996,1832.047,361.393,1832.103,360.798,1832.103z M357.3,1745.636c-0.337,0-0.677-0.018-1.02-0.054
c-5.299-0.557-9.143-5.304-8.586-10.603c1.051-10.004,2.612-19.95,4.636-29.561c1.098-5.214,6.217-8.55,11.429-7.451
c5.214,1.099,8.55,6.215,7.451,11.429c-1.889,8.965-3.345,18.252-4.327,27.6C366.362,1741.952,362.175,1745.636,357.3,1745.636z
M379.592,1662.099c-1.292,0-2.604-0.261-3.863-0.812c-4.881-2.136-7.107-7.824-4.97-12.706
c3.967-9.067,8.429-18.064,13.26-26.742c2.591-4.655,8.466-6.329,13.122-3.737c4.656,2.592,6.329,8.466,3.737,13.122
c-4.533,8.143-8.72,16.585-12.442,25.091C386.85,1659.939,383.308,1662.099,379.592,1662.099z M425.149,1588.527
c-2.174,0-4.36-0.73-6.162-2.228c-4.097-3.407-4.658-9.489-1.252-13.587c6.291-7.567,13.033-14.977,20.039-22.024
c3.756-3.78,9.865-3.796,13.644-0.039c3.778,3.756,3.796,9.865,0.039,13.643c-6.604,6.642-12.958,13.624-18.884,20.754
C430.666,1587.342,427.917,1588.527,425.149,1588.527z M488.757,1529.81c-3.021,0-5.994-1.414-7.875-4.063
c-3.085-4.345-2.062-10.367,2.282-13.452c8.036-5.705,16.424-11.148,24.935-16.182c4.587-2.711,10.502-1.194,13.215,3.393
c2.712,4.586,1.194,10.503-3.393,13.215c-8.051,4.762-15.987,9.912-23.588,15.308
C492.639,1529.232,490.688,1529.81,488.757,1529.81z M565.026,1488.849c-3.858,0-7.5-2.33-8.989-6.14
c-1.939-4.962,0.513-10.558,5.476-12.497c8.996-3.515,18.386-6.814,27.91-9.805c5.085-1.593,10.499,1.23,12.094,6.314
c1.597,5.083-1.229,10.498-6.313,12.095c-9.107,2.86-18.081,6.012-26.67,9.368
C567.381,1488.636,566.194,1488.849,565.026,1488.849z M648.419,1465.236c-4.529,0-8.569-3.204-9.462-7.816
c-1.012-5.232,2.408-10.293,7.639-11.306c9.243-1.788,18.981-3.446,28.945-4.926c5.268-0.786,10.177,2.855,10.961,8.125
c0.783,5.27-2.855,10.178-8.125,10.961c-9.686,1.439-19.145,3.049-28.114,4.784
C649.644,1465.178,649.027,1465.236,648.419,1465.236z M734.448,1453.776c-4.949,0-9.161-3.786-9.599-8.809
c-0.464-5.308,3.463-9.987,8.771-10.45c8.927-0.779,18.419-1.521,29.019-2.265c5.285-0.369,9.926,3.633,10.3,8.948
c0.373,5.315-3.633,9.926-8.948,10.299c-10.489,0.737-19.875,1.469-28.691,2.239
C735.013,1453.764,734.729,1453.776,734.448,1453.776z M821.074,1447.866c-5.059,0-9.308-3.941-9.621-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.341-0.318,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.766C821.471,1447.86,821.272,1447.866,821.074,1447.866z M907.74,1442.568c-5.059,0-9.308-3.941-9.621-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.344-0.326,9.893,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.218
l-28.889,1.767C908.137,1442.562,907.938,1442.568,907.74,1442.568z M994.406,1437.269c-5.059,0-9.307-3.941-9.62-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.345-0.309,9.893,3.722,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.767C994.805,1437.263,994.604,1437.269,994.406,1437.269z M1081.072,1431.969c-5.059,0-9.307-3.941-9.62-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.766c5.322-0.318,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.767C1081.47,1431.964,1081.27,1431.969,1081.072,1431.969z M1167.738,1426.671c-5.059,0-9.307-3.941-9.62-9.059
c-0.325-5.318,3.722-9.893,9.041-10.219l28.889-1.767c5.349-0.326,9.894,3.723,10.219,9.041c0.325,5.318-3.722,9.893-9.041,10.219
l-28.889,1.766C1168.135,1426.665,1167.936,1426.671,1167.738,1426.671z M1254.358,1420.693c-4.914,0-9.115-3.738-9.592-8.73
c-0.508-5.304,3.38-10.015,8.685-10.523c10.205-0.975,19.481-2.043,28.357-3.264c5.276-0.72,10.146,2.966,10.872,8.244
c0.725,5.279-2.966,10.146-8.244,10.872c-9.142,1.257-18.676,2.354-29.148,3.356
C1254.976,1420.678,1254.665,1420.693,1254.358,1420.693z M1339.835,1406.05c-4.233,0-8.115-2.807-9.295-7.086
c-1.416-5.136,1.6-10.448,6.735-11.864c9.242-2.549,18.223-5.456,26.694-8.639c4.994-1.875,10.551,0.65,12.425,5.636
c1.875,4.988-0.649,10.55-5.636,12.425c-9.014,3.388-18.553,6.476-28.353,9.178
C1341.548,1405.937,1340.684,1406.05,1339.835,1406.05z M1418.99,1371.212c-3.131,0-6.201-1.522-8.057-4.329
c-2.938-4.445-1.716-10.43,2.729-13.368c7.542-4.985,14.948-10.622,22.014-16.754c4.022-3.493,10.115-3.063,13.609,0.962
c3.493,4.024,3.062,10.117-0.962,13.609c-7.698,6.683-15.781,12.832-24.022,18.28
C1422.663,1370.694,1420.817,1371.212,1418.99,1371.212z M1480.743,1310.868c-1.931,0-3.882-0.578-5.577-1.782
c-4.344-3.086-5.366-9.108-2.281-13.452c5.366-7.558,10.318-15.487,14.721-23.567c2.549-4.679,8.41-6.406,13.087-3.856
c4.679,2.549,6.406,8.409,3.856,13.087c-4.765,8.747-10.126,17.328-15.932,25.506
C1486.737,1309.454,1483.762,1310.868,1480.743,1310.868z M1517.216,1232.602c-0.778,0-1.568-0.094-2.356-0.292
c-5.169-1.297-8.306-6.538-7.009-11.707c2.256-8.984,3.898-18.121,4.878-27.155c0.575-5.299,5.342-9.13,10.632-8.55
c5.298,0.575,9.126,5.335,8.55,10.633c-1.076,9.911-2.875,19.928-5.346,29.771
C1525.467,1229.681,1521.535,1232.602,1517.216,1232.602z M1520.169,1146.498c-4.554,0-8.606-3.239-9.472-7.879
c-1.672-8.957-4.032-17.905-7.015-26.593c-1.731-5.04,0.953-10.527,5.992-12.257c5.036-1.729,10.528,0.953,12.257,5.992
c3.287,9.575,5.889,19.438,7.733,29.318c0.978,5.237-2.475,10.276-7.713,11.254
C1521.352,1146.444,1520.757,1146.498,1520.169,1146.498z M1486.631,1067.128c-3.053,0-6.055-1.445-7.93-4.142
c-5.223-7.514-11.025-14.791-17.243-21.63c-3.585-3.942-3.295-10.044,0.647-13.629c3.942-3.584,10.044-3.295,13.628,0.648
c6.781,7.457,13.11,15.396,18.811,23.597c3.041,4.375,1.961,10.387-2.415,13.428
C1490.452,1066.568,1488.532,1067.128,1486.631,1067.128z M1424.593,1007.152c-1.794,0-3.608-0.499-5.227-1.546
c-7.728-4.995-15.75-9.441-23.845-13.217l-0.314-0.146c-4.827-2.257-6.911-7.999-4.653-12.826c2.257-4.826,8-6.91,12.825-4.653
l0.276,0.129c8.915,4.158,17.716,9.036,26.183,14.508c4.475,2.892,5.758,8.864,2.866,13.339
C1430.859,1005.596,1427.759,1007.152,1424.593,1007.152z M1344.533,974.803c-0.7,0-1.41-0.076-2.123-0.236
c-8.759-1.966-18.077-3.643-27.693-4.985c-5.277-0.736-8.958-5.611-8.222-10.888c0.737-5.277,5.615-8.957,10.888-8.222
c10.137,1.415,19.98,3.187,29.254,5.268c5.199,1.167,8.467,6.327,7.3,11.527C1352.93,971.754,1348.947,974.803,1344.533,974.803z
M274.324,966.773c-5.318,0-9.634-4.305-9.647-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.023,0
c5.317,0,9.634,4.305,9.647,9.625c0.012,5.328-4.297,9.657-9.625,9.67l-28.943,0.066
C274.339,966.773,274.331,966.773,274.324,966.773z M361.152,966.573c-5.318,0-9.635-4.305-9.647-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.338-0.002,9.657,4.297,9.67,9.625s-4.297,9.657-9.625,9.67l-28.943,0.066
C361.167,966.573,361.16,966.573,361.152,966.573z M447.979,966.373c-5.318,0-9.634-4.305-9.647-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.942-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.942,0.066C447.995,966.373,447.987,966.373,447.979,966.373z M534.808,966.174
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C534.823,966.174,534.815,966.174,534.808,966.174z M621.636,965.973c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0c5.318,0,9.635,4.305,9.648,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C621.651,965.973,621.643,965.973,621.636,965.973z M708.463,965.774
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C708.478,965.774,708.471,965.774,708.463,965.774z M795.291,965.574c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c5.292,0.018,9.658,4.297,9.67,9.625c0.012,5.328-4.297,9.657-9.626,9.67
l-28.943,0.066C795.306,965.574,795.299,965.574,795.291,965.574z M882.12,965.374c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.317,0,9.634,4.305,9.647,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C882.135,965.374,882.127,965.374,882.12,965.374z M968.947,965.174
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C968.962,965.174,968.955,965.174,968.947,965.174z M1258.376,965.13c-0.103,0-0.204-0.001-0.307-0.005
c-8.629-0.27-17.745-0.424-28.69-0.483c-5.328-0.029-9.623-4.372-9.595-9.7c0.029-5.31,4.342-9.595,9.647-9.595
c0.018,0,0.036,0,0.054,0c11.114,0.06,20.389,0.216,29.188,0.492c5.326,0.167,9.508,4.619,9.341,9.945
C1267.849,961.007,1263.564,965.13,1258.376,965.13z M1055.775,964.974c-5.318,0-9.635-4.305-9.648-9.625
c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.008,0,0.016,0,0.024,0c5.318,0,9.634,4.305,9.647,9.625
c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066C1055.79,964.974,1055.783,964.974,1055.775,964.974z M1142.603,964.775
c-5.318,0-9.635-4.305-9.648-9.625c-0.012-5.328,4.297-9.657,9.625-9.67l28.943-0.066c0.007,0,0.015,0,0.023,0
c5.318,0,9.635,4.305,9.648,9.625c0.012,5.328-4.297,9.657-9.626,9.67l-28.943,0.066
C1142.619,964.775,1142.611,964.775,1142.603,964.775z"/>
<path style="fill:#D13737;" d="M462.452,197.927c-156.647,0-283.638,126.991-283.638,283.638
c0,251.801,283.638,464.048,283.638,464.048S746.09,733.366,746.09,481.565C746.09,324.918,619.099,197.927,462.452,197.927z
M462.316,679.485c-109.374,0-198.045-88.671-198.045-198.055c0-109.374,88.671-198.045,198.045-198.045
c109.384,0,198.055,88.671,198.055,198.045C660.371,590.814,571.701,679.485,462.316,679.485z"/>
<path style="fill:#18ACB7;" d="M1737.548,1228.212c-156.647,0-283.638,126.991-283.638,283.638
c0,251.801,283.638,464.048,283.638,464.048s283.638-212.246,283.638-464.048
C2021.187,1355.203,1894.196,1228.212,1737.548,1228.212z M1737.413,1709.77c-109.374,0-198.045-88.671-198.045-198.055
c0-109.374,88.671-198.045,198.045-198.045c109.384,0,198.055,88.671,198.055,198.045
C1935.468,1621.1,1846.797,1709.77,1737.413,1709.77z"/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@ -0,0 +1,126 @@
# Terms and Conditions
> Last updated: January 09, 2025
>
> Also see: https://anydev.info/terms-and-conditions/
Please read these terms and conditions carefully before using our Service.
## Interpretation and Definitions
### Interpretation
The words of which the initial letter is capitalized have meanings defined under the following conditions. The following definitions shall have the same meaning regardless of whether they appear in singular or in plural.
### Definitions
For the purposes of these Terms and Conditions:
- **Application** means the software program provided by the Company downloaded by You on any electronic device, named AnyWay
- **Application Store** means the digital distribution service operated and developed by Apple Inc. (Apple App Store) or Google Inc. (Google Play Store) in which the Application has been downloaded.
- **Affiliate** means an entity that controls, is controlled by or is under common control with a party, where "control" means ownership of 50% or more of the shares, equity interest or other securities entitled to vote for election of directors or other managing authority.
- **Country** refers to: Switzerland
- **Company** (referred to as either "the Company", "We", "Us" or "Our" in this Agreement) refers to AnyDev.
- **Device** means any device that can access the Service such as a computer, a cellphone or a digital tablet.
- **Service** refers to the Application.
- **Terms and Conditions** (also referred as "Terms") mean these Terms and Conditions that form the entire agreement between You and the Company regarding the use of the Service. This Terms and Conditions agreement has been created with the help of the Terms and Conditions Generator.
- **Third-party Social Media Service** means any services or content (including data, information, products or services) provided by a third-party that may be displayed, included or made available by the Service.
- **You** means the individual accessing or using the Service, or the company, or other legal entity on behalf of which such individual is accessing or using the Service, as applicable.
## Acknowledgment
These are the Terms and Conditions governing the use of this Service and the agreement that operates between You and the Company. These Terms and Conditions set out the rights and obligations of all users regarding the use of the Service.
Your access to and use of the Service is conditioned on Your acceptance of and compliance with these Terms and Conditions. These Terms and Conditions apply to all visitors, users and others who access or use the Service.
By accessing or using the Service You agree to be bound by these Terms and Conditions. If You disagree with any part of these Terms and Conditions then You may not access the Service.
You represent that you are over the age of 18. The Company does not permit those under 18 to use the Service.
Your access to and use of the Service is also conditioned on Your acceptance of and compliance with the Privacy Policy of the Company. Our Privacy Policy describes Our policies and procedures on the collection, use and disclosure of Your personal information when You use the Application or the Website and tells You about Your privacy rights and how the law protects You. Please read Our Privacy Policy carefully before using Our Service.
## Links to Other Websites
Our Service may contain links to third-party web sites or services that are not owned or controlled by the Company.
The Company has no control over, and assumes no responsibility for, the content, privacy policies, or practices of any third party web sites or services. You further acknowledge and agree that the Company shall not be responsible or liable, directly or indirectly, for any damage or loss caused or alleged to be caused by or in connection with the use of or reliance on any such content, goods or services available on or through any such web sites or services.
We strongly advise You to read the terms and conditions and privacy policies of any third-party web sites or services that You visit.
## Termination
We may terminate or suspend Your access immediately, without prior notice or liability, for any reason whatsoever, including without limitation if You breach these Terms and Conditions.
Upon termination, Your right to use the Service will cease immediately.
## Limitation of Liability
Notwithstanding any damages that You might incur, the entire liability of the Company and any of its suppliers under any provision of this Terms and Your exclusive remedy for all of the foregoing shall be limited to the amount actually paid by You through the Service or 100 USD if You haven't purchased anything through the Service.
To the maximum extent permitted by applicable law, in no event shall the Company or its suppliers be liable for any special, incidental, indirect, punitive, or consequential damages whatsoever (including, but not limited to, damages for loss of profits, loss of data, loss of use, loss of goodwill, business interruption, personal injury, loss of privacy, or any other pecuniary or non-pecuniary loss or damage) arising out of or in any way related to the use of or inability to use the Service, third-party software and/or third-party hardware used with the Service, or otherwise in connection with any provision of this Terms, even if the Company or any supplier has been advised of the possibility of such damages and even if the remedy fails of its essential purpose.
In particular, the Company and its suppliers are not liable for any damages or losses that may arise from:
- Your reliance on any content provided through the Service;
- Errors, mistakes, or inaccuracies of content;
- Any unauthorized access to or use of our servers and/or any personal information stored therein;
- Any interruption or cessation of transmission to or from the Service;
- Any bugs, viruses, trojan horses, or the like which may be transmitted to or through the Service by any third party;
- Any errors or omissions in any content or for any loss or damage of any kind incurred as a result of Your use of any content posted, emailed, transmitted, or otherwise made available via the Service.
The Company shall not be liable for any loss or damage resulting from failure to meet any of Your expectations related to the use or performance of the Service, including but not limited to inaccuracies in GPS location services, suggested itineraries, or other location-based services.
Some jurisdictions do not allow the exclusion or limitation of certain types of liability, such as incidental or consequential damages or implied warranties. Therefore, the above limitations or exclusions may not apply to You. In such jurisdictions, each party's liability will be limited to the greatest extent permitted by law.
To the extent permitted by applicable law, the Company and its suppliers aggregate liability to You for any claims arising from or related to the use of the Service shall in no event exceed the greater of (a) the amount You paid, if any, for accessing the Service during the twelve (12) month period preceding the claim or (b) one hundred (100) USD.
You agree that the limitations of liability set forth in this section will survive any termination or expiration of these Terms and apply even if any limited remedy specified in these Terms is found to have failed its essential purpose.
"AS IS" and "AS AVAILABLE" Disclaimer
The Service is provided to You "AS IS" and "AS AVAILABLE" and with all faults and defects without warranty of any kind. To the maximum extent permitted under applicable law, the Company, on its own behalf and on behalf of its Affiliates and its and their respective licensors and service providers, expressly disclaims all warranties, whether express, implied, statutory or otherwise, with respect to the Service, including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement, and warranties that may arise out of course of dealing, course of performance, usage or trade practice. Without limitation to the foregoing, the Company provides no warranty or undertaking, and makes no representation of any kind that the Service will meet Your requirements, achieve any intended results, be compatible or work with any other software, applications, systems or services, operate without interruption, meet any performance or reliability standards or be error free or that any errors or defects can or will be corrected.
Without limiting the foregoing, neither the Company nor any of the company's provider makes any representation or warranty of any kind, express or implied: (i) as to the operation or availability of the Service, or the information, content, and materials or products included thereon; (ii) that the Service will be uninterrupted or error-free; (iii) as to the accuracy, reliability, or currency of any information or content provided through the Service; or (iv) that the Service, its servers, the content, or e-mails sent from or on behalf of the Company are free of viruses, scripts, trojan horses, worms, malware, timebombs or other harmful components.
Some jurisdictions do not allow the exclusion of certain types of warranties or limitations on applicable statutory rights of a consumer, so some or all of the above exclusions and limitations may not apply to You. But in such a case the exclusions and limitations set forth in this section shall be applied to the greatest extent enforceable under applicable law.
## Governing Law
The laws of the Country, excluding its conflicts of law rules, shall govern this Terms and Your use of the Service. Your use of the Application may also be subject to other local, state, national, or international laws.
## Disputes Resolution
If You have any concern or dispute about the Service, You agree to first try to resolve the dispute informally by contacting the Company.
For European Union (EU) Users
If You are a European Union consumer, you will benefit from any mandatory provisions of the law of the country in which You are resident.
## United States Legal Compliance
You represent and warrant that (i) You are not located in a country that is subject to the United States government embargo, or that has been designated by the United States government as a "terrorist supporting" country, and (ii) You are not listed on any United States government list of prohibited or restricted parties.
## Severability and Waiver
### Severability
If any provision of these Terms is held to be unenforceable or invalid, such provision will be changed and interpreted to accomplish the objectives of such provision to the greatest extent possible under applicable law and the remaining provisions will continue in full force and effect.
### Waiver
Except as provided herein, the failure to exercise a right or to require performance of an obligation under these Terms shall not affect a party's ability to exercise such right or require such performance at any time thereafter nor shall the waiver of a breach constitute a waiver of any subsequent breach.
Translation Interpretation
These Terms and Conditions may have been translated if We have made them available to You on our Service. You agree that the original English text shall prevail in the case of a dispute.
Changes to These Terms and Conditions
We reserve the right, at Our sole discretion, to modify or replace these Terms at any time. If a revision is material We will make reasonable efforts to provide at least 30 days' notice prior to any new terms taking effect. What constitutes a material change will be determined at Our sole discretion.
By continuing to access or use Our Service after those revisions become effective, You agree to be bound by the revised terms. If You do not agree to the new terms, in whole or in part, please stop using the website and the Service.
## Contact Us
If you have any questions about these Terms and Conditions, You can contact us:
- By visiting this page on our website: https://anydev.info

View File

@ -1,3 +1,9 @@
# fastlane secret
.env
secret.env
*.mobileprovision
report.xml
**/dgph
*.mode1v3
*.mode2v3

View File

@ -1 +1,2 @@
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"
#include "Generated.xcconfig"

View File

@ -1 +1,2 @@
#include? "Pods/Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"
#include "Generated.xcconfig"

5
frontend/ios/Gemfile Normal file
View File

@ -0,0 +1,5 @@
source "https://rubygems.org"
gem "fastlane"
gem "cocoapods"

59
frontend/ios/Podfile Normal file
View File

@ -0,0 +1,59 @@
# Uncomment this line to define a global platform for your project
# platform :ios, '12.0'
# CocoaPods analytics sends network stats synchronously affecting flutter build latency.
ENV['COCOAPODS_DISABLE_STATS'] = 'true'
project 'Runner', {
'Debug' => :debug,
'Profile' => :release,
'Release' => :release,
}
def flutter_root
generated_xcode_build_settings_path = File.expand_path(File.join('..', 'Flutter', 'Generated.xcconfig'), __FILE__)
unless File.exist?(generated_xcode_build_settings_path)
raise "#{generated_xcode_build_settings_path} must exist. If you're running pod install manually, make sure flutter pub get is executed first"
end
File.foreach(generated_xcode_build_settings_path) do |line|
matches = line.match(/FLUTTER_ROOT\=(.*)/)
return matches[1].strip if matches
end
raise "FLUTTER_ROOT not found in #{generated_xcode_build_settings_path}. Try deleting Generated.xcconfig, then run flutter pub get"
end
require File.expand_path(File.join('packages', 'flutter_tools', 'bin', 'podhelper'), flutter_root)
flutter_ios_podfile_setup
target 'Runner' do
use_frameworks!
use_modular_headers!
flutter_install_all_ios_pods File.dirname(File.realpath(__FILE__))
target 'RunnerTests' do
inherit! :search_paths
end
end
post_install do |installer|
installer.pods_project.targets.each do |target|
flutter_additional_ios_build_settings(target)
target.build_configurations.each do |config|
# You can remove unused permissions here
# for more information: https://github.com/BaseflowIT/flutter-permission-handler/blob/master/permission_handler/ios/Classes/PermissionHandlerEnums.h
config.build_settings['GCC_PREPROCESSOR_DEFINITIONS'] ||= [
'$(inherited)',
## The 'PERMISSION_LOCATION' macro enables the `locationWhenInUse` and `locationAlways` permission. If
## the application only requires `locationWhenInUse`, only specify the `PERMISSION_LOCATION_WHENINUSE`
## macro.
##
## dart: [PermissionGroup.location, PermissionGroup.locationAlways, PermissionGroup.locationWhenInUse]
'PERMISSION_LOCATION=1',
'PERMISSION_LOCATION_WHENINUSE=0',
]
end
end
end

87
frontend/ios/Podfile.lock Normal file
View File

@ -0,0 +1,87 @@
PODS:
- Flutter (1.0.0)
- geocoding_ios (1.0.5):
- Flutter
- geolocator_apple (1.2.0):
- Flutter
- Google-Maps-iOS-Utils (6.1.0):
- GoogleMaps (~> 9.0)
- google_maps_flutter_ios (0.0.1):
- Flutter
- Google-Maps-iOS-Utils (< 7.0, >= 5.0)
- GoogleMaps (< 10.0, >= 8.4)
- GoogleMaps (9.2.0):
- GoogleMaps/Maps (= 9.2.0)
- GoogleMaps/Maps (9.2.0)
- map_launcher (0.0.1):
- Flutter
- path_provider_foundation (0.0.1):
- Flutter
- FlutterMacOS
- permission_handler_apple (9.3.0):
- Flutter
- shared_preferences_foundation (0.0.1):
- Flutter
- FlutterMacOS
- sqflite (0.0.3):
- Flutter
- FlutterMacOS
- url_launcher_ios (0.0.1):
- Flutter
DEPENDENCIES:
- Flutter (from `Flutter`)
- geocoding_ios (from `.symlinks/plugins/geocoding_ios/ios`)
- geolocator_apple (from `.symlinks/plugins/geolocator_apple/ios`)
- google_maps_flutter_ios (from `.symlinks/plugins/google_maps_flutter_ios/ios`)
- map_launcher (from `.symlinks/plugins/map_launcher/ios`)
- path_provider_foundation (from `.symlinks/plugins/path_provider_foundation/darwin`)
- permission_handler_apple (from `.symlinks/plugins/permission_handler_apple/ios`)
- shared_preferences_foundation (from `.symlinks/plugins/shared_preferences_foundation/darwin`)
- sqflite (from `.symlinks/plugins/sqflite/darwin`)
- url_launcher_ios (from `.symlinks/plugins/url_launcher_ios/ios`)
SPEC REPOS:
trunk:
- Google-Maps-iOS-Utils
- GoogleMaps
EXTERNAL SOURCES:
Flutter:
:path: Flutter
geocoding_ios:
:path: ".symlinks/plugins/geocoding_ios/ios"
geolocator_apple:
:path: ".symlinks/plugins/geolocator_apple/ios"
google_maps_flutter_ios:
:path: ".symlinks/plugins/google_maps_flutter_ios/ios"
map_launcher:
:path: ".symlinks/plugins/map_launcher/ios"
path_provider_foundation:
:path: ".symlinks/plugins/path_provider_foundation/darwin"
permission_handler_apple:
:path: ".symlinks/plugins/permission_handler_apple/ios"
shared_preferences_foundation:
:path: ".symlinks/plugins/shared_preferences_foundation/darwin"
sqflite:
:path: ".symlinks/plugins/sqflite/darwin"
url_launcher_ios:
:path: ".symlinks/plugins/url_launcher_ios/ios"
SPEC CHECKSUMS:
Flutter: e0871f40cf51350855a761d2e70bf5af5b9b5de7
geocoding_ios: bcbdaa6bddd7d3129c9bcb8acddc5d8778689768
geolocator_apple: d981750b9f47dbdb02427e1476d9a04397beb8d9
Google-Maps-iOS-Utils: 0a484b05ed21d88c9f9ebbacb007956edd508a96
google_maps_flutter_ios: 0291eb2aa252298a769b04d075e4a9d747ff7264
GoogleMaps: 634ec3ca99698b31ca2253d64f017217d70cfb38
map_launcher: fe43bda6720bb73c12fcc1bdd86123ff49a4d4d6
path_provider_foundation: 080d55be775b7414fd5a5ef3ac137b97b097e564
permission_handler_apple: 4ed2196e43d0651e8ff7ca3483a069d469701f2d
shared_preferences_foundation: 9e1978ff2562383bd5676f64ec4e9aa8fa06a6f7
sqflite: c35dad70033b8862124f8337cc994a809fcd9fa3
url_launcher_ios: 694010445543906933d732453a59da0a173ae33d
PODFILE CHECKSUM: bd1a78910c05ac1e3a220e80f392c61ab2cc8789
COCOAPODS: 1.10.2

View File

@ -11,9 +11,11 @@
331C808B294A63AB00263BE5 /* RunnerTests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 331C807B294A618700263BE5 /* RunnerTests.swift */; };
3B3967161E833CAA004F5970 /* AppFrameworkInfo.plist in Resources */ = {isa = PBXBuildFile; fileRef = 3B3967151E833CAA004F5970 /* AppFrameworkInfo.plist */; };
74858FAF1ED2DC5600515810 /* AppDelegate.swift in Sources */ = {isa = PBXBuildFile; fileRef = 74858FAE1ED2DC5600515810 /* AppDelegate.swift */; };
8F724AF5AC92A8A68D89C67E /* Pods_Runner.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */; };
97C146FC1CF9000F007C117D /* Main.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FA1CF9000F007C117D /* Main.storyboard */; };
97C146FE1CF9000F007C117D /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FD1CF9000F007C117D /* Assets.xcassets */; };
97C147011CF9000F007C117D /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 97C146FF1CF9000F007C117D /* LaunchScreen.storyboard */; };
CDD1C9EB82AEC89C2181F722 /* Pods_RunnerTests.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */; };
/* End PBXBuildFile section */
/* Begin PBXContainerItemProxy section */
@ -40,14 +42,20 @@
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_Runner.framework; sourceTree = BUILT_PRODUCTS_DIR; };
1498D2321E8E86230040F4C2 /* GeneratedPluginRegistrant.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = GeneratedPluginRegistrant.h; sourceTree = "<group>"; };
1498D2331E8E89220040F4C2 /* GeneratedPluginRegistrant.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = GeneratedPluginRegistrant.m; sourceTree = "<group>"; };
282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.profile.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.profile.xcconfig"; sourceTree = "<group>"; };
3023467726A2A8275ED51C3E /* Pods-Runner.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.debug.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.debug.xcconfig"; sourceTree = "<group>"; };
331C807B294A618700263BE5 /* RunnerTests.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = RunnerTests.swift; sourceTree = "<group>"; };
331C8081294A63A400263BE5 /* RunnerTests.xctest */ = {isa = PBXFileReference; explicitFileType = wrapper.cfbundle; includeInIndex = 0; path = RunnerTests.xctest; sourceTree = BUILT_PRODUCTS_DIR; };
3B3967151E833CAA004F5970 /* AppFrameworkInfo.plist */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.plist.xml; name = AppFrameworkInfo.plist; path = Flutter/AppFrameworkInfo.plist; sourceTree = "<group>"; };
4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_RunnerTests.framework; sourceTree = BUILT_PRODUCTS_DIR; };
5F8BB7E700693DEAB89BBE69 /* Pods-Runner.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.release.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.release.xcconfig"; sourceTree = "<group>"; };
74858FAD1ED2DC5600515810 /* Runner-Bridging-Header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "Runner-Bridging-Header.h"; sourceTree = "<group>"; };
74858FAE1ED2DC5600515810 /* AppDelegate.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = AppDelegate.swift; sourceTree = "<group>"; };
7AFA3C8E1D35360C0083082E /* Release.xcconfig */ = {isa = PBXFileReference; lastKnownFileType = text.xcconfig; name = Release.xcconfig; path = Flutter/Release.xcconfig; sourceTree = "<group>"; };
7B8A81C772249160491754F9 /* Pods-Runner.profile.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-Runner.profile.xcconfig"; path = "Target Support Files/Pods-Runner/Pods-Runner.profile.xcconfig"; sourceTree = "<group>"; };
9740EEB21CF90195004384FC /* Debug.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = Debug.xcconfig; path = Flutter/Debug.xcconfig; sourceTree = "<group>"; };
9740EEB31CF90195004384FC /* Generated.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = Generated.xcconfig; path = Flutter/Generated.xcconfig; sourceTree = "<group>"; };
97C146EE1CF9000F007C117D /* Runner.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = Runner.app; sourceTree = BUILT_PRODUCTS_DIR; };
@ -55,19 +63,43 @@
97C146FD1CF9000F007C117D /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
97C147001CF9000F007C117D /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/LaunchScreen.storyboard; sourceTree = "<group>"; };
97C147021CF9000F007C117D /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.release.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.release.xcconfig"; sourceTree = "<group>"; };
DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-RunnerTests.debug.xcconfig"; path = "Target Support Files/Pods-RunnerTests/Pods-RunnerTests.debug.xcconfig"; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
03EC59CC2AABC9D86B4ABFD7 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
CDD1C9EB82AEC89C2181F722 /* Pods_RunnerTests.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
97C146EB1CF9000F007C117D /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
8F724AF5AC92A8A68D89C67E /* Pods_Runner.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
1C946B8D83A95663C2489C91 /* Pods */ = {
isa = PBXGroup;
children = (
3023467726A2A8275ED51C3E /* Pods-Runner.debug.xcconfig */,
5F8BB7E700693DEAB89BBE69 /* Pods-Runner.release.xcconfig */,
7B8A81C772249160491754F9 /* Pods-Runner.profile.xcconfig */,
DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */,
A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */,
282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */,
);
path = Pods;
sourceTree = "<group>";
};
331C8082294A63A400263BE5 /* RunnerTests */ = {
isa = PBXGroup;
children = (
@ -76,6 +108,15 @@
path = RunnerTests;
sourceTree = "<group>";
};
3ECCC9BD7D0792871219624C /* Frameworks */ = {
isa = PBXGroup;
children = (
03CCEF89D4BD42ADA86AEDF9 /* Pods_Runner.framework */,
4CB8B4133CEB7949B7EEBD81 /* Pods_RunnerTests.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
9740EEB11CF90186004384FC /* Flutter */ = {
isa = PBXGroup;
children = (
@ -94,6 +135,8 @@
97C146F01CF9000F007C117D /* Runner */,
97C146EF1CF9000F007C117D /* Products */,
331C8082294A63A400263BE5 /* RunnerTests */,
1C946B8D83A95663C2489C91 /* Pods */,
3ECCC9BD7D0792871219624C /* Frameworks */,
);
sourceTree = "<group>";
};
@ -128,8 +171,10 @@
isa = PBXNativeTarget;
buildConfigurationList = 331C8087294A63A400263BE5 /* Build configuration list for PBXNativeTarget "RunnerTests" */;
buildPhases = (
F27C1B361CA1B045C8D36B3B /* [CP] Check Pods Manifest.lock */,
331C807D294A63A400263BE5 /* Sources */,
331C807F294A63A400263BE5 /* Resources */,
03EC59CC2AABC9D86B4ABFD7 /* Frameworks */,
);
buildRules = (
);
@ -145,12 +190,15 @@
isa = PBXNativeTarget;
buildConfigurationList = 97C147051CF9000F007C117D /* Build configuration list for PBXNativeTarget "Runner" */;
buildPhases = (
2116AEE9DABFBBDED304ABEB /* [CP] Check Pods Manifest.lock */,
9740EEB61CF901F6004384FC /* Run Script */,
97C146EA1CF9000F007C117D /* Sources */,
97C146EB1CF9000F007C117D /* Frameworks */,
97C146EC1CF9000F007C117D /* Resources */,
9705A1C41CF9048500538489 /* Embed Frameworks */,
3B06AD1E1E4923F5004D2608 /* Thin Binary */,
FE4BAF74959AF0624BA808EE /* [CP] Embed Pods Frameworks */,
EE58653D94051600FD646EBE /* [CP] Copy Pods Resources */,
);
buildRules = (
);
@ -222,6 +270,28 @@
/* End PBXResourcesBuildPhase section */
/* Begin PBXShellScriptBuildPhase section */
2116AEE9DABFBBDED304ABEB /* [CP] Check Pods Manifest.lock */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
);
inputPaths = (
"${PODS_PODFILE_DIR_PATH}/Podfile.lock",
"${PODS_ROOT}/Manifest.lock",
);
name = "[CP] Check Pods Manifest.lock";
outputFileListPaths = (
);
outputPaths = (
"$(DERIVED_FILE_DIR)/Pods-Runner-checkManifestLockResult.txt",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "diff \"${PODS_PODFILE_DIR_PATH}/Podfile.lock\" \"${PODS_ROOT}/Manifest.lock\" > /dev/null\nif [ $? != 0 ] ; then\n # print error to STDERR\n echo \"error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or update your CocoaPods installation.\" >&2\n exit 1\nfi\n# This output is used by Xcode 'outputs' to avoid re-running this script phase.\necho \"SUCCESS\" > \"${SCRIPT_OUTPUT_FILE_0}\"\n";
showEnvVarsInLog = 0;
};
3B06AD1E1E4923F5004D2608 /* Thin Binary */ = {
isa = PBXShellScriptBuildPhase;
alwaysOutOfDate = 1;
@ -253,6 +323,62 @@
shellPath = /bin/sh;
shellScript = "/bin/sh \"$FLUTTER_ROOT/packages/flutter_tools/bin/xcode_backend.sh\" build";
};
EE58653D94051600FD646EBE /* [CP] Copy Pods Resources */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources-${CONFIGURATION}-input-files.xcfilelist",
);
name = "[CP] Copy Pods Resources";
outputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources-${CONFIGURATION}-output-files.xcfilelist",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "\"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-resources.sh\"\n";
showEnvVarsInLog = 0;
};
F27C1B361CA1B045C8D36B3B /* [CP] Check Pods Manifest.lock */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
);
inputPaths = (
"${PODS_PODFILE_DIR_PATH}/Podfile.lock",
"${PODS_ROOT}/Manifest.lock",
);
name = "[CP] Check Pods Manifest.lock";
outputFileListPaths = (
);
outputPaths = (
"$(DERIVED_FILE_DIR)/Pods-RunnerTests-checkManifestLockResult.txt",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "diff \"${PODS_PODFILE_DIR_PATH}/Podfile.lock\" \"${PODS_ROOT}/Manifest.lock\" > /dev/null\nif [ $? != 0 ] ; then\n # print error to STDERR\n echo \"error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or update your CocoaPods installation.\" >&2\n exit 1\nfi\n# This output is used by Xcode 'outputs' to avoid re-running this script phase.\necho \"SUCCESS\" > \"${SCRIPT_OUTPUT_FILE_0}\"\n";
showEnvVarsInLog = 0;
};
FE4BAF74959AF0624BA808EE /* [CP] Embed Pods Frameworks */ = {
isa = PBXShellScriptBuildPhase;
buildActionMask = 2147483647;
files = (
);
inputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks-${CONFIGURATION}-input-files.xcfilelist",
);
name = "[CP] Embed Pods Frameworks";
outputFileListPaths = (
"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks-${CONFIGURATION}-output-files.xcfilelist",
);
runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh;
shellScript = "\"${PODS_ROOT}/Target Support Files/Pods-Runner/Pods-Runner-frameworks.sh\"\n";
showEnvVarsInLog = 0;
};
/* End PBXShellScriptBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
@ -327,6 +453,7 @@
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
@ -361,27 +488,45 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
CODE_SIGN_IDENTITY = "Apple Development";
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
CODE_SIGN_STYLE = Manual;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = "";
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
MARKETING_VERSION = 1.0.0;
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
PRODUCT_NAME = "$(TARGET_NAME)";
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
SUPPORTS_MACCATALYST = NO;
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
VERSIONING_SYSTEM = "apple-generic";
};
name = Profile;
};
331C8088294A63A400263BE5 /* Debug */ = {
isa = XCBuildConfiguration;
baseConfigurationReference = DC475F5210027479529644C3 /* Pods-RunnerTests.debug.xcconfig */;
buildSettings = {
BUNDLE_LOADER = "$(TEST_HOST)";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = L32Y3D8V83;
GENERATE_INFOPLIST_FILE = YES;
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
@ -395,10 +540,12 @@
};
331C8089294A63A400263BE5 /* Release */ = {
isa = XCBuildConfiguration;
baseConfigurationReference = A565AAB9FE158487ABF3A5BF /* Pods-RunnerTests.release.xcconfig */;
buildSettings = {
BUNDLE_LOADER = "$(TEST_HOST)";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = L32Y3D8V83;
GENERATE_INFOPLIST_FILE = YES;
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
@ -410,10 +557,12 @@
};
331C808A294A63A400263BE5 /* Profile */ = {
isa = XCBuildConfiguration;
baseConfigurationReference = 282EA28E78AB3F765E4BA719 /* Pods-RunnerTests.profile.xcconfig */;
buildSettings = {
BUNDLE_LOADER = "$(TEST_HOST)";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = L32Y3D8V83;
GENERATE_INFOPLIST_FILE = YES;
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation.RunnerTests;
@ -447,6 +596,7 @@
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
@ -504,6 +654,7 @@
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
@ -540,18 +691,34 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
CODE_SIGN_IDENTITY = "Apple Development";
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
CODE_SIGN_STYLE = Manual;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = "";
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
MARKETING_VERSION = 1.0.0;
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
PRODUCT_NAME = "$(TARGET_NAME)";
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
SUPPORTS_MACCATALYST = NO;
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
VERSIONING_SYSTEM = "apple-generic";
};
name = Debug;
@ -562,17 +729,33 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CURRENT_PROJECT_VERSION = "$(FLUTTER_BUILD_NUMBER)";
CODE_SIGN_IDENTITY = "Apple Development";
"CODE_SIGN_IDENTITY[sdk=iphoneos*]" = "iPhone Distribution";
CODE_SIGN_STYLE = Manual;
CURRENT_PROJECT_VERSION = 3;
DEVELOPMENT_TEAM = "";
"DEVELOPMENT_TEAM[sdk=iphoneos*]" = L32Y3D8V83;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
INFOPLIST_KEY_CFBundleDisplayName = Any.Way;
INFOPLIST_KEY_LSApplicationCategoryType = "public.app-category.travel";
IPHONEOS_DEPLOYMENT_TARGET = 15.6;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
PRODUCT_BUNDLE_IDENTIFIER = com.example.fastNetworkNavigation;
MARKETING_VERSION = 1.0.0;
PRODUCT_BUNDLE_IDENTIFIER = info.anydev.anyway;
PRODUCT_NAME = "$(TARGET_NAME)";
PROVISIONING_PROFILE_SPECIFIER = "match AppStore info.anydev.anyway";
"PROVISIONING_PROFILE_SPECIFIER[sdk=iphoneos*]" = "match AppStore info.anydev.anyway";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator";
SUPPORTS_MACCATALYST = NO;
SUPPORTS_MAC_DESIGNED_FOR_IPHONE_IPAD = NO;
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_OBJC_BRIDGING_HEADER = "Runner/Runner-Bridging-Header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
VERSIONING_SYSTEM = "apple-generic";
};
name = Release;

View File

@ -4,4 +4,7 @@
<FileRef
location = "group:Runner.xcodeproj">
</FileRef>
<FileRef
location = "group:Pods/Pods.xcodeproj">
</FileRef>
</Workspace>

View File

@ -1,12 +1,14 @@
import UIKit
import Flutter
import GoogleMaps
@UIApplicationMain
@main
@objc class AppDelegate: FlutterAppDelegate {
override func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey: Any]?
) -> Bool {
GMSServices.provideAPIKey("IOS_GOOGLE_MAPS_API_KEY")
GeneratedPluginRegistrant.register(with: self)
return super.application(application, didFinishLaunchingWithOptions: launchOptions)
}

View File

@ -2,10 +2,12 @@
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CADisableMinimumFrameDurationOnPhone</key>
<true/>
<key>CFBundleDevelopmentRegion</key>
<string>$(DEVELOPMENT_LANGUAGE)</string>
<key>CFBundleDisplayName</key>
<string>Fast Network Navigation</string>
<string>anyway</string>
<key>CFBundleExecutable</key>
<string>$(EXECUTABLE_NAME)</string>
<key>CFBundleIdentifier</key>
@ -24,6 +26,8 @@
<string>$(FLUTTER_BUILD_NUMBER)</string>
<key>LSRequiresIPhoneOS</key>
<true/>
<key>UIApplicationSupportsIndirectInputEvents</key>
<true/>
<key>UILaunchStoryboardName</key>
<string>LaunchScreen</string>
<key>UIMainStoryboardFile</key>
@ -41,9 +45,38 @@
<string>UIInterfaceOrientationLandscapeLeft</string>
<string>UIInterfaceOrientationLandscapeRight</string>
</array>
<key>CADisableMinimumFrameDurationOnPhone</key>
<true/>
<key>UIApplicationSupportsIndirectInputEvents</key>
<true/>
<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>$(PRODUCT_NAME) optionally uses your location to plan trips directly from your current location.</string>
<key>NSLocationWhenInUseUsageDescription</key>
<string>$(PRODUCT_NAME) optionally uses your location to plan trips directly from your current location.</string>
<key>LSApplicationQueriesSchemes</key>
<array>
<!-- set by maps launcher -->
<string>comgooglemaps</string>
<string>baidumap</string>
<string>iosamap</string>
<string>waze</string>
<string>yandexmaps</string>
<string>yandexnavi</string>
<string>citymapper</string>
<string>mapswithme</string>
<string>osmandmaps</string>
<string>dgis</string>
<string>qqmap</string>
<string>here-location</string>
<string>tomtomgo</string>
<string>copilot</string>
<string>com.sygic.aura</string>
<string>nmap</string>
<string>kakaomap</string>
<string>tmap</string>
<string>szn-mapy</string>
<string>mappls</string>
<!-- used by url launcher to open web browser -->
<string>http</string>
<string>https</string>
</array>
<key>ITSAppUsesNonExemptEncryption</key>
<false/>
</dict>
</plist>

View File

@ -0,0 +1,13 @@
# SAMPLE env file that replicates the env in the CI/CD pipeline
# DO NOT EDIT THIS FILE
# Copy this file to local.env and edit the values to match your local environment
BUILD_NAME="sample"
BUILD_NUMBER="sample"
IOS_ASC_KEY_ID="sample"
IOS_ASC_KEY="sample"
IOS_ASC_ISSUER_ID="sample"
SIGNING_KEY_FILE_PATH="sample"
SIGNING_KEY_PASSWORD="sample"
IOS_GOOGLE_MAPS_API_KEY="sample"

View File

@ -0,0 +1,8 @@
app_identifier("info.anydev.testing") # The bundle identifier of your app
apple_id("me@moll.re") # Your Apple Developer Portal username
itc_team_id("127439860") # App Store Connect Team ID
team_id("L32Y3D8V83") # Developer Portal Team ID
# For more information about the Appfile, see:
# https://docs.fastlane.tools/advanced/#appfile

View File

@ -0,0 +1,111 @@
default_platform(:ios)
platform :ios do
desc "Load the App Store Connect API token"
lane :load_asc_api_token do
app_store_connect_api_key(
key_id: ENV["IOS_ASC_KEY_ID"],
issuer_id: ENV["IOS_ASC_ISSUER_ID"],
key_content: ENV["IOS_ASC_KEY"],
is_key_content_base64: true,
in_house: false
)
end
desc "Deploy a new version to closed testing (testflight)"
lane :deploy_beta do
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
load_asc_api_token
api_key = lane_context[SharedValues::APP_STORE_CONNECT_API_KEY]
sync_code_signing(
api_key: api_key,
type: "appstore",
readonly: true,
)
# replace secrets by real values, the stupid way
sh(
"sed",
"-i",
"",
"s/IOS_GOOGLE_MAPS_API_KEY/#{ENV["IOS_GOOGLE_MAPS_API_KEY"]}/g",
"../Runner/AppDelegate.swift"
)
sh(
"flutter",
"build",
"ipa",
"--release",
"--build-name=#{build_name}",
"--build-number=#{build_number}",
)
# sign the app (whithout rebuilding it)
build_app(
skip_build_archive: true,
archive_path: "../build/ios/archive/Runner.xcarchive"
)
upload_to_testflight(
skip_waiting_for_build_processing: true,
)
end
desc "Deploy a new version as a full release"
lane :deploy_release do
build_name = ENV["BUILD_NAME"]
build_number = ENV["BUILD_NUMBER"]
load_asc_api_token
api_key = lane_context[SharedValues::APP_STORE_CONNECT_API_KEY]
sync_code_signing(
api_key: api_key,
type: "appstore",
readonly: true,
)
# replace secrets by real values, the stupid way
sh(
"sed",
"-i",
"",
"s/IOS_GOOGLE_MAPS_API_KEY/#{ENV["IOS_GOOGLE_MAPS_API_KEY"]}/g",
"../Runner/AppDelegate.swift"
)
sh(
"flutter",
"build",
"ipa",
"--release",
"--build-name=#{build_name}",
"--build-number=#{build_number}",
)
# sign the app (whithout rebuilding it)
build_app(
skip_build_archive: true,
archive_path: "../build/ios/archive/Runner.xcarchive"
)
upload_to_app_store(
skip_screenshots: true,
skip_metadata: true,
precheck_include_in_app_purchases: false,
submit_for_review: true,
automatic_release: true,
# automatically release the app after review
)
end
end

View File

@ -0,0 +1,8 @@
git_url("ssh://git@git.kluster.moll.re:2222/anydev/anyway-app-secrets.git")
storage_mode("git")
type("appstore") # The default type, can be: appstore, adhoc, enterprise or development
app_identifier(["info.anydev.anyway"])
username("me@moll.re") # Your Apple Developer Portal username

Some files were not shown because too many files have changed in this diff Show More